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A method to identify and analyze biological programs through
automated reasoning
Boyan Yordanov1,7, Sara-Jane Dunn1,7, Hillel Kugler1,2, Austin Smith3,4, Graziano Martello5 and Stephen Emmott1,6

Predictive biology is elusive because rigorous, data-constrained, mechanistic models of complex biological systems are difficult to
derive and validate. Current approaches tend to construct and examine static interaction network models, which are descriptively
rich, but often lack explanatory and predictive power, or dynamic models that can be simulated to reproduce known behavior.
However, in such approaches implicit assumptions are introduced as typically only one mechanism is considered, and exhaustively
investigating all scenarios is impractical using simulation. To address these limitations, we present a methodology based on
automated formal reasoning, which permits the synthesis and analysis of the complete set of logical models consistent with
experimental observations. We test hypotheses against all candidate models, and remove the need for simulation by characterizing
and simultaneously analyzing all mechanistic explanations of observed behavior. Our methodology transforms knowledge of
complex biological processes from sets of possible interactions and experimental observations to precise, predictive biological
programs governing cell function.
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INTRODUCTION
A major challenge in biology is to move from descriptive
narratives towards predictive explanations of biological mechan-
isms and processes. Interaction network diagrams, now used
widely to represent biological systems by mapping components
(e.g., genes and proteins) and the possible molecular interactions
between them, are a prime example of this challenge. In the
absence of an accompanying hypothesis of dynamics and
information flow, these maps provide a rich description of the
complexity of biological systems, but usually do not confer any
explanatory or predictive power.1

In an effort to address such shortcomings, both continuous and
discrete mathematical approaches have been applied to capture
and investigate the dynamics of interaction networks (see ref. 2 for
a review). In particular, qualitative (logical) models are a powerful
intuitive tool,1,3 where the connectivity of a set of components
represents excitatory or inhibitory molecular interactions,
and logical update functions abstract the involved regulation
mechanisms. This allows the dynamical behavior of the system to
be studied without the need for detailed biochemical descriptions,
which require hard-to-measure kinetic parameters (e.g., synthesis
and degradation rates), making the logical modeling formalism an
attractive alternative to continuous models.
Logical models are typically constructed through a combination

of manual effort and computational techniques,4,5 and their
dynamics explored by computational simulation or state-space
exploration. This can reveal whether the model reproduces known
behavior. Model refinement proceeds when simulated behavior is
inconsistent with experiment, though this remains challenging for
complex networks, as it is non-trivial to infer interactions or
update functions manually. Besides the challenge of constructing

and refining a suitable model, these approaches introduce implicit
assumptions by considering only one of the many mechanisms
consistent with observed behavior.6 Furthermore, simulation
restricts investigation to a limited set of scenarios (e.g., trajectories
originating from different initial conditions corresponding
to distinct expression profiles), while a complete state-space
exploration becomes infeasible as models increase in size.
To address the limitations of such existing approaches, we have

developed a methodology that uses automated reasoning
(proving the properties of logical formulae using automated
algorithms) to transform a description of the critical components,
possible interactions and hypothesized regulation rules of a
biological process into a dynamic, mechanistic explanation of
experimentally observed behavior. Our computational approach
allows a large number of possible mechanistic hypotheses
and experimental results to be considered simultaneously.
Furthermore, it permits experimentally testable predictions of
biological behavior to be made that have yet to be experimentally
observed, based on all mechanisms consistent with experimental
evidence, limiting the bias and implicit assumptions introduced
when considering only a single model.
We applied this methodology to the analysis of mouse

embryonic stem cell (mESC) self-renewal to derive a highly
predictive explanation of known behavior based on simple
regulation rules and an unexpectedly small number of key
components and interactions, compared with vast interactome
diagrams.7 The results from applying our approach indicated
that the most parsimonious explanation of complex biological
behavior can be understood not in terms of prevailing descrip-
tions of a static network, but in terms of a precise, molecular
program governing cellular decision making: a minimal set of
functional components, interconnected with and regulating each
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other according to rules that confer to the system the capacity to
process input stimuli to compute and output a biological function
reliably and robustly.
We propose that a rigorous, formal definition and representa-

tion (model) of a biological program, which captures dynamic
information-processing steps over time while recapitulating
observed biological behavior, is better suited for explaining and
predicting cellular (or bio-molecular) processes compared with
vast but static interaction network diagrams. Despite the
recent progress in studying dynamic interaction networks,8–14

a complete framework for the definition, synthesis and analysis of
biological programs is missing. Our methodology is designed to
identify and analyze such programs, thus advancing the field not

only beyond existing techniques, but also beyond prevailing
paradigms of thinking in biological science.
Here for the first time, we present our methodology and its

theoretical basis, to allow domain experts to apply the technique
to their systems of study. We consider three distinct biological
systems, and through comparison with studies that utilize existing
analysis methodologies, we show how our approach forces us to
draw new conclusions to those of the original investigators.
For the cell cycle in budding yeast,11 our analysis procedures allow
us to examine network robustness while avoiding exhaustive
simulation sweeps, as well as to establish the requirement for
certain interactions, and to predict how the cell cycle is disrupted
by genetic perturbations; for myeloid progenitor differentiation,12

Figure 1. The RE:IN (Reasoning Engine for Interaction Networks) methodology, illustrated by example. First, critical network components must
be identified: genes A, B and C are critical regulators of a given cell state, while S1 and S2 are input signals (panel 1). Components can be
active or inactive, to fit a Boolean formalism. Second, definite and possible interactions should be defined (panel 2): S1 activates A (solid
arrow), Bmay activate C (dashed arrow). These define the topology of an abstract network, which describes 24= 16 unique, concrete networks,
in which each possible interaction is present or not (panel 3). By combining this topology with known or hypothesized regulation conditions
at each node (panel 4), we characterize an Abstract Boolean Network (ABN, panel 5). Next, experimental observations are encoded as
constraints on state trajectories (panel 6). A constrained Abstract Boolean Network (cABN) defines an ABN together with the constraints
describing system observations, thus integrating available knowledge describing the structure, dynamics and observed behavior of the
process (panel 7). We can enumerate the concrete models that satisfy these constraints (panel 8). In addition, we can use the cABN to
formulate predictions (panel 9): to identify minimal networks, which have the fewest optional interactions instantiated (concrete model 2,
panel 8), as well as required (or disallowed) interactions that are present in all (none) concrete models. We can also study genetic
perturbations. Once predictions have been tested experimentally (panel 10), they can be added to the set of experimental constraints. If no
concrete models are identified, then the process is iterated, starting by re-examining our assumptions about components, interactions,
dynamics and behavior.
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we predict the requirement for interactions and input signals not
previously considered; and for cardiac development,15 we predict
critical interactions omitted from current models and validate
these predictions using results from the literature.

RESULTS
Methodology
We use a simple, demonstrative example, summarized in Figure 1,
to provide an overview of our methodology. We illustrate the
approach and assumptions inherent in the construction of a set of
logical network models from experimental data to describe a
process of interest, and the subsequent analysis that can be
performed. In Figure 2, we present the encoding of this simple
model and assumptions as an illustration of the intuitive domain-
specific language we propose, while formal definitions of the
concepts described are provided in Materials and Methods.
First, the input and critical components of the biological process

must be defined, together with its output, which represents the
biological decision to be explained (Figure 1, panel 1). Inputs can be
chemical signals, mechanical triggers or signaling cascades, and the
output could represent a cellular decision or phenotype: e.g.,
whether a stem cell differentiates or remains pluripotent,7 which
cell type to differentiate into,12,15 or whether to undergo division.11

This can be captured by the state of the network components.
When selecting the initial set of critical components to include,

they should be functionally relevant: only those that have a
substantial effect on the process under study when inactivated
or overactivated. Various combinations of genes, proteins,

protein complexes, non-coding RNAs, metabolites and signaling
molecules can be considered, identified by literature search or
genetic screens. This set can be revised if model refinement is
required (see below).
Within logical modeling, variables take a discrete number of

states. Here we abstract the activity of each component to two
possible states: ON, representing a gene that is actively expressed
at endogenous levels, a transcription factor (TF) present in high
enough concentrations to be functional, or a protein in its
active conformational form, and OFF otherwise. While gene
regulation and signaling pathways are not always digital, they
have been successfully treated as Boolean values in several
instances, e.g. as markers of cellular states or genes active during
specific phases of the cell cycle.16,17

Second, potential interactions between components should be
identified, which must have both sign (positive or negative, for
activation or inhibition, respectively) and direction (panel 2).
An interaction could represent the direct binding of a TF (source)
to the promoter of a downstream gene (target) or a post-
transcriptional modification of the gene’s product, and can be
inferred from a range of data types (Table 1 and Supplementary
Material). Interactions may also represent indirect effects, in the
case where a secondary regulatory effect has been captured by
the data.
Interactions are classed either as definite, if supported by

multiple sets of reliable experimental evidence, or possible,
to indicate the option of a putative interaction. For example, for
transcriptional regulation, it is generally accepted that measuring
gene expression shortly after a genetic or chemical perturbation
allows secondary effects to be ruled out, but chromatin

Figure 2. Encoding sets of models and constraints in RE:IN. Shown here is how to encode a set of components, regulation conditions,
interactions and constraints in RE:IN, using the toy example from Figure 1 as an illustration. This highlights how to set assumptions, such as a
synchronous update scheme, whether to include the Threshold regulation conditions, and how to restrict the set of regulation conditions for
a specific components (e.g., C can only use conditions 1, 3, or 5). Constraints are defined as individual experiments, in which component
states are defined (using labelled predicates, if desired) at specified time points. We also highlight how to define such a state to be a
fixed point.
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immunoprecipitation or promoter assays should also be used to
further support a direct interaction before labeling it as definite.
For post-translation modification, mutagenesis of individual
residues and in vitro assays are generally accepted as strong
evidence for a given interaction. As the absence of an interaction
is as strong an assumption as defining one to be definite, possible
interactions should be used if there is uncertainty. In the absence
of sufficient experimental evidence, it is possible to consider
interactions between all components as possible.
Altogether, the set of interactions define an abstract network

topology (panel 3), so called because an abstract network with
4 possible interactions generates 24 = 16 unique, concrete
topologies, in which each possible interaction is present or not.
The next step is to augment the static network topology with

information that determines transitions between system states,
using logical rules that describe how each component updates in
response to the state of its regulators (panel 4). We remove the
need to specify individual update functions in the network,
which are often difficult to elucidate10 and, importantly, require
knowledge of the exact network topology. Instead, we generated
a set of 20 biologically meaningful regulation conditions that are
compatible with all topologies defined by the abstract network.18

We achieve this by defining rules according to whether none,
some or all of a components activators/repressors are present. The
complete set of update functions, which are consistent with
several assumptions, are defined together with a threshold rule
(Materials and Methods).11 If prior experimental evidence can
eliminate one or more regulation mechanism for a given
component, for example that a component requires at least one
activator in order to switch on, then a subset of these regulation
conditions can be assigned in accordance with model assump-
tions. The overall network can be updated synchronously (where
all components update at each step) or asynchronously (one
component per step). As the update functions we consider are
deterministic, synchronous updates lead to deterministic behavior,
while asynchronous updates lead to non-determinism due to the
sequence of component updates.
By defining the set of critical components, possible and definite

interactions (the abstract network topology) together with the
allowable regulation conditions, we construct an Abstract Boolean
Network (ABN): a formal representation that defines the possible
structure and dynamics of unique, concrete networks (panel 5). The
ABN thus encodes all possible mechanisms that could potentially
explain experimental observations. ABNs generalize the concept of
Boolean Networks (BNs)19 as the state of each component is
represented by a Boolean value, but not all interactions and
regulation conditions are instantiated. In contrast, a concrete
network includes only definite interactions, and a single regulation
condition per component, and can be viewed as a BN.
We seek the set of concrete networks from the ABN that are

consistent with experimental observations, which are derived
both from new data and the literature, and are encoded by
specifying the states of some or all of the components along

unique trajectories of the system (panel 6). This introduces
restrictions on the choice of possible interactions and regulation
conditions assigned to each component, to ensure all observa-
tions are satisfied. When a network satisfies all observations, as
part of the solution, a complete trajectory (where all unknown
component states are instantiated) is identified for each constraint
as a demonstration and potential explanation of how the
expected behavior can be realized.
Observations can describe the change in system behavior under

different inputs, or under genetic manipulations, by defining initial
and subsequent cellular states. In the simple example in Figure 1, we
require all components to be active under both signals, but when
only S2 is present, B and C are active, while A is inactive. A state can
be defined as stable, such that subsequent updates will not lead to
state changes. This provides a mechanism for describing cellular
decisions that persist indefinitely, e.g., the stable gene expression
pattern observed in a differentiated cell. Alternatively, cycles that
follow a sequence of intermediate states can be described, even
when the precise time of these states is unknown. In addition, the
observed effects of the inactivation or over-activation of a
component can be specified. The three case studies we present
below illustrate such constraints.
A constrained Abstract Boolean Network (cABN) is the

formal representation of the ABN together with the constraints
describing the observed behaviors of the system (panel 7). It thus
represents all possible mechanisms, i.e., concrete topologies and
regulation conditions, consistent with observed system behavior.
The cABN description is grounded in logic and permits

the application of automated reasoning. This is a powerful
analysis strategy, where valid conclusions are drawn directly
from the cABN definition through logical inference and efficient
model finding algorithms. We encode this representation as a
Satisfiability Modulo Theories (SMT) problem, in which logical
expressions are constructed that define the possible combinations
of interactions and regulation conditions, and the resulting
network behaviors over time. This approach reflects how
experimental observations might be interpreted manually given
an interaction network diagram (e.g., component A either
activates or represses component B; down-regulation of A leads
to upregulation of B; therefore, A must repress B). We solve the
SMT problem within a bespoke tool: the Reasoning Engine for
Interaction Networks (RE:IN), which uses the bit-vector theory
reasoning strategies20,21 implemented within the SMT solver Z322

(Materials and Methods). RE:IN is made freely available as a cloud-
based application (rein.cloudapp.net), with examples and tutorials
provided (research.microsoft.com/rein).
The set of consistent networks can be enumerated and

examined individually (panel 8) using RE:IN, which also identifies
when no such networks exist, prompting us to re-examine our
initial assumptions (Figure 1, green boxes). For example, additional
possible interactions could be included in the abstract network as
part of model refinement. If solutions do exist, then we can
impose a limit on the number of possible interactions to consider,

Table 1. A summary of the detail of interactions that can be inferred from different experimental data sources (Supplementary Material)

Technique Components Directionality Sign Direct

ChIP-Seq TF to gene Yes No Yes
Genetic or chemical perturbations followed by
gene-expression measurement

TF to gene, signal to gene Yes Yes Yes, if performed in presence of
Cycloheximide

Single-cell expression analyses Any pair of genes/proteins No Yes No
Mass-spectrometry Interacting proteins, post-

transcriptional modifications
Yes No Yes

Abbreviations: ChIP, chromatin immunoprecipitation; TF, transcription factor.
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Figure 3. Studying the biological program governing the cell cycle in budding yeast. (a) The order of the cell cycle phases upon perturbation
of G0 due to activating cell size, before the system stabilizes in G0 (indicated by a star). An example of S phase is visualized graphically on the
network diagram. (b) The ABN constructed from the Yeast model proposed by Li et al. (c) The cABN satisfying the cyclic constraint in (a).
11 required interactions are indicated by solid arrows (in addition to the definite activation of Cln3 by cell size). (d) Example trajectory taken
by one solution when the G0 state is perturbed by activating cell size. The step at which each cell cycle phase is reached is indicated. (e) There
are 12 minimal networks, each consisting of 20 instantiated possible interactions. Green indicates an activation, red indicates a repression, and
asterisks indicate required interactions. Some of these mechanisms do not require all components to behave as regulators (Mcm1, Cdh1 and
Swi5). In addition, some sets of interactions expose redundancy: for example, six concrete models do not require Swi5 to regulate Sic1, which
is instead activated by Cdc20. In the remaining models, Swi5 is required to activate Sic1 in the absence of activation by Cdc20. (Similarly, the
activation of Cdc20 by Clb12 or Mcm1, and the inhibition of Clb12 by Cdc20, Cdh1 or Sic1.) (f) The set of consistent mechanisms can be used
to predict perturbations that arrest the cell cycle. In each case, loss of function of the gene highlighted on the arrow will prevent the transition
from occurring.
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which allows us to derive minimal networks that are easy to
examine and can reveal components and interactions essential for
the biological process. These correspond to one of the simplest
explanations—in terms of numbers of interactions—of the
behavior the network is expected to produce. Alternative
definitions of ‘minimal’ might focus on restricting the number of
components, or the possible regulation conditions. In the
example, there is one such minimal model, containing only the
activation from B to C.
Even without enumeration, we can pose and test various

hypotheses to explore whether certain behavior is guaranteed in
the system regardless of the precise mechanism, and identify the
exact steps that lead to a specific output. This is significant,
particularly in cases where the number of concrete networks is too
large to be feasibly investigated. We consider all consistent
models simultaneously, thereby assuming them to be equally
valid and eliminating the bias introduced when only a single
model is studied.
First, we can study those interactions critical to the network.

Required interactions, if individually excluded, will prevent the
constraints from being satisfied. In the example, it is required that
B activates C (panel 9). Similarly, interactions that must be
disallowed are those that if enforced as definite, would prevent
the constraints from being satisfied. Note that if all outgoing
interactions from a component are found to be disallowed, this
reveals that the component is not required to behave as a
regulator, and could be removed from the analysis if there is no
additional biological evidence for its importance.
Second, we can formulate predictions by determining whether

a new hypothesis, encoded as an additional constraint, is satisfied
by the cABN. We guarantee that the prediction is implied by all
consistent mechanisms by showing that the converse of this
constraint (the null hypothesis) is unsatisfiable. For example, we
predict that inactivation of B in the presence of S2 and absence of
S1 causes A and C to become inactive (panel 9). Indeed, useful
insights are identified even when no prediction can be generated
for a given query, as this signifies that some mechanisms support
the hypothesis, and other mechanisms support the null hypoth-
esis, suggesting a discriminating biological experiment to refine
the set of models further.
Note that, in general, the size (number of concrete models) of

the cABN relates to its predictive capacity: increasing the number
of possible interactions increases the number of concrete
networks that can potentially produce different dynamic behavior,
which in general, reduces the number of predictions that can be
formulated. Interactions with less experimental support can be
included as part of a model refinement process if no consistent
models exist.
Following experimental testing of predictions, novel biological

knowledge can be incorporated as new experimental constraints
(panel 10). Even if a prediction holds true it is recommended to
add constraints explicitly capturing these new data before further
expanding the cABN.

To illustrate further the application and implementation of our
methodology, we consider three separate biological systems,
using models from the literature as a concise representation of
the domain knowledge of critical components, interactions and
behaviors. When starting from experimental data alone, domain
experts can apply the workflow from Figure 1 instead. We provide
a table summarizing these studies in Supplementary Material.

Cell cycle regulation in yeast
To study the cell-cycle in budding yeast, Li et al.11 constructed a
synchronous BN of 12 regulators, applying a threshold update
function (Materials and Methods) to each component. The
network is shown to recapitulate a trajectory through the
temporally ordered phases of the cell cycle (without prescribing
the exact step at which each phase is reached) upon perturbation
of the stationary G1 phase, before returning to this stable state.
Encoding this concrete model in RE:IN confirms that it satisfies

the cyclic constraint (Figure 3a). However, by instead marking the
set of interactions as possible, we can quickly examine the
robustness of the network (Figure 3b). The maximum number of
models that could potentially satisfy the constraint is 229 = 536,
870,912. By enumeration with RE:IN, we identified 4,480 consistent
mechanisms, demonstrating that it is possible to remove
interactions from the concrete network without compromising
expected behavior. To infer this by simulation alone would require
exhaustive, time-consuming trajectory sweeps.
Furthermore, we investigated which interactions are required to

satisfy this constraint; a question that cannot easily be asked of a
single, defined network. We identified that 11 of the possible
interactions are required (Figure 3c), which we predict must be
present in any valid explanation of the cell cycle, assuming the
initial set of interactions shown in Figure 3b. An example
trajectory for a single concrete network that illustrates the cycle
is shown in Figure 3d. Further, we identified 12 minimal networks,
each with 16 instantiated possible interactions (Figure 3e). Upon
examination, these expose the redundancy of including both a
direct and indirect interaction between two genes in the original
BN, e.g., Cdc20 activating Sic1 directly, and indirectly through
Swi5. Three components are not required to act as regulators in
some of the minimal networks (Mcm1, Cdh1 and Swi5), and
therefore could be removed from these specific models without
affecting the dynamics of the remaining components. This
illustrates the usefulness of minimal networks to investigate how
to reduce the number of components considered, in addition to
the number of interactions.
We also investigated the consequence of gene inactivation on

cell cycle progression, testing whether the set of consistent
models can complete the transitions between the cell cycle
phases under perturbation. This allowed us to predict genes
essential for cell cycle progression, and where the cycle might
arrest. We predict at least one gene inactivation that will arrest
each phase transition (Figure 3f). All but one of these predictions

Table 2. Loss of function of specific genes was predicted to arrest the cell cycle at different phases

Mutant Prediction Experimental Support Reference (SGD ID)

Cln3 Prevents transition from Start to G1 Incorrect prediction: Cln3 knockdown is found to lead to increased G1
duration

S000000038

MBF or SBF Prevents transition from G1 to S Either MBF or SBF knockdown leads to increased g1 duration S000004172
Clb56 or SBF Prevents transition from S to G2 Clb56 knockdown causes a delay in the progression through S phase S000006324
Clb12 or SBF Prevents transition from G2 to M (1) SBF knockdown leads to delayed G2/M transition (1) S000000913

(2) Clb12 knockdown delays progression through M phase (2) S000006323
Cdc20 Prevents transition from M to G0 Cdc20 knockdown delays progression through M phase S000003084

Experimental support for these predictions has been found through the Saccharomyces Genome Database (www.yeastgenome.org). Only one prediction was
found to be incorrect (Cln3 mutant).
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are consistent with the literature, in which arrest or delay in cell
cycle progression arises following inactivation of these genes
(Table 2). To conduct model refinement, the prediction to be
corrected can be added to the set of constraints using the

information derived from the experimental test. Given it will not
be possible to satisfy this new constraint with the current set of
assumptions, these should next be revised, for example, by
including additional possible interactions (Figure 1).
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Here we have demonstrated that alternative, simpler mechan-
isms are capable of producing the expected behavior of the cell
cycle in budding yeast, and by encoding the model as a cABN,
that it is robust to adaptations (Figure 3c). This demonstrates how

to achieve an understanding of the system while avoiding the
need for simulation or exhaustive enumeration of trajectories by
reasoning about the behavior of all consistent networks, and how
to formulate predictions of genetic perturbations.

Figure 4. Studying the biological program governing myeloid progenitor differentiation. (a) The differentiation of a common myeloid
progenitor towards four different blood cell types is considered. (b) The network topology proposed by Krumsiek et al. (c) The set of
experimental observations indicates that, starting from the progenitor cellular state (step 0), each state characterizing a different cell type is
reached after 20 steps and the system stabilizes (indicated by a star). The megakaryocyte GATA-2 was observed as active in experiments but
was inactive in the model from Krumsiek et al. (red box). (d) 15 of the possible interactions were identified as required (solid red and green
arrows) and 2 were identified as disallowed (solid black arrows) in the cABN satisfying the constraints in c. (e) If all interactions from the
original model in b are considered as definite, the correct expression of megakaryocyte GATA-2 can be achieved by including one of 12
possible interactions. (f) The experimental constraints are modified to specify that the cell-fate decision is made in response to whether the
hypothetical signals X and Y are present or not. (g) Two minimal models are identified when considering the hypothetical signals. Three novel
interactions (signal X activating Fli1, signal Y activating EKLF and Fli1 activating GATA-2) appear in both models. In the first minimal model Y
represses Gfi1, while in the second this signal activates cjun.

Figure 5. Studying the biological program governing cardiac development. (a) The differentiation of a cardiac progenitor cell towards either
the first or second heart field as determined by Bmp2 and canonical Wnt signaling. (b) The ABN constructed based on cardiac model
proposed by Herrmann et al., with Bmp2 and canonical Wnt signaling represented using two nodes to model a time delay. (c) The set of
experimental constraints that the cardiac system exhibits. The initial and stable final expression states are shown, together with the expected
temporal dynamics. (d) The ABN with all interactions set as possible. (e) The 10 minimal models that can satisfy all constraints, each of which
contains an additional three interactions to the set defined by Herrmann et al.
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Myeloid progenitor differentiation
To model myeloid progenitor differentiation (Figure 4a), Krumsiek
et al.12 constructed an asynchronous BN of 11 regulators and 28
interactions based on the literature (Figure 4b). By directly
exploring the 211 = 2,048 nodes of the state-transition graph, four
stable states (attractors) were shown to be reachable from a
common progenitor state. The gene expression pattern character-
izing each attractor was shown to correlate with messenger RNA
expression data obtained from erythrocyte, megakaryocyte,
monocyte and granulocyte cells, with the exception of GATA-2
in megakaryocytes, which was defined as inactive in the model
but observed experimentally as highly expressed.
We first studied this proposed network topology (Figure 4b).

The specified update functions named regulators for each
component, and so we instead applied our regulation conditions,
assuming at least one activator is required for component
activation (Figure 2). We employed an asynchronous update
strategy, and used the gene expression patterns of the 5 cell types
as observations (Figures 4a and c). RE:IN identified that these
constraints are satisfiable, despite our use of potentially different
regulation rules. Interestingly, no solutions were found using
only the threshold rules, indicating that additional regulation
conditions, for example those we propose, are required.
If we correct the constraint that GATA-2 is active in

megakaryocytes, as observed experimentally,12 no consistent
models exist. This is not the case if every interaction is marked
as possible, and under this scenario we identified that to
reproduce the observed behavior, 15 interactions are required
and 2 are disallowed (Figure 4d). However, previous experimental
evidence supports the inclusion of these two disallowed
interactions.12

An alternative strategy for satisfying observed behavior is to
assume that all interactions from the original model have been
validated, but additional interactions are missing. To investigate
this, we constructed an ABN by setting the interactions from
Krumsiek et al. as definite and adding all other interactions
(activation and repression between each pair of components) as
possible. Identifying the minimal networks in this case reveals that
the observations can be reproduced with only one additional
interaction (Figure 4e). Our results suggest 12 candidate
interactions, at least 3 of which (Fli1 to GATA-2, SCL to GATA-2,
Gfi1 to GATA-1) are consistent with interactions reported
elsewhere.23,24

Krumsiek et al. assumed that the precise order in which genes
are updated determines the differentiation of a progenitor cell
into one of four cell types. An alternative approach, consistent
with our view of biological programs, would be to describe this
decision as the result of the deterministic information
processing of a number of inputs (e.g., cytokines) that
regulate haematopoiesis.25 To illustrate this, we considered two

hypothetical signals (X and Y) that deterministically specify cell
fate (Figure 4f), and employed synchronous updates. Once set, the
signals remain unchanged, but their effects can propagate
throughout the network over a number of updates. With no prior
knowledge of how such signals could input to the network, we
included a possible positive and negative interaction from each
signal to every component of the network, while again consider-
ing all original interactions as definite, and the 12 interactions
from Figure 4e as possible. We then identified that there are only
two minimal models (Figure 4g). In both, Fli1 activates GATA-2,
and signals X and Y activate Fli1 and EKLF, respectively. The two
mechanisms differ only in whether Y activates cjun, or
represses Gfi1.
Here we have shown how our methodology can be applied to

search for additional interactions, and that non-deterministic
updates can be replaced by a deterministic biological program
with precisely defined inputs. We employ minimal networks to
reveal candidate signal targets.

The murine cardiac gene regulatory network
At the end of gastrulation, a developmental decision occurs
when the cardiac mesoderm splits into progenitors of the first and
second heart field (FHF/SHF; Figure 5a). To model heart
development in the murine embryo, Herrmann et al.15 constructed
a synchronous BN composed of 11 key regulators with two input
signals corresponding to Bmp2 and canonical Wnt signaling,
based on published data (Figure 5b), which they investigated by
simulation. They also presented expected gene expression states
along the transition to either FHF or SHF (Figure 5c).
By encoding their concrete BN in RE:IN, we found that while it is

consistent with the stable, final gene expression patterns for the
FHF and SHF, it cannot satisfy the expected temporal dynamics
throughout the transition (Figure 5c). Indeed, removing any
interactions from the cABN does not make this constraint
satisfiable, which we easily examined by setting all interactions
as possible, instead of definite (Figure 5d).
To identify new potential interactions to resolve this

inconsistency, we included all positive and negative interactions
between the eleven components that were not included in the
original BN as possible, while keeping the original interactions as
definite. This assumes sufficient experimental evidence for the
interactions identified by Herrmann et al. Encoding this larger ABN
with the experimental constraints in RE:IN identified a consistent
set of concrete mechanisms. Moreover, only 10 minimal networks
exist, which each require the addition of 3 out of 8 new
interactions (Figure 5e). There is evidence for 6 out of the 8 new
interactions in the literature (Table 3,26–32), which suggests that
our approach led to the identification of plausible missing
connections in the program governing cardiac development.

Table 3. Through literature search, we found evidence to support six out of the eight new potential interactions identified that enable the temporal
dynamics of differentiation to be satisfied (Figure 5c,d)

Interaction Experimental evidence

Nkx2.5 --4 canWnt Cambier et al.26 show that Nkx2.5 regulates cardiac growth, activating Wnt through induction of R-Spondin3, a positive
regulator of canonical Wnt.

Mesp1 --| canWnt David et al.27 show that Mesp1 induces DKK, an inhibitor of canonical Wnt signaling during cardiovascular differentiation
(Mesp1 --4 Dkk1 --| cantWnt).

GATAs --4 canWnt Afouda et al.28 show that inhibition of Gata4 and Gata6 results in reduced expression of cardiac markers and Wnt11.
Bmp2 --4 canWnt Papathanasiou et al.29 show that BMP2 activates canonical Wnt signaling through induction of LRP-5, a Wnt co-receptor.

Rosen30 reviews results showing that, in bone development, Bmp2 knockout leads to downregulation of several Wnt
pathway components and targets.

Foxc1/2 --| Tbx5 Hilton et al.31 show that there may be an indirect regulation via Pitx2.
Foxc1/2 --4 canWnt Seo and Kume32 show that Wnt expression is absent in Foxc1− /− ; Foxc2− /− compound mutants.

This suggests that these may be plausible missing connections in the network governing cardiac development.
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Comparison with alternative approaches
We compared our methodology against two alternative
approaches: a naive brute-force simulation strategy, and the Cell
ASP Optimized (caspo) tool,33 based on Answer Set Programming
(ASP). The ASP approach focuses on optimization, and attempts to
find the set of minimal networks that best reproduce observed
behavior, with a tolerance parameter controlling network size that
can be adjusted to generate sub-optimal solutions. Further details
of this comparison are presented in Supplementary Material.
For the simple cABN shown in Figure 1, the simulation

approach searched through all 3,888 concrete models (unique in
interactions and regulation conditions) in ~ 2 min, to identify the
1,080 consistent models. In contrast, RE:IN enumerated these
1,080 solutions in about 15 s. Focusing on unique topologies only,
caspo identified 6 valid, sub-optimal concrete networks, while RE:
IN identified 8 (Figure 1, panel 8). Both tools performed this
analysis in under 1 s, and consistently identified the required
activation of C by B. Furthermore, caspo identified the required
activation of A by S1 and B by S2, while these interactions were set
as definite using RE:IN (Figure 1). Interestingly, the 2 additional
solutions identified by RE:IN involve a feedback loop between
components A and B. Lastly, both tools identified the single
minimal model in under 1 second.
Next, we considered deterministic myeloid differentiation with

signals X and Y (Figure 4f). Analysis using caspo led to memory
errors, potentially caused by the complexity of this system.
Therefore we simplified the ABN by preserving only 2 of the
additional possible interactions (Figure 4e, SCL and Fli each
activate GATA2) and considered all interactions between X and Y
and the four components EKLF, Fli1, cjun and Gfi1 as possible
(Supplementary Figure S1).
Even on this reduced model, brute-force simulation failed to

identify a single valid model in over 5 days of computation, while
RE:IN identified 2 minimal models in ~ 7 s (Figure 4g). In contrast,
caspo identified 264 minimal models in about 5 s. The difference is
owing to some of the constraints, which could not be represented
directly in caspo. When we modified the ABN so that all
considered interactions were marked possible, and relaxed the
assumption that each component requires at least one activator to
be ‘on’, then RE:IN also identified 264 minimal models. These are
similar, but not equivalent, to the set generated using caspo. The
difference is possibly due to our restricted regulation conditions
compared with the general Boolean update functions considered
by caspo (Supplementary Material).
The comparison of a brute-force, simulation-based search, an

ASP-based tool and our SMT-based method highlights several
important differences between approaches. First, while the
brute-force approach can enumerate the entire set of concrete
networks for small ABNs, this strategy quickly becomes unfeasible
as non-deterministic choices (possible interactions, multiple
regulation conditions, unspecified initial states or asynchronous
updates) are introduced. In contrast to the ASP approach, which
focuses on optimization, our approach focuses predominantly on
checking whether consistent models exist. Further, we can use this
technique to formulate predictions and test properties of cABNs,
with enumeration of concrete models and minimal networks
also supported. Thus, the identification of the entire set of
minimal networks could be more expensive using RE:IN than
caspo. However, our method provides direct strategies
for incorporating prior knowledge, such as definite interactions
or restrictions on regulation conditions, and supports richer
observations, such as cyclic behavior (yeast cell cycle example).
When certain constraints not easily incorporated in caspo are
relaxed, the two approaches generate similar results, where small
differences can be attributed to the richer Boolean update
functions considered in caspo.

DISCUSSION
We present a methodology for the synthesis and analysis of logical
models as biological programs, in order to explain and predict
cellular decision making. We employ interaction networks as the
framework for explaining how computation is performed by a cell,
where the critical components are variables of the biological
program, which implicitly define the cell state. Interactions
indicate the flow of information between components, dynami-
cally constrained by logical regulation conditions. The framework
enables us to provide a mechanistic explanation of how a cell
translates input signals into a defined output, i.e., a decision.
Crucially, we only consider models that fully recapitulate
experimental observations, which are thus an integral and explicit
part of the program definition that clearly define the biological
behavior we seek to explain. As part of this methodology we
define a cABN to be the formal representation of a biological
program, and capture all mechanisms consistent with available
knowledge.
Our method is applicable to the study of a broad range of

biological processes, and helps address a variety of biological
questions. It enables a modeler or experimentalist starting from
the experimental data alone to construct and analyze a cABN by
representing the biological knowledge within our framework
(Figure 1). By defining a finite set of regulation conditions
as an abstraction of detailed regulatory mechanisms, we enable
interactions and dynamics to be treated separately. This, together
with the intuitive language for encoding cABNs (Figure 2), makes
the approach simple to apply, and makes all assumptions explicit.
The overall methodology is implemented in the freely
available tool RE:IN, with the required computational power in
the cloud. Through the case studies, we illustrate how to identify
and verify a biological program against observed behaviors (e.g.,
expression patterns, time course data, steady states and cycles), to
expose interaction redundancy, or to search for novel interactions
or input signals when the observed behavior cannot be explained.
Indeed, revisiting these studies using our approach reveals novel
insights that are in agreement with recent evidence in the
literature.
Among several modeling approaches for biological networks,2

we focus on Boolean models, which provide sufficient expressive
power to capture important system properties, while allowing
scalable analysis. The Boolean formalism has already proved
useful for the study of various systems,16 and offers an attractive
starting point as the most parsimonious (Occam’s Razor) explana-
tion of complex system behavior. To a degree, it also abstracts
away from experimental noise, for example when sufficient
expression is observed regardless of the precise measurement.
However, our approach requires all qualitative observations
to be reproduced exactly, and noise of sufficient magnitude
(causing a component to be observed in the incorrect state) could
impact our results. Similar robustness issues have been considered
as part of other approaches.33,34 On the other hand, noise that is
inherent to a biological mechanism could be incorporated and
studied in our framework as non-determinism, using asynchro-
nous updates or by introducing additional components with
unspecified initial states. When a Boolean discretization is too
coarse, a multilevel description of component states could be
considered,1,35,36 and such extensions are compatible with our
SMT-based approach.
Our approach incorporates automated network construction

and analysis within the same reasoning framework, whereas
alternative reconstruction or training approaches34,37–39 often
require separate analysis tools. Simulation provides one such
analysis strategy.17,40–43 However, as only concrete models can be
simulated, the ABNs we consider would have to be exhaustively
sampled to instantiate possible interactions, regulation conditions
and initial states, which becomes impractical due to the
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combinatorial explosion of concrete models as increasingly
complex ABNs are considered.
Deciding that a concrete model is consistent with experimental

observations is also challenging, especially for asynchronous
models. Formal methods or state space analysis (as in ref. 12)
provide a strategy for dealing with this, by reasoning about all
executions of the system from a set of initial states to verify model
behaviors, thereby eliminating the need for simulation. For
example, model checking methods are implemented in tools
such as SMBioNet36 and BIOCHAM43,44 for the analysis of
biological networks. Despite this, expensive enumeration would
still be required to deal with abstract models.
In contrast, our approach permits the exhaustive characteriza-

tion of the complete set of consistent networks from an ABN,
by encoding and solving satisfiability problems. This enables
the integration of partial knowledge of network topology and
regulation mechanisms, as well as experimental data where only a
subset of the components are observed. The scalability of SMT
solvers allows us to analyze models of a realistic size, and together
with the generality of the SMT problem enables potential future
extensions of our method for multilevel logical models, extended
regulation condition definitions or analysis questions. Alternative
technologies used to address similar constraint problems
include Answer Set Programming (ASP)45 and Constraint Logic
Programming (CLP).46,47

Another feature of our method is that we formulate predictions
only when all consistent networks are in agreement, which limits
the bias of using only one arbitrary concrete model. As a result,
generally, fewer predictions are generated, but it is already
understood that an ensemble of models provides more robust
predictions than a single representation.48 Where different models
within the set support the hypothesis and the null hypothesis
(preventing a prediction from being made) a potential experiment
could be performed to eliminate one of these subsets, and refine
the cABN further. Identifying such discriminating experiments
automatically is a potential future extension to RE:IN and this
methodology. Furthermore, we have begun to investigate
biological programs that reconfigure throughout development,
which requires us to adapt RE:IN for the synthesis of switching
networks.49

In light of the fact that the use of formal methods to
further understanding of biological systems is gaining
momentum,7,9,33,47,50,51 we anticipate that automated reasoning,
and in particular the approach we present here, could be
integrated into the process of combining knowledge, formulating
hypotheses, and designing new experiments to elucidate further
the nature of biological programs. In our analysis, the entire set of
consistent models, rather than a single mechanism, describes the
biological program. We speculate that this may not simply be an
artefact of our approach but rather relate to how a biological
program is realized in individual cells. Given that there are
multiple genes and interactions with redundant function, different
cells could run consistent variants of the program to obtain
equivalent behavior. This could explain the inherent heterogeneity
and robustness of biological processes.

MATERIALS AND METHODS
Formal definitions
Our methodology deals with a class of logical models where each
component exists in one of two possible states: active or inactive. Such
models can be seen as Boolean abstractions of more detailed descriptions,
where the component states vary over multiple discrete values, or are
represented by a continuous quantity. In the following, we use B ¼ >;?f g
to denote the Boolean values > (true) and ? (false), which we also
represent by 1 and 0, respectively. Given a set S we use |S| to denote the
cardinality (the number of elements) of S.

Definition 1 (Boolean Network). A Boolean network is a tuple
B ¼ C; Fð Þ of a set of components C and a set of update functions
F ¼ f c : B Cj j-B cACj g

�
, where fc is the update function for component

c∈ C.

Definition 2 (Transition System). A transition system is a tuple T ¼ Q; Tð Þ,
where Q is the set of states and T : Q ´Q-B is a transition relation.
Given states q, q′∈Q, a transition from q to q′ is allowed if and only if

T(q, q′) holds and, therefore, the relation T describes the transitions that
are valid in the system. We consider deadlock free systems, i.e., where
∀ q ∃ q′. T(q, q′). A transition system is deterministic if and only if at most a
single valid transition exists for each state, and otherwise it is
nondeterministic. A sequence of states q0, q1, …, qK represents an
execution (a trajectory) of T if and only if a transition from each state to
the subsequent one is possible ( i.e., ∧ i= 0…K− 1T(qi, qi+1)).
Given a Boolean network B ¼ C; Fð Þ, let T B ¼ QB; TBð Þ denote the

transition system we use to describe the dynamics ofB. The set of states of
T B is defined as QB ¼ B Cj j and captures all possible unique configura-
tions of the components from C. Given a system state qAQB and a
component c∈C, we use q cð ÞAB to denote the state of c. Each Boolean
update function fc defines how the state of component c is updated,
given the current states of all components. For example, given
components c, c′, c″, the update function fc(q) = q(c′)∧ q(c″) describes a
rule where component c will be active in the next state if and only if both
components c′ and c″ are active in the current state. A choice between two
different assumptions is commonly applied to define the dynamics of
Boolean networks in terms of the application of the update functions for
each component. Under synchronous updates, it is assumed that the state
of each network component is updated at each step. The transition
relation for a synchronous Boolean network is defined as

8q; q0AQ: T q; q0ð Þ $
^
cAC

q0 cð Þ ¼ f c qð Þ; ð1Þ

where q and q′ represent the current and next system state. In contrast,
under asynchronous updates, it is assumed that only the state of a single
network component is updated per step, while all other components
remain unchanged, and the choice of which component to update is
nondeterministic. This leads to the following transition relation definition
for asynchronous Boolean networks:

8q; q0AQ: T q; q0ð Þ $
_
cAC

q0 cð Þ ¼ f c qð Þ∧
^

c0 AC;c0 ≠ c

q0 c0ð Þ ¼ q c0ð Þ
 !

: ð2Þ

Thus, transition system T B is deterministic if B is a synchronous Boolean
network, assuming deterministic update functions. In general, T B is
nondeterministic if B is asynchronous.
An example of a Boolean network B together with the transition system

T B is presented in Supplementary Figure S2, where we visualize both
these systems as graphs. The graph representing B captures information
about the components, interactions and update functions in the system. In
contrast, the graphs representing T B indicate the different states (unique
configurations) that the system can exist in, together with the possible
transitions that give rise to its dynamical behavior. In practice, the
construction of such explicit transition system representations is often not
feasible due to the large number of states. For example, a Boolean network
with |C| = 15 components contains 2|C| = 32,678 states and this number
grows exponentially as additional components are included.

Network topology
Let C denote the finite set of critical components. Then Q ¼ B Cj j is the set
of states of the system and q cð ÞAB denotes the state of component c∈C
in state q∈Q. Let I : C ´ C ´B-B denote the set of directed, definite
interactions between the components C, labeled with a regulation sign
(> for positive and ? for negative). Similarly, let I? : C ´C ´B-B denote
the set of directed, possible interactions and assume that an interaction
can be either definite or possible but not both ( i.e., I \ I? ¼ |). For
example, given components c, c′∈ C, (c, c′, >)∈ I denotes the presence of a
definite, positive interaction from c to c′, while (c, c′, ?)∈ I? denotes the
possibility of a negative interaction from c to c′.
The set of components C, together with the definite and possible

interactions I and I? between elements from C defines the abstract network
topology we consider (Figure 1, panel 3). This representation describes 2 I?j j
unique concrete network topologies, in which all interactions are marked as
definite.
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To examine concrete networks, we introduce the functions
pos: C ´C-B and neg: C ´C-B. Given components c, c′∈C, pos(c, c′)
indicates that a positive interaction between c and c′ was selected
for the particular concrete network. Similarly, neg(c, c′) indicates that
a negative interaction was selected. Clearly, (c, c′, ⊤)∈ I→ pos(c, c′) and
(c, c′, ⊥)∈ I→ neg(c, c′), i.e., definite interactions are always selected.
For all other possible interactions, the functions pos and neg represent
choice variables.

Regulation conditions
The network topology alone does not capture information about system
behavior over time. Rather, we must construct a dynamical model by
representing explicitly the rules that govern how the system transitions
between different states during executions. Arbitrary Boolean update rules
might be ‘too rich’ and describe behaviors not observed in biological systems.18

Therefore, in the following, we consider a subset of templates called regulation
conditions, which describe qualitatively different regulation mechanisms. Each
regulation condition must be applicable to network topologies that contain
both definite and possible interactions. This is not straightforward if named
regulators are used in the update functions, as a given regulatory interaction
might not be included in some of the concrete models. Therefore, we define
these rules only in terms of whether none, some, or all activators (repressors) of
a given target are present in a given state, assigning equal significance to each
regulator. We thereby guarantee that the dynamical rules we consider are
consistent with the abstract network topology.
We consider all regulation conditions consistent with the following

assumptions.
1. A target is activated when all of its activators are present (i.e., active)

and none of its repressors are present (i.e., inactive). Similarly, a target
is deactivated when all repressors are present and no activators are
present.
This guarantees that the state of the target depends on the state
of its regulators and is not permanently active or inactive. We
introduce a similar assumption for targets that have only activators
(they are not repressible) and only repressors (they are not inducible).

2. We assume that each regulation condition is monotonic. For example,
if a target requires only one activator to be activated, then any greater
number of activators will activate that target, assuming no change in
the state of the repressors.

We formally define the set of 18 regulation conditions consistent with
these assumptions in the following. Given as network topology (I, I?, C),
component c∈C and a state q∈Q, we define the terms

NotInducible cð Þ 9 ∄c0AC: pos c0; cð Þ
component c is not inducibleð Þ

NotRepressible cð Þ 9 ∄c0AC: neg c0; cð Þ
component c is not repressibleð Þ

AllActivators c; qð Þ 9 :NotInducible cð Þ∧
V

c0 AC pos c0; cð Þ-q c0ð Þ
all activators of c are present in qð Þ

NoActivators c; qð Þ 9
V

c0 AC pos c0; cð Þ-:q c0ð Þ
no activators of c are present in qð Þ

AllRepressors c; qð Þ 9 :NotRepressible cð Þ∧
V

c0 AC neg c0; cð Þq c0ð Þ
all repressors of c are present in qð Þ

NoRepressors c; qð Þ 9
V

c0 AC neg c0; cð Þ-:q c0ð Þ
no repressors of c are present in qð Þ

Note that by negating the functions defined above, we obtain additional
expressions. For example, ¬AllActivators(c, q) indicates that no activators, or
some but not all activators, of c are present in state q. Using these
expressions, we define the following regulation condition templates:

R′0 c; qð Þ 9 AllActivators c; qð Þ∧ NoRepressors c; qð Þ
R′1 c; qð Þ 9 :NoActivators c; qð Þ∧ NoRepressors c; qð Þ
R′2 c; qð Þ 9 AllActivators c; qð Þ∧:AllRepressors c; qð Þ
R′3 c; qð Þ 9 NoRepressors c; qð Þ∧:NoActivators c; qð Þð Þ3

:AllRepressors c; qð Þ∧ AllActivators c; qð Þð Þ
R′4 c; qð Þ 9 AllActivators c; qð Þ
R′5 c; qð Þ 9 AllActivators c; qð Þ3 NoRepressors c; qð Þ∧:NoActivators c; qð Þð Þ
R′6 c; qð Þ 9 :NoActivators c; qð Þ∧:AllRepressors c; qð Þ
R′7 c; qð Þ 9 :NoActivators c; qð Þ∧:AllRepressors c; qð Þð Þ3AllActivators c; qð Þ
R′8 c; qð Þ 9 :NoActivators c; qð Þ
R′9 c; qð Þ 9 NoRepressors c; qð Þ
R′10 c; qð Þ 9 NoRepressors c; qð Þ3 :AllRepressors c; qð Þ∧ AllActivators c; qð Þð Þ

R′11 c; qð Þ 9 NoRepressors c; qð Þ3 :NoActivators c; qð Þ∧:AllRepressors c; qð Þð Þ
R′12 c; qð Þ 9 :AllRepressors c; qð Þ
R′13 c; qð Þ 9 NoRepressors c; qð Þ3AllActivators c; qð Þ
R′14 c; qð Þ 9 NoRepressors c; qð Þ3AllActivators c; qð Þð Þ3

:AllRepressors c; qð Þ∧:NoActivators c; qð Þð Þ
R′15 c; qð Þ 9 :AllRepressors c; qð Þ3AllActivators c; qð Þ
R′16 c; qð Þ 9 NoRepressors c; qð Þ3:NoActivators c; qð Þ
R′17 c; qð Þ 9 :AllRepressors c; qð Þ3:NoActivators c; qð Þ
Given these definitions, a component c that is non-inducible would satisfy
AllActivators(c, q), as well as NoActivators(c, q) for any state q∈Q, and the
same holds for non-repressible components. To ensure that non-inducible
and non-repressible components are not constantly activated or repressed
regardless of the state of their activators, we introduce the following:

InducibleRegulation c; qð Þ 9 :NotInducible cð Þ½
∧ NotRepressible cð Þ�-:NoActivators c; qð Þ;

RepressibleRegulation c; qð Þ 9 :NotRepressible cð Þ
∧ NotInducible cð Þ ∧ NoRepressors c; qð Þ:

This leads to the the final regulation condition definition:

Ri c; qð Þ 9 R′i c; qð Þ∧ InducibleRegulation c; qð Þ
� �
3RepressibleRegulation c; qð Þ for i ¼ 0¼ 17;

which defines the set of all 18 regulation conditions consistent with our
assumptions. These 18 regulation conditions are represented visually in
Supplementary Figure S3.
Two additional rules that are consistent with the requirements of

monotonicity and the fact that no named regulators are used are the
instant and delayed ‘threshold rule’,11 in which the balance of activators
and repressors determines whether the component is activated or
repressed. The delayed threshold rule specifies that if a target node is
active at time t, and the total input to the target is zero, then it will be
degraded at time t= t+td. Here we consider a simplified version of the
delayed threshold rule applicable for modeling a self-degradation for
components that have no negative regulators when td= 1. Formally, we
define these rules as

R18 c; qð Þ9 #A c; qð Þ > #R c; qð Þð Þ3 #A c; qð Þ ¼ #R c; qð Þð
∧ q cð ÞÞ instant threshold ruleð Þ;

R19 c; qð Þ9A c; qð Þ > #R c; qð Þ; delayed threshold ruleð Þ
where #A(c, q) (#R(c, q)) denotes the number of activators (repressors) of
component c that are active at state q.
The set of 18 regulation conditions we define, together with the two

threshold rules, completes the set of 20 regulation conditions.

Abstract Boolean network
Definition 3 (Abstract Boolean Network). An abstract Boolean network (ABN)
is a tuple A ¼ C; I; I?; r

� �
, where

● C is the finite set of components,
● I : C ´C ´B-B is the set of definite (positive and negative) interactions
between the components from C,

● I? : C ´ C ´B-B is the set of possible (positive and negative) interac-
tions, and

● r ¼ rc cACj gf where rc⊆ R assigns a subset of the regulation conditions
(denoted here by R = {R0 … R19}) to each component from C.

The set of components C together with the definite and possible
interactions I and I? define the abstract network topology. A choice from
our set of 20 regulation conditions is allowed for each component. When
the precise regulation mechanism for a given component is unknown, all
regulation conditions can be assigned as possible rules. If prior
experimental evidence can eliminate certain regulation mechanisms, then
a subset can be assigned. For example, regulation conditions R0 to R8
require that an activator is present in order for a component to be
activated in the next state. Combined with a requirement on the topology
that each component must include one activator (to prevent the case of
non-inducible components), this restriction (r(c) = {R0 … R8} for some c∈C)
can be used to model the specific regulation mechanisms considered to
hold in higher order organisms.
We define an ABN to describe the uncertainty in the precise network

topology and regulation rules for each component. An ABN is transformed
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into a concrete model by selecting a subset of the possible interactions to
be included (while all other optional interactions are discarded) and
assigning a specific regulation condition for each gene.

Formally, let Î
?
D I? denote the set of selected possible interactions,

Î ¼ I∪̂I
?
denote the set of all selected interactions, which thus includes

all definite interactions. Note that, c; c0;>ð ÞA Î $ pos c; c0ð Þ and
c; c0;?ð ÞA Î $ neg c; c0ð Þ—that is, the selected interactions from Î deter-
mine the functions pos and neg used for the definition of all regulation
conditions. Let r̂cA rc denote the specific (single) regulation condition that
was selected for each component c∈ C and r̂ ¼ r̂c cACj jf g denote all the
selected regulation conditions.
We define the semantics of such a concrete model in terms of a

transition system T A ¼ Q; Tð Þ, where Q ¼ B Cj j is the set of states (q cð ÞAB
is the state of component c in state q∈Q). As for Boolean networks, we
consider both synchronous and asynchronous semantics. For synchronous
systems, the transition relation T : Q´Q-B is defined as

8q; q0AQ: T q; q0ð Þ $
^
cAC

q0 cð Þ ¼ r̂c c; qð Þ: ð3Þ

For asynchronous systems, the transition relation is defined as

8q; q0AQ: T q; q0ð Þ $
_
cAC

q0 cð Þ ¼ r̂c c; qð Þ∧
^

c0 AC;c0 ≠ c

q0 c0ð Þ ¼ q c0ð Þ
 !

: ð4Þ

The semantics of an ABN can be understood in terms of the

(non-deterministic) choice of possible interactions Î
?
and the choice of a

regulation conditions r̂, together with the transition system T representing
the resulting concrete model. Thus, an ABN captures the trajectories of all
the concrete models it can be transformed into and can be seen as

representation of the finite set of n ¼ 2 I?j jU
Q

cAC rcj j concrete models

A ¼ B0 ¼Bn−1f g, corresponding to different choices of Î
?
and r̂. Here we

denote each concrete model as Bi , since these models can be represented
as a Boolean network, where the choice of update functions is restricted to
our 20 regulation conditions. Each concrete model is represented by the
transition system T Bi and the ABN is represented by transition system
T A ¼ T Bi where the choice of i is nondeterministic.

Remark 1. Input signals to an ABN will not have any defined regulators
and will be constantly active or inactive depending on the choice of
regulation conditions (see Supplementary Figures S3a and S4a,b). This
property can be used to model self-degrading (self-activating) signals,
which are active (inactive) only during the initial state of an experiment
(in the case of the yeast cell cycle model, we used the delayed threshold
rule for this purpose). To ensure that an input signal is sustained
throughout each experiment (either as active or inactive depending on the
initial value) we include a single definite self-activation (Supplementary
Figure S4c). Alternatively, an oscillating signal can be modeled by
including a single definite self-repression interaction (Supplementary

Figure S4d).

Experimental observations
Some of the unique concrete models represented by an ABN might
produce behavior that is consistent with experimental observations of the
modeled biological system. However, other concrete models might not be
consistent, and thus we seek to impose constraints that eliminate these
mechanisms. In the following, we present our approach for defining and
incorporating constraints over the behavior (the possible trajectories) of
an ABN.
We consider reachability properties over the states of various

components at different steps during executions of the system. We seek
to formalize observations obtained from different experiments, denoted by
the set E, where each experiment e∈ E represents a different execution of
the system. We construct observations using terms (e, n, c, v), where

● e∈ E is the experiment label,
● n∈ 0 … K denotes a specific time step,
● c∈C denotes a component of the ABN, and
● vAB represents the observed state of component c.
Let t= q0, …, qK denote a trajectory of the transition system T for one of

the concrete models represented by an ABN, A. Trajectory t satisfies the
term (e, n, c, v) if and only if qn(c) = v and we require that, for all
experiments e∈ E, there exists a trajectory te that satisfies all the terms
labeled by e.

As an example, consider an experiment where component, c, was
initially observed to be inactive but then observed to be active at a later
time point (after 20 steps). Both of these observations describe the same
execution of the system and are therefore denoted by the same
experiment label, e. To represent this, we construct the expression
(e, 0, c, ⊥)∧ (e, 20, c, ⊤) requiring the existence of a trajectory that
recapitulates these observations. This trajectory corresponds to an
explanation of how the system is capable of reproducing the observed
behavior. Multiple labels allow us to represent different experiments, for
example when the system is initialized in different states. Note that the
expressions related to different labels, for example e and e′, are not
necessarily mutually exclusive and, therefore, the same trajectory might
satisfy both.
In addition, we use the terms KO(e, c, v) and FE(e, c, v) to define knockout

and forced expression perturbations, which are assigned to a given
experiment and component but do not depend on time. These
perturbations modify the dynamics of the system along trajectory te,
where component c is always active (forced expression) or inactive
(knockout) when v=⊤, regardless of the regulation conditions for c or the
state of each of its regulators (the update rules are applied as before when
v=⊥).
Finally, we introduce the constraint Fixpoint(e, n) to indicate that the

trajectory te, satisfying all constraints labeled by e, must reach a fixed point
at step n. In other words, the only possible transition from the state qn of te
(reached at time step n) is a self-loop.
Different terms (e, n, c, v), KO(e, c, v), FE(e, c, v) and Fixpoint(e, n) are

combined into logical expressions using the operators {∧ , ∨ , ⇒ , ⇔ , ¬},
which allows us to formalize various experimental observations.

Constrained abstract Boolean network
The ABN can be represented by transition system T A ¼ T Bi where the
choice of i is nondeterministic. However, not all choices of i correspond to
concrete models that can reproduce the experimentally observed
behavior. Therefore, we define the concept of a constrained abstract
Boolean network (cABN) as a representation of the set of concrete models
that are consistent with experimental observations.

Definition 4 (Constrained Abstract Boolean Network). A constrained abstract
Boolean network (cABN) is a tuple Ac ¼ C; I; I?; r; E; K; F;O

� �
, where

● the components C, definite and possible interactions I and I? and
regulation condition assignment r define an ABN,

● E is a set of experiment labels
● K : E ´ C-B defines whether there is a knockout perturbation of
component c∈ C in experiment e∈ E,

● F : E ´C-B defines whether there is a forced expression perturbation of
component c∈ C in experiment e∈ E, and

● O is an expression representing experimental observations constructed
using the terms defined in the previous section.

As for ABNs, a concrete model of a cABN is defined by selecting a subset
of the possible interactions Î

?
and assigning a specific regulation condition

r̂c for each component c. In addition, the perturbations K̂ and F̂ must be
defined for each experiment e∈ E and component c∈C. Initially, these
perturbations might be unknown or only partially constrained through the
experimental observations O using the terms KO(e, c, v) and FE(e, c, v). The
dynamics of such a concrete model are defined through a transition
system T ¼ Q; Tð Þ, where the set of states is the same as for an ABN (i.e.,
Q ¼ B Cj j) but the transition relation T : Q ´Q´ E-B differs for each
experiment e∈ E depending on the perturbations K and F. For synchronous
systems, we define T as

8q; q0AQ; eAE: T q; q0; eð Þ $^
cAC

q0 cð Þ ¼ r̂c c; qð Þ∧:K e; cð Þ½ �3F e; cð Þ; ð5Þ

which is related to the definition in Equation 3. The definition for the
transition relation of asynchronous system is defined similarly by
extending Equation 4 to capture the perturbations K and F. Note that K
and F could also be introduced for ABNs and BNs to model perturbations
in these systems.
A cABN can be viewed as a representation of the finite set of concrete

models Ac ¼ B0 ¼Bmf g with the constraint that, for any valid concrete
model Bi , the transition system T Bi representing Bi satisfies O (denoted
as T Bi ¼ O). In other words, for all experiments e∈ E, there exists a
trajectory te of T Bi that satisfies all the constraints for experiment e from O.
Thus, a cABN Ac ¼ C; I; I?; r; E; K; F;O

� �
corresponds to a subset of the
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models represented by the ABN Ac ¼ C; I; I?; r
� �

that is consistent with the
experimental observations from O, i.e., Ac ¼ BAA BFOj jf g. Note that, in
general, a cABN or an ABN represent a large number of concrete models
that cannot be enumerated efficiently or represented explicitly. Therefore,
in the following section we propose a symbolic representation of ABNs
and cABNs.

SMT encoding
First, we focus on the following problem, which is central to the analysis
questions supported by our methodology:

Problem 1 (cABN synthesis). Given a cABN Ac ¼ C; I; I?; r; E; K ; F;O
� �

, find
one concrete model that is consistent with all experimental observations.
The solution to Problem 1 amounts to finding Î

?
and r̂, a subset of

possible interactions and a specific regulation condition for each
component, such that there exists a trajectory te of the transition system
representing the resulting concrete model that satisfies the experimental
observations associated with each label e. We encode this as a Satisfiability
Modulo Theories (SMT) problem and apply the SMT solver Z322 to obtain
the solution.
An SMT problem amounts to deciding whether a logical formula is

satisfiable ( i.e., there exists a valuation of all variables, for which the
formula evaluates to true). SMT extends the classical Boolean satisfiability
problem (SAT), which deals only with Boolean formulas, and allows the use
of additional theories such as bit vectors. To apply the SMT solver Z3 and
the bit vector decision procedures it implements,21 we encode Problem 1
as a logical expression using bit vectors.
Given Ac ¼ C; I; I?; r; E; K ; F;O

� �
, we first encode the set of possible

interactions I? as the bit vector interactionsAB I?j j . Each position in
interactions encodes the Boolean choice variable representing whether the
particular interaction is selected or not. Similarly, we encode the regulation
condition for each component c∈C as the bit vector regulationcAB5 with
the constraint_

iA ids rcð Þ
regulationc ¼ i; ð6Þ

where ids(rc) represents the indexes of the regulation conditions allowed
for component c. A valuation of interactions and each regulationc
represents one concrete model from Ac , where Î

?
is determined by

interactions and r̂c is determined by regulationc for each c∈ C. However, at
this point interactions and regulationc are symbolic representations without
a concrete valuation.
For each experiment e∈ E we can encode the perturbations

K(e, ·) and F(e, ·) as bit vectors of size |C|. This would allow perturbations
for each component as part of each experiment to be specified using the
observations O, but the choice of perturbation remains unconstrained
(non-deterministic) unless such observations are provided. However,
perturbations are often considered only for a small number of
components, which requires many additional, trivial observations (e.g.,
KO(e0, c, ⊥)∧ KO(e1, c, ⊥)∧ … when no knockout perturbations are
considered for component c as part of any experiment). To simplify our
encoding, we designate that only a subset of the components to be
considered for knockout (CK) or forced expression (CF) perturbations and
define the K(e, ·) and F(e, ·) bit vectors to be of sizes |CK| and |CF|,
respectively. It should be noted that once a component is included in the
subsets CK and/or CF, a knockout or forced expression can be assigned by
the solver in such a way that all observations from O are satisfied. Thus,
additional observations must be introduced for such components to
indicate the lack of perturbation in certain experiments.
The set of states of an ABN (or cABN) is Q ¼ B Cj j . Therefore, a given state

can be represented conveniently as a bit vector of size |C|. Given such a
representation for two states q, q′∈Q and experiment e∈ E, the bit vectors
interactions and regulationc allow us to encode the transition relation for
synchronous systems defined in Equation 5 (the same approach applies for
asynchronous systems). To encode trajectories, we follow an approach
inspired by Bounded Model Checking,52 where we consider a finite
number of steps and ‘unroll’ the transition relation T. Given an experiment
e∈ E, we encode each state qi of the trajectory te= q0 … qK as a bit vector
and assert the constraint^

i¼0¼ K - 1

T qi ; qiþ1; e
� �

: ð7Þ

Once we have an encoding of trajectory te for each experiment e∈ E, we

assert the constraints from O over the states of these trajectories. For terms
(e, n, c, v) this amounts to a constraint qn(c) = v for trajectory te. Terms
KO(e, c, v) and FE(e, c, v) correspond to constraints over the bit vectors
representing the perturbations of each experiment.
Finally, we describe the encoding of fixed point constraints Fixpoint(e, n).

For synchronous systems, this corresponds to a constraint that state qn of
trajectory te (corresponding to experiment e∈ E) includes a self-transition,
i.e., T(qn, qn, e). As the transition system is deterministic, requiring such a
self-transition guarantees that this is the only outgoing transition from qn
and therefore the state is stable. For asynchronous systems, which can
generate non-deterministic behavior, in general it is possible that multiple
outgoing transitions exist at a state. In this case, we assert a constraint for a
self-transition using the transition relation for an equivalent synchronous
system, instead of using the asynchronous transition relation, which is
necessary and sufficient to guarantee that state qn is stable.

Analysis procedures
Our methodology supports a number of analysis procedures, described in
the following.

System diameter. In many cases, we are interested in expressing end-
point behavior, where an initial and final configuration of (a subset of) the
system components are given. A parameter that must be specified for such
experimental observations is the trajectory length that is considered.
Specifying a trajectory length that is too short might exclude valid
mechanisms from the cABN, which require a larger number of steps to
reach the required configuration.
While an appropriate trajectory length is often hard to specify, the

recurrence diameter (the longest loop-free trajectory of the system) can be
used as an overapproximation that guarantees that no valid mechanisms
are excluded. To find the recurrence diameter, we consider a trajectory
t= q0, …, qK with the constraint that qi≠qj for i= 0 … K− 1, j= i+1 … K. We
then use the SMT solver to check if such a loop-free trajectory t exists and
increase K until this is no longer the case, at which point K represents the
recurrence diameter.
By asserting all experimental observations from O, this procedure allows

us to compute the longest loop-free trajectory for any of the mechanisms
described by the cABN. Furthermore, if no perturbation constraints are
asserted for t, then the longest possible diameter under any possible
perturbations is computed. However, additional constraints on perturba-
tions or the initial configurations of components could be asserted for t, for
example, to consider only initialized trajectories as part of the diameter
computation.
In general, the computation of a recurrence diameter is a challenging

problem and the procedure we apply requires prohibitively long time for
certain systems (e.g., the asynchronous system from the myeloid
progenitor case study) but allows us to obtain this parameter for other
systems (e.g., a diameter of 28 steps was identified for the budding yeast
cell cycle model). Besides providing a convenient strategy for specifying
experimental observations such that no valid mechanism are excluded, the
computation of a system’s diameter also reveals an important property of
the model that is being investigated (i.e., the largest possible number of
steps before the system reaches a potential attractor).

Concrete model enumeration. Thus far, we have considered the problem
of finding a single concrete mechanism from the set of consistent
mechanisms described by a cABN (Problem 1), but in many cases we are
interested in enumerating a number of unique consistent mechanisms.
Depending on the application, mechanisms can be considered unique if
only the network topology is different, either the topology or the
regulation conditions differ, or an alternative explanation for how the
experimental observations are achieved is obtained. Formally, we encode
each of these cases as follows.
Suppose we have a cABN Ac ¼ C; I; I?; r; E; K; F;O

� �
, where interactions is

the bit-vector representing possible interactions, regulationc is the bit-
vector representing the regulation condition for each component c∈C,
and trajectory te is an explanation of how the experimental observations
e∈ E are satisfied. A concrete mechanism corresponds to a valuation of
interactions and all regulationc and te.
Let interactions, regulationc and te denote the representation of one

concrete mechanism from the cABN. To identify a different consistent
mechanism, we assert one of the following additional constraints.
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● Only the network topology is different:

interactions≠ interactions

● Either the network topology is different or the regulation condition of
at least one component is different:

interactions≠ interactions3
_
cAC

regulationc ≠ regulationc

● Either the network topology, the regulation condition of at least one
component, or the trajectory for at least one experiment are different:

interactions≠ interactions3
_
cAC

regulationc≠ regulationc3
_
eAE

te≠ te

A number of qualitatively different mechanisms can be enumerated by
obtaining a solution using the SMT solver, asserting the uniqueness
constraints defined above and applying this procedure for a number of
iterations or until no additional solutions are possible. When no additional
solutions can be generated (a result that is obtained by applying the SMT
solver), we guarantee that all possible consistent mechanisms have been
enumerated. However, this may not be feasible in practice for a large
number of components and possible interactions, which permit a large
possible number of solutions. Thus, in the following sections we propose
analysis strategies that do not require the explicit enumeration of all
consistent mechanisms.

Minimal models. In certain studies, we are interested in identifying
minimal models—the most parsimonious mechanisms from a cABN that
explain all experimental observations. More specifically, we focus on
mechanisms that involve the smallest number of possible interactions to
achieve the specified behavior. We identify such minimal models using the
following procedure.
Let interactions denote the valuation of the bit-vector representing the

possible interactions selected as part of one concrete, consistent
mechanism identified. Let #interactions denote the cardinality (the number
of individual bits set to ⊤), which represents the number of selected
possible interactions. To identify mechanisms with the smallest number of
interactions, we first use the SMT solver to identify one consistent
mechanism and then enforce the additional constraint

#interactions<#interactions;

which guarantees that a mechanism with fewer interactions is identified if
one exists. We apply this procedure iteratively until no solutions can be
generated, at which point the minimal number of possible interactions
that must be included is identified. This procedure can also be combined
with concrete model enumeration to identify all minimal models that
contain the same number of interactions.

Required and disallowed interactions. Given a cABN, a required interaction
is a possible interaction that appears in all consistent mechanisms, i.e., this
interaction must be present to reproduce all experimental observations.
Similarly, a disallowed interaction is one that does not appear in any of the
consistent mechanisms, i.e., including such an interaction makes it
impossible to reproduce the experimental observations. One possible
approach for identifying required and disallowed interactions would
involve the enumeration of all consistent mechanisms, but this strategy is
not feasible in practice when the number of mechanisms from the cABN is
large. Therefore, we use the following alternative approach.
Let Î

?
represent the possible interactions selected for one concrete

mechanism. An interaction from the set Î
?

is potentially a required
interaction, given it is present in at least one consistent mechanism.

Similarly, any interaction from the set I? /̂I
?
is potentially a disallowed one,

since it was not selected in at least one consistent mechanism. To identify

required interactions, for each interaction iA Î
?
we construct a new cABN

with a set of definite and possible interactions I′ and I?′ such that i=2I0 and
i=2I?0 (i.e., interaction i is removed completely from the system). Applying
the SMT solver to the modified cABN allows us to guarantee that i is
required when no solutions can be generated. Similarly, we identify
disallowed interactions, by constructing a new cABN with interaction sets I′
and I?′ such that i∈ I′ and i=2I?0 for each interaction iA I? /̂I

?
(i.e., these

interactions are included as definite in the modified cABN). Not identifying
any solutions using the SMT solver guarantees that none of the consistent
models include i and, therefore, this interaction is disallowed.

Predictions. More generally, we are interested in formulating predictions
about the behavior of the cABN that hold for all consistent mechanisms—
to remove the need to select, and therefore bias toward, one concrete
model for analysis of the system. We achieve this using the following
approach.
First, we formulate an hypothesis of the behavior of the system that will

be investigated, which can be expressed as an experimental observation.
For example, such an hypothesis might specify that under a given
perturbation the system must eventually stabilize in a state where certain
components are inactive. If consistent mechanisms exist that satisfy this
new constraint, we then instead encode the null hypothesis (the negation
of the hypothesis we are testing), and use the SMT solver to check if any of
the consistent mechanisms from the cABN can reproduce this alternative
behavior. If this is the case, no prediction can be made, since at least one
mechanism supports the null hypothesis. However, in cases where no
solutions are found on testing the null hypothesis, we guarantee that all
consistent mechanisms support the hypothesis, which leads to a
prediction. This approach allows us to consider the entire set of consistent
mechanisms from the cABN when generating predictions, avoiding both
the implicit bias of a single selected mechanism, as well as the need for
solution enumeration.
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