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C H E M I S T R Y

The molecular impact of life in an  
indoor environment
Alexander A. Aksenov1,2,3†, Rodolfo A. Salido4,5†, Alexey V. Melnik1,2,3, Caitriona Brennan4,6, 
Asker Brejnrod1,2, Andrés Mauricio Caraballo-Rodríguez1,2, Julia M. Gauglitz1,2, 
Franck Lejzerowicz4,6‡, Delphine K. Farmer7, Marina E. Vance8, Rob Knight4,5,6,9*, Pieter C. Dorrestein1,2*

The chemistry of indoor surfaces and the role of microbes in shaping and responding to that chemistry are largely 
unexplored. We found that, over 1 month, people’s presence and activities profoundly reshaped the chemistry of 
a house. Molecules associated with eating/cooking, bathroom use, and personal care were found throughout the 
entire house, while molecules associated with medications, outdoor biocides, and microbially derived compounds 
were distributed in a location-dependent manner. The house and its microbial occupants, in turn, also introduced 
chemical transformations such as oxidation and transformations of foodborne molecules. The awareness of and 
the ability to observe the molecular changes introduced by people should influence future building designs.

INTRODUCTION
Modern humans spend ~70% of their time in their home environment 
(1) and reshape the indoor microbiome with inputs from their bodies 
(2, 3). To date, studies of the indoor environment have revealed that 
human activity inside buildings leads to potentially higher particle, 
pollutant, and toxin exposures than typically observed in the outdoor 
environment (4), but such studies often limit their measurements to 
one or a few molecular species. In this study, we set out to determine 
how humans influence the entire molecular composition throughout 
the home due to routine activities. This was accomplished by using 
an experimental test home in Austin, Texas, during summer 2018 
that was sampled at two time points with 28 days apart, time point 1 
(T1) and T2, to detect the distribution of molecules and microbes 
throughout the living spaces simulating normal activity and occu-
pancy. After T1, the house was used for the House Observations of 
Microbial and Environmental Chemistry (HOMEChem) field cam-
paign: 4 weeks of use that included cooking, cleaning, and human 
occupancy (5). The house experienced normal daytime human use 
(e.g., using one of the bathrooms, sitting on chairs, cleaning, eating 
and using computers on the tables, and cooking in the kitchen). 
Although overnight stays were not permitted, people occupied this 
home for 6 ± 4 hours per day for 26 days and performed scripted 
activities. In total, ~45 different people visited the home in those 
30 days, which included an open house for the media and the local 
community.

RESULTS
The home was sampled to inventory the detectable molecules and 
microbes that were present at T1 and T2 by swabbing surfaces 
throughout the occupied areas of the house (fig. S1 and movie S1) (6). 
Extracts of the swabs were subjected to untargeted metabolomics 
analysis. We chose electrospray ionization (ESI) liquid chromatography–
mass spectrometry (LC-MS)–based untargeted metabolomics in the 
positive ionization mode for this study due to its high sensitivity, poten-
tial to detect a broad range of molecules, and the large number of publicly 
accessible reference spectra. The molecular composition was assessed 
before and after human use. The ionization efficiency in ESI may change 
depending on the sample due to the unique chemistry of each sample, 
leading to potentially skewed abundances for some molecules. Thus, 
we emphasize the general and semiquantitative observable patterns.

Before the HOMEChem project, the test house had been cleaned 
thoroughly with a bleach solution, and then kitchen and table sur-
faces were wiped with surface cleaning wipes. At T1, despite a deep 
cleaning, the metabolomics analysis revealed that the house already 
contained traces of various molecules associated with human pres-
ence, although much less than at T2 (Fig. 1B, fig. S1C, and movie S1). 
Over the course of the next 4 weeks, the HOMEChem activities resulted 
in the introduction and changes of detectable molecules. Thousands 
of different molecules, observed as spectral features from tandem MS 
(MS/MS), were detected throughout the house (Fig. 1A), with increase 
in detectable chemistry at T2. Molecules are more unevenly distributed 
at T2, indicating possible local deposition through splatter, spills, etc. 
(fig. S5). We obtained spectral library matches to molecules associated 
with skin care products, skin (e.g., fig. S2A), drugs (e.g., antidepressants 
and anabolic steroids; figs. S2B and S3B), food-derived molecules (e.g., 
terpenes and their derivatives, flavonoids, and lignans; fig. S3, C and E), 
human or animal metabolites [e.g., bile acids (fig. S3D), carnitines, 
and long-chain fatty acids], amino acids/peptides and their various 
derivatives (fig. S3A), saccharides, phosphoorganic molecules, halo-
genated compounds (including biocides not expected to be found 
indoors; e.g., fig. S2C), and microbial metabolites. On the basis of 
the molecular profiles, the main sources of indoor surface mole-
cules are natural products (i.e., biologically produced molecules, as 
opposed to synthetic compounds), food, the environment (i.e., mole-
cules associated with outdoors), personal care products, and human-
derived metabolites (many could be traced to feces; fig. S3).
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Molecular networking was used to illuminate the diversity of mole-
cules across different indoor sites. Molecular networking groups molecules 
that fragment in a similar fashion and thus are likely to be structurally 
similar to each other (7). The global network of all compounds detected 
at each or both time points is shown in fig. S4. Networking allows 
exploring related compounds by noting differences in mass [mass/
charge ratio (m/z)] between connected molecules (nodes) in a cluster. 
Cocamidopropyl betaine, an ingredient in personal care products, 
shampoos, and soaps made from coconut oil, highlights this linking 
of related structures with a diverse array of acyl chain lengths, mainly 
two and four carbon backbone variants connected into a cluster in the 
network (Fig. 1D). Both abundance and number of cocamidopropyl 
betaine–related molecules expectedly increased at T2 (Fig. 1A).

Co-networking of HOMEChem data with other public datasets 
to enable tracing of potential sources, a reference data–driven meta
bolomics approach (8), revealed that the molecules found in the 
indoor space overlap with other sample types and thus may, at 
least in part, originate from those sources: food (~15.7%), human-
associated microbes (~1.1%), feces (~8.6%; although feces contain 
both food and microbial molecules), building materials and microbes 

that grow on them (~2.6%), and building materials in humid condi-
tions (~4.7%).

The chemical diversity (number of observed features) increased 
from T1 to T2 across the house, especially on some kitchen surfaces 
(fig. S5); this indicates that food and its preparation was the dominant 
source of not only the overall observed house surface chemistry but 
also chemical changes. The other “hotspot” was the toilet, where 
the increase in molecular diversity represents a snapshot of human 
metabolism of various excreted endogenous and exogenous chem-
istries. Some kitchen surfaces were also among those whose chemical 
diversity decreased the most between T1 and T2, likely due to sur-
face cleaning and sanitation associated with food preparation. It ap-
pears that, even when a subset of chemistry is removed because of 
the cleaning, it is only temporary and/or partial, as the sum total of 
cleaning and human activities overall results in an increase in accu-
mulation of richer chemistry. Surfaces that were routinely touched by 
humans—tables, light switches, and knobs—also show notable changes 
between T1 and T2, which were measured as distances between 
paired samples of a Bray-Curtis dissimilarity principal coordinate 
analysis (PCoA), where high distances show higher dissimilarity. 

Fig. 1. Chemistry of the indoor environment and changes due to human presence. Colored circles in 3D visualizations represent sampled surfaces. (A) Changes in 
chemistry of the house from T1 to T2: 26,377 spectral features obtained in the house are sorted according to their relative abundance between T1 and T2. Median value, 
dashed line. Examples of molecules, inferred from spectral matches level 2/3 according to the 2007 metabolomics standards initiative [Sumner et al. (12)], that decrease 
(propiconazole, medication) do not change [(C) tryptophan] or that increase [(B) -glutamyl-S-allylcysteine and (D) cocamidopropyl betaine] from T1 to T2 are marked. (B) Evi-
dence of the previous human activity: -Glutamyl-S-allylcysteine, a metabolite from foods such as garlic, is already found in the kitchen at T1 (102 to 1.78 × 108). (C) Tryptophan, 
an amino acid and a hallmark of life, shows a comparable distribution across time points [(log10) 2 to 8]. (D) A portion of a network cluster corresponding to the family of com-
pounds related to cocamidopropyl betaine, a common cosmetics ingredient from coconut oil (dashed node, node size = relative abundance). Multiple homologues 
are present as is evident from mass shifts (differences, m/z) in such as C2H4 (purple, m/z = ~28.03) or C4H8. These chemical shifts can be cataloged across the entire 
molecular network, as shown in (E). (E) 3D maps showing aggregate counts of mass shifts at T2 across the molecular network for the molecules detected within the house 
for the m/z of 15.995 Da corresponding to the O atom [orange, (log10) 1.15 to 1.87] and 28.031 corresponding to C2H4 [purple, (log10) 1.79 to 2.27]. The 3D maps are 
created with `ili (movie S1) (6).
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The change in molecular diversity was not as marked on floors, 
which were the other most often cleaned surfaces throughout the 
house during the study. The surfaces that were not in direct contact 
with people—windows, chairs, and doors—show the smallest changes 
in chemical diversity within this study.

Another way of understanding change in composition across 
chemical landscapes is by using the concept of “nestedness,” i.e., a mea-
sure of structure in an ecological system, used in microbial ecology, 
which asks whether simpler communities contain the same or dif-
ferent subsets of members found in more complex ones (9). Here, to 
explore nestedness, instead of microbial taxonomy, we considered 
the chemical ontology, the hierarchy of molecular families (10). This 
analysis revealed notable nestedness of chemistries both across 
the house locations and time points at all levels of chemical ontology 
(fig. S6, D and E). The samples at T2 were more chemically rich 
(greater variety of molecular classes) than T1 (fig. S6, A and C), 
which describes the direction of nestedness—chemistry at T1 is 
“nested” within T2, reflecting the idea that T2 adds molecules 
through the influence of human occupation rather than just replac-
ing molecules already present. The molecules and molecular families 
that are introduced or formed are related to, or derived from, the 
chemistries that were originally present. Across the house locations, 
chemistries are also nested with respect to one another, with the 
chemistry of the kitchen being the most diverse (fig. S5, B to D), 
presumably reflecting the increased addition of food-derived mole-
cules to the molecules present throughout the rest of the house. Our 
findings demonstrate that humans themselves and their lifestyle 
choices largely define the indoor surface molecular distributions 
(parallel to known results in microbiology) (11).

Because eating or cooking had the most significant impact on 
the chemistries of specific locations within the house, we used the 
Global FoodOmics project (8) of molecular composition of foods and 
a reference data–driven approach to track the overlap of molecules 
detected in the house with those found in various foods, as described 
in Materials and Methods and references therein. The test house 
inhabitants contributed an assortment of molecules that we could 
bioinformatically relate to a wide variety of possible food sources 
(fig. S7A), across different locations (fig. S7B), with the greatest 
molecular diversity contributed by plant-based foods; coffee had a 
particularly large trace. An evaluation of the precision and recall of the 
foods inferred to have been present in the test home, from detectable 
traces left on surfaces alone, shows reasonable recall at FoodOmics 
food ontology levels 1 to 4 (0.60 to 0.90) and good precision at levels 
1 to 3 (0.82 to 1.0), but precision decreases substantially at levels 4 to 
5 (0.29 to 0.53) (fig. S7C). The detection of molecules that are known 
to originate from certain foods can be used to create “molecular 
food maps,” which show, as an example, that molecules from herbs/
spices (level 4) used during the Thanksgiving dinner experiment (5) 
were colocated in the kitchen and on the tables (fig. S7, D and E). 
The “epicenter” of food-related molecules from multiple sources 
was in the kitchen sink, where many foods ended up. Many food 
traces remained detectable on surfaces despite repeated cleanings.

Along with human activities, location within the house also cor-
responds to specific differences in which molecules are present and 
which chemical transformations occur over time during human oc-
cupation. The high-resolution MS allows for exploring changes in 
molecular composition, such as altering of carbon oxidation state, 
while molecular networking enables us to catalog the chemical 
shifts (differences in m/z) on the global molecular network of 

the detected molecules across both time points. We leveraged this 
information to explore possible chemical transformations related to 
the spatial layout within the house (Fig. 1E). For this analysis, we 
counted the number of times each m/z was found in the global mo-
lecular network of the HOMEChem data as well as in which sam-
ples (which correspond to particular locations) and time points. The 
observation of a certain m/z value could be indicative of either oc-
curring chemical transformation or presence of chemically related 
molecules. Spatial distributions of these shifts may aid in understand-
ing the reasons behind their observations. We found that these trans-
formations occur differently at different spatial locations. The m/z 
values attributable to certain molecular differences, such as O, CO, 
and 2H, show very similar patterns: They occur everywhere around 
the house but with a universal hotspot at the kitchen sink (and, to a 
lesser extent, the bathroom sink) (fig. S8, A to J). The highest density 
of chemical shifts was consistently found at the sinks, especially the 
kitchen sink, and around the stove top. These correspond to loca-
tions with high amounts of organic matter and a plausible route to 
transformation via moisture and/or heat (fig. S8, C to G). Conversely, 
the m/z values that correspond to aliphatic homologs (CH2, C2H4, 
etc.; fig. S8H) are fairly evenly distributed and found at locations 
that humans most often interact with, such as tables, suggesting lipid 
contributions from skin and skincare products. These compounds 
reflect the presence of a mixture of homologous compounds, such as 
those related to cocamidopropyl betaine or other lipids, rather than 
chemical transformations in situ (Fig. 1, D and E). Other chemical 
shifts, such as glycosylation, have different patterns altogether and 
occur more frequently on floors (fig. S8, I and J), indicating different 
underlying reasons for these chemical shifts. Although such cata-
loging of the chemical shifts does not allow for unambiguous differ-
entiation of introducing new molecules externally or their formation via 
chemical reaction(s), it does allow the understanding and visualiz-
ing of the overall changes in molecular composition that took place.

Humans are not the only occupants of a home: Indoor surfaces 
are covered with bacteria, fungi, and other microbes (13). To test 
whether any detected molecules were of bacterial origin or whether the 
bacterial communities are altered by human occupancy, we evaluated 
the microbiome of the sampled surfaces alongside the metabolome 
(fig. S1). Repetitive surface cleaning depleted existing microbial pop-
ulations and allowed different microbial taxa to be reintroduced and 
detected (3). We found that the bacterial portion of the indoor mi-
crobiome was reshaped after 1 month of simulated human occupa-
tion. During the month of home use, less than half of the house’s 
original microbiome remained at T2. The persistent microbiome 
fraction represents 42.6% of the observed suboperational taxonomic 
units (sOTUs) but encompasses 96.2% of all microbial feature 
counts in the study. The remaining 3.8% of the microbial feature 
counts exclusive to either time point are mostly rare observations 
with low counts. Using fast expectation-maximization for microbial 
source tracking (FEAST) (14), we found that the microbiome of the 
house at T2 had a higher proportion of sOTUs derived from human 
hosts, mainly commensal species on human skin or in the gut, relative 
to T1 (fig. S9). Correspondingly, free-living, environment-associated 
microbes are depleted by human activities inside the house (fig. S9).

There is a human-microbiome-home relationship in the indoor 
environment at the molecular level. Co-occurrence analysis of mi-
crobes and metabolites using neural networks (15) reveals microbial 
metabolism of molecules introduced by human activity. As noted 
above, at least 1% of indoor molecules are directly attributable to 
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microbes, and the actual fraction is likely much higher, as many endog-
enous and exogenous molecules are transformed by microbes, both 
in human host and the house surfaces. These molecules may have 
an outsized health effect (2). As an example, Paenibacillus sp. was 
associated with molecules from coffee, one of the dominant sources 
of food-derived indoor molecules (e.g., caffeine, trigonelline, and 
chlorogenic acid) (Fig. 2A and fig. S10). In the home, especially at 
T2, Paenibacillus was observed in and around the area where coffee 
was prepared (Fig. 2B and movie S1), and this genus has been found to 
grow in coffee machines (16). We observed that Paenibacillus cul-
tures transformed coffee-derived molecules into the molecules that 
we detected inside the house (fig. S11); chlorogenic acid was detected 
in the culture of these strains when grown on spent coffee grounds 
(SCGs), and its metabolized versions were also found in the house 
(Fig. 2C), supporting this causal hypothesis about its origin.

DISCUSSION
Humans introduce many molecules and drive alteration of the indoor 
microbiome; the microbiome generates its own chemistry, including 

transforming the molecules introduced by humans, all of which con-
tribute to the changing chemical makeup of the house. Our indoor 
habitat appears to be not just a reflection of human activities but rather 
is in a mutualistic relationship with its inhabitants. Such household-
microbial chemistry, its potential impact on health and well-being 
of the house inhabitants, and possible ways to control and how to 
optimize such chemistries to promote beneficial effects are factors that 
should be considered in the engineering of indoor environments; 
we hope that this work will stimulate interest in future studies.

MATERIALS AND METHODS
The test house and HOMEChem campaign
Details of the setup and research activities are given elsewhere (5). 
Briefly, the HOMEChem study was conducted in a three-bedroom, 
two-bathroom manufactured test house (111 m2 floor area and 
~250 m3 volume), located at the University of Texas at Austin. Be-
fore experimental activities, the house was thoroughly cleaned with 
bleach (one-fourth cup of bleach solution per gallon of water per 
the manufacturer’s instructions).

Fig. 2. Exploration of microbial chemistry. (A) 3D embedding using singular value decomposition of cooccurrence probabilities, which are highest for microbial genera 
(arrows) pointing in the same direction as metabolites (dots). The color indicates association of the metabolite or microbe with T1 or T2, as determined by multinomial 
regression (17). An example of three metabolites (***caffeine, **trigonelline, and *chlorogenic acid) that are some of the most positively associated with Paenibacillus 
are highlighted as large spheres, while medium-sized spheres are other metabolites with no annotation within the top 10 most positively associated with Paenibacillus. 
All of the annotated compounds can be found in coffee. (B) A spatial map of normalized read counts (log [−3.5 to 1.5]) at T2 of the sOTUs taxonomically classified to 
g_Paenibacillus. The main growth of this microbe appears to have occurred on the coffee machine (marked with yellow asterisk). The color bar legend shows a compari-
son of the distributions of normalized g_Paenibacillus read counts as boxplots for T2 (3D plotted) and T1 (not plotted). (C) A cluster of the molecular co-network of 
HOMEChem metabolome with the culturing experiment of P. peoriae DSM 8320 on SCGs. The joint network shows overlap of the chemistry detected in the house and 
chemistry of the microbe grown on coffee. The shown cluster (inlet) contains chlorogenic acid, a coffee-related compound; several of the microbially modified versions 
of the molecules (nodes in cyan) were detected in the house.
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Several scripted activities were conducted repeatedly in the du-
ration of the study that included cleaning (bleach and “natural” 
cleaning agent) (17), people congregation, and cooking. In addition 
to the cleaning products, commercial surface cleaning wipes were 
used to wipe down the kitchen counter surfaces after cooking events 
on “layered days.” People were allowed to use house bathrooms and 
kitchen, but no overnight stay was permitted. Two types of activities 
were conducted: sequential, to explore semi-independent perturba-
tions, and layered, a more realistic representation of a home where 
several activities were happening simultaneously and/or in quick 
succession. Commercial surface cleaning wipes were used to wipe 
down the kitchen counter surfaces after cooking events on layered 
days. Blanks were not collected.

Sampling
The chemical distributions in the house were mapped using high- 
performance LC-MS (HPLC-MS) using the established protocols 
(6). The general sampling procedure is described in (6). Briefly, 
the cotton swabs (Puritan, no. 25-806 2WC) were soaked in 
LC-MS (Optima)–grade ethanol before sampling to remove con-
taminants and then shipped to the sampling location in a sealed 
jar with swab tips immersed in ethanol. For sampling, a single 
moist swab was removed from the jar, and the surface of approx-
imately 5 cm in diameter was vigorously swabbed for ~1 min 
(a closely adjacent spot was also simultaneously swabbed for 
microbiome analysis as described below). The swab was then placed 
into a well of a deep 96-well plate and the stick cutoff. While sam-
pling, the wells with collected swabs were covered with aluminum 
foil to prevent cross-contamination. The last column on each plate 
was filled with swab blanks.

For microbiome sampling, dual cotton swabs (BD SWUBE, no. 
281130) were presoaked in tris-EDTA buffer (Fisher Scientific) and 
then pressed and vigorously dragged against a directly adjacent but 
not overlapping surface to the metabolomics sampling site, with an 
approximately equal surface area. The dual cotton swabs were then 
resealed in their screw cap container and stored on dry ice while in 
transit to the laboratory, where they were ultimately stored at −20°C 
until analysis.

Sample preparation
Upon collection, the filled plate was sealed with a silicone top and 
stored on dry ice. All sealed plates were shipped on dry ice and stored 
at −80°C until analysis. Before analysis, the plates were removed 
from the freezer, and 500 l of ethanol added to each well, resealed, 
and extracted overnight at 4°C. The swabs were then removed and 
discarded, and the 50-l aliquot of each sample was transferred to 
an MS plate.

Data acquisition
Reverse-phase LC-MS was performed using a Thermo Vanquish 
ultra-HPLC (UHPLC) system coupled to a Q Exactive Orbitrap mass 
spectrometer. Data were acquired using data-dependent acquisition 
(m/z, 80 to 1200), subsequently fragmenting the five most abundant 
precursor ions. A 5-l aliquot of sample was injected. The injected sam-
ples were chromatographically separated using a Vanquish UHPLC 
(Thermo Fisher Scientific, Waltham, MA) controlled by Thermo SII 
for Xcalibur software (Thermo Fisher Scientific, Waltham, MA), using 
a C18 Kinetex (1.7 M, 100 × 2.1 mm, 100 Å) column (Phenomenex, 
Torrance, CA), kept at 40°C column temperature, with a flow rate of 

0.5 ml/min. The mobile phase used was water (phase A) and acetonitrile 
(phase B), both containing 0.1% formic acid (Fisher Scientific, 
Optima LC/MS), using the following gradient: 0 to 1 min, 5% B; 
1 to 8 min, linear ramp to 100% B; 8 to 10.9 min, maintain at 100% B; 
10.9 to 11 min, linear decrease to 5% A; and 11 to 12 min, 5% B for 
all samples.

MS analysis was performed on an Orbitrap (Q Exactive, Thermo 
Fisher Scientific, Waltham, MA) MS equipped with heated ESI-II 
probe sources and controlled by Xcalibur 3.0 software. The follow-
ing probe settings were used for both MS for flow aspiration and 
ionization: spray voltage of 3500 V, sheath gas (N2) pressure of 
35 psi, auxiliary gas pressure (N2) of 10 psi, ion source temperature 
of 270°C, S-lens radio frequency level of 50 Hz, and auxiliary gas 
heater temperature at 440°C.

For Orbitrap MS, spectra were acquired in positive ion mode over 
a mass range of 100 to 1500 m/z. An external calibration with Pierce 
LTQ Velos ESI positive ion calibration solution (Thermo Fisher 
Scientific, Waltham, MA) was performed before data acquisition, 
with an error rate less than 1 parts per million (ppm). Data acquisition 
parameters were set as follows: minutes 0 to 0.5 were sent to waste, 
and minutes 0.1 to 12 were recorded with data-dependent MS/MS 
acquisition mode. Full scan at MS1 level was performed with reso-
lution of 35,000 in profile mode. The 10 most intense ions with 
2 m/z isolation window with m/z of 0.5 offset per MS1 scan were 
selected and subjected to normalized collision-induced dissociation 
with 30 eV. MS2 scans were performed at 17,500 resolution with max-
imum IT (ion trap) time of 60 ms in profile mode. MS/MS active 
exclusion parameter was set to 5.0 s.

LC-MS data processing
The LC-MS/MS .raw data files were converted to mzXML format, 
and feature detection was performed with the MZmine 2 software 
(18). The software settings were as follows: Mass detection was per-
formed with a signal threshold of 1.0 × 103 for MS1 and 1.0 × 102 for 
MS2. For the chromatogram building, the mass tolerance was set to 
10 ppm, the minimum peak time span to 0.01 s, and the minimum 
height to 5.0 × 103. For chromatographic deconvolution, the local 
minimum search algorithm was used; m/z range for MS2 scan 
pairing was set at 0.025 Da and retention time (RT) at a 0.1-min 
range. The peaks were deisotoped within 25 ppm m/z and 0.2-min 
RT tolerances, aligned, gap-filled using the same tolerances, and then 
filtered to retain only peaks that appear in at least two samples, with 
minimum two peaks in isotope pattern to create the feature table. 
Peaks present in any of the blanks were removed from the final feature 
table unless at least one sample contained the peak at abundance 
three times or above.

3D data visualization
The aligned features were then exported as .csv with the metadata and 
combined in RStudio(R) with the feature table to create a master table 
for further statistical analysis. The master table was split into indi-
vidual tables for T1 and T2 for further mapping. The tables were then 
normalized using quantile normalization using MetaboAnalyst (19) 
and exported out. The three-dimensional (3D) model was created 
for the computer-aided design drawing of the test house. A target 
was placed at each location of the 3D model where the correspond-
ing sampling in the test house was collected. The coordinates for 
each target in the house 3D model were then added to the normal-
ized tables. For visualization, the 3D model of the house was dragged 
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and dropped into `ili (https://ili.embl.de/) (6), followed by the fea-
ture table with coordinates. The input tables used for mapping are 
available at https://github.com/aaksenov1/HOMEChem-3D-mapping-
input-files.

For visualization, the “jet” color scheme was used throughout for 
molecular mapping, and “viridis” was used for microbiome. When 
the visualized data were divergent and centered around zero (log 
ratios), a “blue-red” color scheme was used. The scale was set either 
as linear or logarithmic for visualization clarity (the scale is indicated 
on each figure as appropriate).

Molecular networking
A molecular network was created with classical (20) and the Feature-
Based Molecular Networking (FBMN) workflow (21) on Global 
Natural Product Social Molecular Networking (GNPS) (https://gnps. 
ucsd.edu) (22). The MS data were first processed with MZmine 2 
(18), and the results were exported to GNPS for FBMN analysis. 
The data were filtered by removing all MS/MS fragment ions within 
±17 Da of the precursor m/z. MS/MS spectra were window filtered 
by choosing only the top six fragment ions in the ±50-Da window 
throughout the spectrum. The precursor ion mass tolerance was set to 
0.02 Da, and the MS/MS fragment ion tolerance was set to 0.02 Da. 
A molecular network was then created, where edges were filtered to 
have a cosine score above 0.7 and more than six matched peaks. 
Furthermore, edges between two nodes were kept in the network if 
and only if each of the nodes appeared in each other’s respective top 
10 most similar nodes. Last, the maximum size of a molecular fam-
ily was set to 100, and the lowest scoring edges were removed from 
molecular families until the molecular family size was below this 
threshold. The spectra in the network were then searched against 
GNPS spectral libraries (22). The library spectra were filtered in the 
same manner as the input data. All matches kept between network 
spectra and library spectra were required to have a score above 0.7 and 
at least six matched peaks. The molecular networks were visualized 
using Cytoscape software (23).

Reference data–based metabolomics (8) was performed to co 
network HOMEChem data with other public datasets to trace the 
potential source. The common features were considered an over-
lap. The datasets that were co-networked are food [FoodOmics (8); 
overlap, ~15.7%], human microbes [Human Microbiome Project 
(24); overlap, ~1.1%], and feces [American Gut (25); overlap, ~8.6%; 
feces contain both food and microbial molecules (25)]. Over-
lap with bacterial and fungal growth on wetted wood (26) was 
~2.6% and on common building materials in humid conditions 
(27) was ~4.7%.

Mass shift analysis
For chemical shift analyses, unbiased by annotation of chemical 
shift discretization on the chemical shift space was performed by 
binning into 3000 bins and removing bins with no occupancy, re-
sulting in 575 discrete count features. Chemical shift distances be-
tween locations were computed using the Bray-Curtis distance in 
vegan (2.5 to 6). PCoA projections were computed using ape (5.3) 
PCoA function.

Clear separation was observed for 13 locations because of 
very low feature coverage in either of the two underlying samples 
from that location (fig. S5). These were removed as outliers. Dis-
tances to the centroid were calculated using the betadisper func-
tion in vegan.

FoodOmics analysis: Determination of the food sources
Reference data–driven analysis using the Global 
FoodOmics data
A description of the methods, code, and tutorial for generation of fig. 
S7A can be found at https://ccms-ucsd.github.io/GNPSDocumentation/ 
tutorials/rdd/ and is linked out to GitHub and the MassIVE Repos-
itory, as shown in Gauglitz et al. (8).

Qemistree
The chemical molecular ontology analysis using Qemistree (28) for the 
FoodOmics (8) and nestedness analysis (9) were performed using the 
GNPS workflow. The results can be viewed at https://gnps.ucsd.edu/ 
ProteoSAFe/status.jsp?task=732ee57912dc4420afc7e5b83f3d8594.

Microbiome sample prep and sequencing
Both swabs of each microbiome sampling kit (BD SWUBE, no. 
281130) were extracted following the standardized Earth Microbiome 
Project protocols (www.earthmicrobiome.org/protocols-and-standards/16s) 
(29). Briefly, DNA was extracted using the MagAttract PowerSoil 
DNA Kit (QIAGEN) on a KingFisher Flex (Thermo Fisher Scientific). 
The V4 region of the 16S ribosomal RNA gene was targeted for 
polymerase chain reaction (PCR) amplification using the 515f-806r 
primers with Golay error-correcting barcodes. The barcoded 16S 
amplicons were pooled in equal concentrations, and the pool was 
purified with a QIAquick PCR purification kit (QIAGEN). The pu-
rified pool was sequenced with a MiSeq V2 300 cycle kit (Illumina) 
with the appropriate sequencing primers.

Microbiome data analysis
Sequence data were demultiplexed, quality-filtered, and trimmed to 
150 base pairs using Qiita (30). Trimmed sequences were error fil-
tered using Deblur (31), resulting in a sOTU (31) feature table. Tax-
onomy was assigned on representative sOTU sequences using a 
prefitted Greengenes classifier in QIIME 2 (32). Upon analysis of 
rarefaction curves, which consisted of an evaluation of plateaus and 
trends in alpha diversity curves (Shannon, Faith’s phylogenetic diver-
sity, and observed OTUs) of samples grouped at different metadata 
categorical levels (time point, indoor_space, object, and surface_
material) with increasing rarefaction depth, a 5000 sequencing depth 
rarefaction was applied, resulting in the retention of 80% of the 
samples and ~25% of features with relatively even distribution of sam-
ple retention between T1 (n = 232) and T2 (n = 221).

Because of the compositional nature of sequencing data, feature 
count comparisons between time points were done as log ratios with a 
reference frame (33) in the denominator. The reference frame feature 
(“k__Bacteria;p__Cyanobacteria;c__Chloroplast;o__Streptophyta; 
f__;g__”) was chosen because it was observed across most samples.

Tree visualization
A phylogenetic tree visualization (34) was built on assigned taxonomy 
collapsed at the genera level. Changes in normalized feature counts 
(log ratios on genera) between T1 and T2 were averaged across all 
sampled surfaces. Features that were exclusive to either time point 
(only 3.8% of all observed feature counts) were excluded from 
quantitative tree visualization.

FEAST
Informed by redbiom (35), a collection of public 16S data with com-
parable sequencing methods was compiled through Qiita (30) for 
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microbial source tracking meta-analysis. The source tracking meta- 
analysis included samples from the following environments and 
studies: food (8), water (36), stool (25), soil (29, 37, 38), and skin 
(25, 39). Because of the experimental design behind the American 
Gut project (25), the meta-analysis sequencing data compendium 
was filtered for blooms associated with room temperature shipment 
(40). FEAST (14) was performed in R on nonrarefied data (https://
github.com/cozygene/FEAST).

Culturing of Paenibacillus on SCGs
Microbial strains
The following strains were purchased from the Leibniz Institut 
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH: 
Paenibacillus alvei DSM 29, National Center for Biotechnology In-
formation (NCBI): txid1206781; Paenibacillus polymyxa DSM 36, NCBI: 
txid1406; and Paenibacillus peoriae DSM 8320, NCBI: txid1087481. 
The LC-MS data were analyzed using the same approach as for the 
analysis of swabs. The workflow on GNPS for the analysis is found 
as classical molecular network, https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=4c366dcc969e47aa92df68d0db6b8acc, and feature- 
based molecular network, https://gnps.ucsd.edu/ProteoSAFe/status. 
jsp?task=936f6c81421447dc9e37a07e1fceb61a.
Medium
The media used to reactivate the lyophilized strains was prepared as 
recommended by the provider, available on their website (www.
dsmz.de/collection/catalogue/microorganisms/culture-technology/ 
list-of-media-for-microorganisms). Medium 1 (nutrient broth) was 
used in this study for initial cultures of the three microorganisms.

Spent coffee ground
Commercial ground coffee (Peet’s coffee dark roast Major Dickason’s 
blend) was used for culturing the bacterial strains. The SCG was 
prepared by brewing 15 g of ground coffee into 250 ml of distilled 
water and sterilized for 15 min at 121°C. The brewed and sterile 
coffee was filtered using a Corning Filter System (ref. 430756). This 
SCG was added into 12-well plates, 500 mg per well, resulting in 
three biological replicates per bacterial strains and an experimental 
control (SCG with culture medium instead of bacterial inoculum). 
The filtration step was not exhaustive to eliminate the total content 
of water. Although the amount of water was not quantified, it was 
sufficient to support bacterial growth until the end of the experi-
ment (day 8), which was also evidenced by the detection of micro-
bial associated metabolites during the time-course experiment 
(fig. S11). The humidity of the incubator (Fisher Scientific Isotemp 
Laboratory Incubator) was maintained by keeping a glass beaker 
with water (200 ml) throughout the experiment (8 days in total).
Culture conditions
The microorganisms were initially grown in 50-ml Erlenmeyer flasks 
containing 25 ml of medium 1 (nutrient broth) in a rotary shaker 
(MaxQ 4450, Thermo Fisher Scientific) at 200 rpm with controlled 
temperature of 30°C for 48 hours. From each microorganism, a 
500-l microbial inoculum from a 48-hour culture was transferred 
into 12-well plates containing SCG or medium 1 agar (nutrient agar) 
and incubated at 30°C until required. Plates were used for time-
course monitoring, resulting in samples for LC-MS/MS correspond-
ing to time of 0, 2, 4, 6 and 8 days.
Extraction of metabolites
Following a time-course experiment (time of 0, 2, 4, 6 and 8 days), plates 
containing microbial cultures were submitted to three freeze-thaw 

cycles of 10 min each. After that, an aliquot of 30 to 50 mg from SCG 
and agar were transferred to a 96-well plate. These samples were 
extracted with methanol, followed by sonication for 15 min (Branson 
5510, Marshall Scientific, Hampton, NH, USA), centrifugation for 
15 min at 2000  rpm (865g) using a Sorvall Legend RT centrifuge 
(Marshall Scientific, Hampton, NH, USA). The obtained super-
natant was transferred to a clean 96-well plate and dried out in a Cen-
trifugal Vacuum Concentrator, CentriVap (Labconco, Kansas City, MO, 
USA). Samples were resuspended with 200 l of 80% methanol- 
water containing internal standard (1 M sulfamethazine) for 
LC-MS/MS acquisition.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn8016
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