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ABSTRACT The complete genome of Caulobacter vibrioides strain CB2 consists of a
4,123,726-bp chromosome, a GC content of 67.2%, and 3,896 coding DNA se-
quences. It has no rearrangements but numerous indels relative to the reference
NA1000 genome. This will allow us to study the impact of horizontal gene transfer
on caulobacter genomes.

Caulobacters are Gram-negative bacteria which produce stalks at one end of the cell.
The bacterium differentiates into two cell types and divides asymmetrically at each

cell cycle. Caulobacter crescentus strain CB15 has a well-developed system of genetics
(1, 2) and was the first caulobacter to be fully sequenced (3). It was developed into a
single-celled model system to study cellular differentiation, asymmetric division, and
cell cycle progression (4, 5). Studies of this obligatory differentiation during the cell
cycle made caulobacter the dominant prokaryotic model system for studying the
mechanisms of cell cycle control and cellular differentiation. Today, however, caulo-
bacters have attracted interest because it was discovered that even closely related
strains of caulobacters exhibit extremely high levels of genome rearrangements (6, 7).
To discover the molecular mechanism behind this “genome scrambling,” more ge-
nomes are needed for genomic comparisons. Here, we report the full sequence of the
genomic material of an additional Caulobacter vibrioides wild-type strain, CB2, sampled
from tap water in California (8).

The Caulobacter vibrioides strain CB2 was grown in peptone yeast extract for 48 h at
30°C as previously described (9). Total genomic DNA was extracted with a Qiagen
DNeasy tissue kit following the manufacturer’s protocol. Previous studies have shown
that high-GC-content genomes can be challenging to sequence with short-read tech-
nology (10). As such, the total genome was sequenced with a PacBio RS II sequencer at
the Delaware Bioinformatics Institute. The DNA library was prepared for sequencing
with the PacBio blunt-end ligation protocol. The subsequent raw reads were assembled
with the Hierarchical Genome Assembly Process (HGAP3) (11) in SMRT Portal with the
default de novo parameters. The computational requirements needed for the analysis
were leveraged through Amazon Machine Image (AMI) EC2 with the smrtanalysis-2.3.0-
ami-20fb4848 image. The number of raw assembly reads was 45,003 with a N50 read
length of 23,435 bp. Total coverage was 125�. All pipelines began with adapter
removal and subread filtering with a final contig polish done by Quiver, the last step in
the HGAP3 assembly process. The sequence was annotated with the Rapid Annotation
using Subsystem Technology (RAST) server (http://rast.nmpdr.org) and the NCBI Pro-
karyotic Genome Annotation Pipeline (12–14) and then visualized in Artemis (release
16.0.0) (15). The CB2 genome aligns well with the circular Caulobacter NA1000 genome.
The ends of the contig we obtained extensively duplicated each other, indicating
circularity. The complete genome of Caulobacter vibrioides CB2 is 4,123,726 bp, with a
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GC content of 67.2%. There are 3,896 predicted coding sequences (CDSs), 52 tRNAs, and
2 rRNA operons.

Caulobacter vibrioides CB2 has no inversions, but it has numerous insertions and
deletions compared to the closely related NA1000 strain. The absence of rearrange-
ments indicates that this well-documented phenomenon (6, 7), occurs relatively rarely
in these two compared genomes. Further studies will be able to shed light on the
horizontal gene transfer that happens much more frequently among caulobacters.

Data availability. The complete genome sequence of Caulobacter vibrioides CB2
has been deposited in GenBank under the accession number CP023313. The raw reads
are also available under SRA accession number SRX4603198.
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