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Epigenetic modifications and metabolism are two fundamental biological processes.
During tumorigenesis and cancer development both epigenetic and metabolic
alterations occur and are often intertwined together. Epigenetic modifications
contribute to metabolic reprogramming by modifying the transcriptional regulation of
metabolic enzymes, which is crucial for glucose metabolism, lipid metabolism, and
amino acid metabolism. Metabolites provide substrates for epigenetic modifications,
including histone modification (methylation, acetylation, and phosphorylation), DNA and
RNAmethylation and non-coding RNAs. Simultaneously, somemetabolites can also serve
as substrates for nonhistone post-translational modifications that have an impact on the
development of tumors. And metabolic enzymes also regulate epigenetic modifications
independent of their metabolites. In addition, metabolites produced by gut microbiota
influence host metabolism. Understanding the crosstalk among metabolism, epigenetic
modifications, and gene expression in cancer may help researchers explore the
mechanisms of carcinogenesis and progression to metastasis, thereby provide
strategies for the prevention and therapy of cancer. In this review, we summarize the
progress in the understanding of the interactions between cancer metabolism and
epigenetics.
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INTRODUCTION

Cancer is a disease with high morbidity and mortality and is a serious threat to human health (Bray
et al., 2021). Genome instability and mutations contribute to the extraordinary diversity of cancer, and
tumors acquire multiple hallmarks during their multistep development, including the reprogramming
of energy metabolism (Hanahan and Weinberg, 2011; Sung et al., 2021). Over the past few decades,
researchers have found that the metabolic characteristics of tumor cells are significantly different from
those of normal cells. Tumor cells have high nutrient and energy requirements, based on their
characteristics of sustaining proliferative signaling, evading growth suppressors, and deregulating
cellular energetics (Hanahan and Weinberg, 2011). The metabolic reprogramming of tumor cells
enables them to obtain essential nutrients from a nutrition-deficient environment to maintain
continuous cell growth and proliferation (Pavlova and Thompson, 2016). On one hand, the
activation of oncogenes and the deficiency of tumor suppressor genes promote the metabolic
reprogramming of tumors, to achieve stronger nutrient-utilization ability and provide material and
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energy for biosynthesis. At the same time, a lack of nutrition in
solid tumors also requires malignant tumor cells to possess
metabolic flexibility to maintain growth and survival (Boroughs
and DeBerardinis, 2015). Altered metabolic profiles mainly occur
with respect to the uptake and metabolism of glucose and amino
acids and the synthesis of lipids. For example, the Warburg effect,
observed in cancer, suggests that even under sufficient oxygen
conditions, malignant tumor cells are active in anaerobic glycolysis,
which yields lactic acid, instead of oxidative phosphorylation like
that in normal differentiated cells, characterized by a high glucose
uptake rate and active glycolysis; moreover, a high level of the
metabolite lactic acid correlates with poor tumor prognosis
(Warburg, 1956; Som et al., 1980; Vander Heiden et al., 2009).
Although aerobic glycolysis is an inefficient way to generate
adenosine 5′-triphosphate (ATP), it meets the nutrient needs
for cancer cell proliferation via the incorporation of metabolized
nutrients into biomass. This reveals a link between cellular
metabolism and cell growth control (Vander Heiden et al.,
2009). As a highly versatile nutrient, glutamine is also
important for tumor cell growth. Cancer cells take up glutamine
via glutamine transporter (ASCT2), also known as solute carrier
family 1 member 5 (SLC1A5) (Wang et al., 2015). Further, cancer
cells are addicted to glutamine through oncogene-dependent
pathways involving c-MYC, AKT (Serine/Threonine Kinase 1),
and p53 (Tumor Protein P53) (Wettersten et al., 2017). Likewise, as
a principal growth-supporting substrate, glutamine provides
nitrogen for the biosynthesis of purine and pyrimidine
nucleotides, glucosamine-6-phosphate, and nonessential amino
acids (Pavlova and Thompson, 2016). Additionally, a process
known as glutaminolysis can divert abundant glutamine to
replenish the tricarboxylic acid (TCA) cycle (Wong et al., 2017).
Lifestyle-related factors, especially diet and nutrition, have a
profound effect on human health. Moreover, the gut microbiota
plays an important role in this by further metabolizing nutrients
from the diet and producing a variety of chromatin-modifying
compounds, ultimately regulating histone methylation and
acetylation by modulating the intracellular pools of metabolites
(Dai et al., 2020).

Heritable changes in gene expression that do not include changes
to the DNA sequence itself are termed epigenetic changes.
Epigenetics mainly are manifested as DNA methylation, histone
post-translational modifications (PTMs), such as acetylation,
methylation, phosphorylation, ubiquitination, glycosylation,
lactylation, succinylation, and other acyl modifications, including
O-linked N-acetylglucosamine modification (O-GlcNAcylation)
(Esteller, 2008; Tan et al., 2011; Suva et al., 2013; Huang
et al., 2014; Tessarz and Kouzarides, 2014; Dai et al., 2020),
as well as RNA methylation, including N6-methyladenosine
(m6A) and 5-methylcytosine (m5C) (Han et al., 2020).
Epigenetic plasticity in the process of tumorigenesis and
development facilitates the acquisition of hallmark
characteristics of cancer (Esteller, 2008; Hanahan and
Weinberg, 2011). Many metabolic intermediates serve as
epigenetic modification substrates or cofactors, and the
various epigenetic processes are primarily governed by the
concentrations of the involved reactants (Simithy et al., 2017;
Wagner et al., 2017; Thakur and Chen, 2019).

Epigenetic modificatios and metabolism are two fundamental
biological processes. Epigenetic alterations and metabolic
reprogramming in cancer are highly interrelated. Oncogene-
driven metabolic reprogramming alters the epigenetic
landscape by regulating DNA and histone modification-related
enzyme activity. However, the expression of metabolic genes is
regulated by epigenetic mechanisms, thus, altering the
metabolome. Therefore, the crosstalk between epigenetics and
metabolism plays a crucial role in carcinogenesis and cancer
progression through the proliferation, metastasis, and
heterogeneity of cancer cells.

EPIGENETIC MODIFICATIONS

Increasing evidence suggests that cancer is a metabolic disease.
Epigenetic regulation plays a crucial role in metabolic regulation
and tumorigenesis (Li et al., 2018; Bates, 2020). To maintain
homeostasis and ensure cell survival, cells must dynamically
respond to changes in the environment and reprogram their
metabolic state. Similarly, the harmonization of gene expression
is required to ensure normal cell function. Epigenetic modifications
provide an ideal mechanism for the regulation of gene expression
and metabolic reprogramming. Specifically, changes in histone
modification are fast and reversible and rely on metabolic
intermediates as cofactors for modification. Therefore, it is of
great significance to understand the relationship among the
metabolic environment, epigenetic modifications, and the
expression of genes that play a role in many diseases, particularly
cancer (Li et al., 2018).

Deoxyribonucleic Acid and Ribonucleic
Acid Methylation
Many studies have shown that DNA and RNAmethylation plays an
important role in regulating cancer metabolism (Saghafinia et al.,
2018; Uddin et al., 2021). Abnormal methylation in the promoter
region of tumor suppressor genes is key to tumorigenesis and cancer
development (Nishiyama andNakanishi, 2021). Zinc finger DHHC-
Type containing 1 (ZDHHC1), a recently discovered tumor
suppressor gene, is silenced in a variety of cancers through
abnormal hypermethylation to inhibit glucose metabolism and
the pentose phosphate pathway (Le et al., 2020). The
transcription factor brother of the regulator of imprinted sites
(BORIS) regulates the methylation of pyruvate kinase M1/2
(PKM) exons and the alternative splicing of PKM mRNA to
mediate the Warburg effect and promote breast cancer (Singh
et al., 2017). In colon cancer, hypermethylation of the derlin3
(DERL3) promoter region promotes high expression of solute
carrier family 2 member 1 (SLC2A1) to enhance the Warburg
effect (Lopez-Serra et al., 2014). Methyltransferase 3, N6-
adenosine-methyltransferase complex catalytic subunit 3
(METTL3) attaches m6A-IGF2BP2/3 to stabilize the expression
of hexokinase 2 (HK2), resulting in the expression of
phosphorylated glucose hexokinases, and SLC2A1, resulting in the
expression of glucose transporter (GLUT1), in colon cancer to
activate the glycolytic pathway (Shen et al., 2020) (Figure 1).
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FIGURE 1 |Regulation of glycolysis and gluconeogenesis enzymes by epigenetic modifications. Epigenetic regulatory enzymes, lncRNA, and circRNA regulate the
epigenetic regulation of the key proteins, GLUT1, HK2, PKM, ENO2, LDHA, IDH, and the key enzymes FBP and PCK in the process of gluconeogenesis. GLUT1, glucose
transporter type 1; HK2, hexokinase 2; PKM, pyruvate kinase M1/2; ENO2, enolase 2; LDHA, lactate dehydrogenase A; IDH, isocitrate dehydrogenase (NADP (+)); FBP,
fructose-bisphosphatase; PCK, phosphoenolpyruvate carboxykinase.
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The reduced transcription of fructose bisphosphates 1 (FBP1),
a rate-limiting enzyme in gluconeogenesis, mediates disruptions
to gluconeogenesis and increased glycolytic activity, causing
tumor progression and poor prognosis (Hirata et al., 2016).
Under hypoxic conditions, HIF1a promotes the methylation of
FBP1 by upregulating the expression of glycogen-branching
enzyme 1 (GBE1) in lung adenocarcinoma (Li L. et al., 2020).
The promoter region of fructose-bisphosphatase 2 (FBP2) in
gastric cancer is densely methylated to promote glucose
metabolism (Li et al., 2013) (Figure 1).

Peroxisome proliferator activated receptor alpha (PPARα), a
nuclear receptor that regulates lipid homeostasis, inhibits DNA
methyltransferase 1 (DNMT1)-mediated cyclin dependent kinase
inhibitor 1A (CDKN1A) and PRMT6-mediated cyclin dependent
kinase inhibitor 1b (CDKN1B) to promote colon cancer (Luo
et al., 2019). YTH n6-methyladenosine RNA binding protein 2
(YTHDF2) is downstream of epidermal growth factor receptor/
src proto-oncogene, non-receptor tyrosine kinase/extracellular
signal-regulated kinase (EGFR/SRC/ERK) and plays an
important role in the proliferation and invasion of glioma
cells. Studies have shown that YTHDF2 mediates the
downregulation of liver X receptor-alpha (LXRA) mRNA
through m6A to influence glioblastoma (GBM) cholesterol
homeostasis (Fang et al., 2021). Argininosuccinate synthase 1
(ASS1) in cisplatin-resistant bladder cancer cells is
hypermethylated, resulting in greatly downregulated
expression, suppressing the apoptotic effects of cisplatin (Yeon
et al., 2018).

Non-Coding Ribonucleic Acids
Recent studies have shown that non-coding RNAs regulate the
metabolic remodeling of tumors, including sugar metabolism,
lipid metabolism, cholesterol metabolism, and amino acid
metabolism (Xu et al., 2021c; Sellitto et al., 2021). However,
the mechanism by which long non-coding RNAs regulate tumor
metabolism is still unclear. Many studies have explored the
relationship between metabolism and non-coding RNAs.
Urothelial cancer associated 1 (UCA1) has been shown to
increase the activation of HK2 by inhibiting miR203 and to
regulate glucose metabolism by increasing glucose uptake and
lactic acid production, promoting the proliferation andmetastasis
of esophageal cancer (Liu H.-E. et al., 2020). CircCDKN2B-AS1,
the cyclic structure of the long non-coding RNA CDKN2B-AS1,
can combine with IMP U3 small nucleolar ribonucleoprotein 3
(IMP3) to stabilize the transcription ofHK2 and promote aerobic
glycolysis and the malignant phenotype in cervical cancer (Zhang
Y. et al., 2020). Prostate cancer associated 3 (PCA3) targets miR-
132–3P and weakens its interaction with SREBP1, leading to lipid
metabolism disorders caused by antimony exposure in prostate
cancer (Guo et al., 2021) (Figure 1).

HIF1α upregulates the transcription of genes encoding glucose
transporters and glycolytic enzymes to regulate tumor glucose
metabolism. In recent years, several studies have shown that long
non-coding RNAs (lncRNAs) play key roles in regulating the
HIF1α pathway (Tan Y. T. et al., 2021). LncRNA-p21 is a
hypoxia-reactive lncRNA that can bind HIF1α to inhibit the
ubiquitination of HIF1α and then promote glycolysis under

hypoxic conditions, contributing to the Warburg effect (Yang
et al., 2014). HIFAL (the anti-sense lncRNA of HIF1α) recruits
PHD3 to PKM2 to promote the hydroxylation of its proline
residues, and the PKM2/PHD3 complex is then guided by
heterogeneous nuclear ribonucleoprotein F (hnRNPF) into the
nucleus to enhance the transcriptional activation of HIF1α and
promote glycolysis (Zheng et al., 2021). Meanwhile, HIF-1α-
stabilizing long noncoding RNA (HISLA) inhibits the
interaction between prolyl hydroxylase domain-containing
protein 2 (PHD2) and HIF1α to prevent the degradation of
HIF1α and promote glycolysis, hindering breast cell apoptosis
(Chen et al., 2019). Many genes involved in glucose metabolism
are transcriptionally activated by HIF1α (Semenza, 2003)
(Figure 2).

Recent research on microRNAs has led to increasing evidence
on the pivotal role of miRNAs in all stages of tumor development.
MiR-9-1 targets HK2 to inhibit glycolysis, reduce the formation
of lactic acid, and promote metabolic reprogramming in
nasopharyngeal carcinoma cells (Xu Q. L. et al., 2021).
Meanwhile, miR-542–3p elevates HK2 to induce glycolysis in
GBM (Kim et al., 2021). miRNA-1185-2-3p inhibits Golgi
phosphoprotein 3 (GOLPH3L) and affects central carbon
metabolism regulated by GOLPH3L (Xu et al., 2021b). MiR-
16–5p and 15b-5p coregulate ALDH1A3, which can inhibit the
ubiquitination of PKM2 and regulate glycolysis to exert anti-
cancer effects (Huang X. et al., 2021). In ovarian cancer, miR-
424–5p inhibits mitochondrial elongation factor 2 (MIEF2),
which regulates mitochondrial fission, inhibits glucose
metabolism from oxidative phosphorylation to glycolysis, and
inhibits tumor growth (Zhao et al., 2020). LIX1-like protein
(LIX1L) promotes miR-21–3p, inhibits FBP1, reduces lactic
acid production, and affects sugar metabolism to inhibit tumor
growth (Zou et al., 2021) (Figure 1). MiR-15a-5p inhibits acetate
uptake and acyl-CoA synthetase short chain family member 2
(ACSS2) and H4 acetylation in the nucleus under hypoxia,
inhibiting fatty acid synthesis in lung cancer cells and further
suppressing malignancy in lung cancer (Ni et al., 2020).

Histone Modifications
Various PTMs act on histones. Most histone modification sites
are at the N-terminal end of the nucleosome tail of H3 and H4
histones. Common histone modifications include methylation,
acetylation, ubiquitination, SUMOylation, and phosphorylation
(Ahringer and Gasser, 2018). However, in recent years, new
histone modifications have been discovered, including
crotonylation, GlcNAcylation, and citrullination (Blakey and
Litt, 2015; Zhang M. et al., 2020).

Different histone modifications are associated with different
chromatin states—specifically, the methylation of H3K4 activates
transcription, trimethylation at H3K27 is associated with
transcription inhibition, acetylation of the histone tail
generally promotes transcription, and deacetylation of histones
inhibits transcription (Carter and Zhao, 2021). Epigenetic
changes control the expression of many metabolic genes,
which are important in cancer metabolism (Sun et al., 2021).
Increasing evidence shows that histone methylation and
metabolic variations in cancer cells are highly correlated
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(Rausch et al., 2021). Enhancer of zeste 2 polycomb repressive
complex 2 subunit (EZH2), a key epigenetic enhancer, suppresses
gene transcription by promoting H3K27me3 (Zhang T. et al.,
2020). Recently, EZH2 was shown to affect tumor cell
metabolism, including carbohydrate metabolism, amino acid
metabolism, and lipid metabolism. EZH2 regulates the
Warburg effect to promote tumorigenesis and cancer
development. EZH2-mediated histone H3 lysine 27
trimethylation mediates the downregulation of LINC00261 to
promote glycolysis in pancreatic cancer (Zhai et al., 2021). EZH2
is enriched in the WNT promoter region and regulates
H3K27me3 to suppress the transcription of WNTs, including
WNT-1, 6, 10a, and 10b genes, which are involved in the process
of adipogenesis (Wang et al., 2010). In lung cancer, lysine
methyltransferase 2D (KMT2D) is highly expressed and
regulates the super enhancers H3K4me1 and H3K27ac of
period circadian regulator 2 (PER2; circadian inhibitory
factor), affecting the expression of PER2 and its downstream
glycolytic genes (Alam et al., 2020). As a H3K27me2 reader, PHD
Finger Protein 20 Like 1(PHF20L1) plays important roles in
promoting the Warburg effect via many glycolysis-related genes
(GRGs) in breast cancer (Hou et al., 2020). Lysine-specific histone
demethylase 1 (LSD1) also plays an important role in the
metabolic regulation of hepatocellular carcinoma. LSD1
mediates the methylation of H3K4 to inhibit the expression of
PPARgamma coactivator 1alpha (PGC1α), thereby, affecting
mitochondrial oxidative respiration (Sakamoto et al., 2015).

Meanwhile, the interaction between LSD1 and snail family
transcriptional repressor 2 (SNAIL2, also known as SLUG, an
important epigenetic regulator of de novo adipose tissue)
mediates the demethylation of H3K9 and stimulates FASN
expression and lipogenesis (Liu Y. et al., 2020; Manuel and
Haeusler, 2020). Protein arginine methyltransferase 5
(PRMT5) regulates fat cells by promoting the expression of
fatty acid synthase (FASN; lipid synthesis gene) by methylating
sterol regulatory element binding transcription factor 1 (SREBP1)
(Jia et al., 2020).

Acetylation and deacetylation can also affect the
transcriptional output of metabolic genes in various working
models. EZH2-deficient cells show increased H3K27 acetylation,
indicating that acetylation and trimethylation of H3K27 have a
repulsive effect in regulating WNT expression (Wang et al.,
2010). In contrast, EZH2 can also inhibit the expression of
apolipoprotein E (APOE) in adipocytes to promote
lipoprotein-dependent lipid accumulation (Yiew et al., 2019).
Histone deacetylase 11 (HDAC11) inhibits histone acetylation
of serine/threonine kinase 11(STK11) promoter to inhibit its
transcription, thereby, promoting the glycolysis pathway and
leading to tumor stemness (Bi et al., 2021). Sirtuin 6 (SIRT6)
blocks the expression of hypoxia inducible factor 1 subunit alpha
(HIF1α) to regulate glucose homeostasis by regulating the
deacetylation of H3K9 (Zhong et al., 2010). Sirtuin 4 (SIRT4)
inhibits the expression of sirtuin 1 (SIRT1) by inhibiting
glutamine metabolism, and SIRT1 promotes the deacetylation

FIGURE 2 | Epigenetic regulation of HIF1A regulates glycolytic enzymes. HIFAL recruits PHD3 to PKM2, and the PKM2/PHD3 complex is then guided by HNRNPF
into the nucleus to enhance the transcriptional activation of HIF1α to promote the expression of genes related to glucose metabolism. LncRNA-P21 protects HIF1A
stability. PHD3, prolyl hydroxylase domain-containing protein 3; HNRNPF, heterogeneous nuclear ribonucleoprotein F; HIFAL, anti-sense lncRNA of HIF1A; PKM2,
pyruvate kinase M2.
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of H4K16 to regulate the stemness of breast cancer cells (Du et al.,
2020). Ubiquitously transcribed TPR gene on the X chromosome
(UTX) is enriched in the uncoupling protein 1 (UCP1) and
PPARG coactivator 1 Alpha (PGC1α) promoters and mediates
the demethylation of H3K27me3, which interacts with the
histone acetyltransferase (HAT) protein CREB binding protein
(CBP), leading to the acetylation of H3K27 (H3K27ac). UTX
mediates H3K27me3 demethylation and H3K27ac and converts
the target gene from a transcriptionally repressed state to a
transcriptionally activated state to positively regulate the
thermogenesis of brown adipocytes (Zha et al., 2015). Under
hypoxia, acetate increases the acetylation of H3K9, H3K27 and
H3K56 in the promoter regions of ACACA and FASN to activate
de novo lipid synthesis (Gao et al., 2016). E1A binding protein
P300/CREB-binding protein (P300/CBP) mediates histone
acetylation of H3K18 and H3K27 in hepatocellular carcinoma
to regulate the expression of glycolysis-related metabolic
enzymes. In addition, the p300 inhibitor B029-2 effectively
blocks the metabolic reprogramming of hepatocellular
carcinoma (Cai et al., 2021). Histone lactation is also an
emerging epigenetic modification of histone lysine residues
(Liberti and Locasale, 2020). It depends on tumor protein
P53–E1A-binding protein P300 (p53–P300) to promote gene
transcription and promote M2-like features in the late phase
of M1 macrophage division (Zhang et al., 2019).

Although many studies have focused on the modification of
histones, many reports have shown that these histone modification
enzymes regulate the modification of non-histone proteins, such as
the sirtuin (SIRT) family, the deacetylase histone deacetylase
(HDAC) family, the protein arginine n-methyltransferase
(PRMT) family (Eom and Kook, 2014; Biggar and Li, 2015;
Rodríguez-Paredes and Lyko, 2019; Navas and Carnero, 2021).
These proteins, by regulating metabolic enzymes, play an
important role in the occurrence and development of tumors.

The SIRT family is an NAD+-dependent type III deacetylase.
Manymembers of this family have recently been shown to regulate
tumor metabolism through acetylation (Navas and Carnero, 2021).
Sirtuin 2 (SIRT2) mediates the deacetylation of isocitrate
dehydrogenase (NADP (+)) 1 (IDH1), thereby, promoting
IDH1 activity and the production of α-ketoglutarate (α-KG),
inhibiting liver metastasis of colon cancer and improving
prognosis (Wang et al., 2020). SIRT3 inhibits the acetylation of
IDH2 at K413 and promotes isocitrate dehydrogenase (NADP (+))
2 (IDH2) activity by promoting IDH2 dimerization to inhibit
glycolysis (Zou et al., 2017). Sirtuin 7 (SIRT7) in the liver increases
fatty acid uptake and triglyceride synthesis and storage. SIRT7
inhibits the degradation of testicular nuclear receptor 4 (TR4) via
the ddb1-and cul4-associated factor 1/damage specific DNA
binding protein 1/cullin 4b (DCAF1/DDB1/CUL4B) complex
(Yoshizawa et al., 2014) (Figure 1).

The acetylation of K394 (regulated by the deacetylase P300/
CBP-associated factor (PCAF) and histone deacetylase 3
(HDAC3) of enolase 2 (ENO2), a key enzyme of glycolysis)
inhibits ENO2 activity and glycolysis (Zheng et al., 2020).
Gluconeogenesis is an important metabolic process in liver cell
homeostasis; however, it is significantly reduced in liver cancer.
The tumor suppressor Nur77 interacts with the rate-limiting

enzyme PEPCK1 in gluconeogenesis to increase gluconeogenesis
and inhibit the Warburg effect in hepatocellular cancer (HCC) to
prevent the development of this disease. However, PEPCK1 after
SUMOylation becomes unstable and the interaction weakens,
inhibiting gluconeogenesis and promoting glycolysis (Bian et al.,
2017). In addition, metastasis associated 1 (MTA1) interacts with
the transcription factor myc proto-oncogene protein (MYC) to
regulate its transcription on the lactate dehydrogenase A (LDHA;
an enzyme that catalyzes the production of lactic acid from
pyruvate) via its promoter (Guddeti et al., 2019) and MTA1
upregulates HIF1α under hypoxic conditions by stimulating
HIFα transcription (Huang W. et al., 2021). Six homeobox 1
(SIX1) is a key transcription factor that regulates glycolysis-
related enzymes (GLUT1 and HK2). SIX1 increases the level
of O-GlcNAcylation, and its O-GlcNAcylation enhances the
stability of SIX1, coordinates glucose metabolism, and
promotes the proliferation of HCC (Chu et al., 2020) (Figure 1).

EPIGENETIC REGULATION BY
METABOLITES AND METABOLIC
ENZYMES
Metabolism is an umbrella term for a variety of different orderly
chemical reactions that occur in organisms to maintain life and
serve cellular demands, including energy generation and protein
biosynthesis, thereby, maintaining biological structure and
functions and responding to the environment. Metabolism can
be regarded as a process of continuous material and energy
exchange. Intermediates produced by metabolism often
participate in epigenetic regulation by serving as substrates or
cofactors for epigenome-modifying enzymes. During
environmental disturbances, cellular metabolism transmits
regulatory signals to the genome via epigenetic modifications
(Reid et al., 2017; Cavalli and Heard, 2019) (Table 1).

Metabolites Serve as Substrates for
Epigenetic Modifications
As a carrier of epigenetic information, chromatin plays an
important role in regulating gene silencing and activation and
permits stable inheritance through reversible DNA and histone
modification to maintain the biological functions of proteins
(Allis and Jenuwein, 2016). In chromatin, DNA and histones
are the substrates that are mainly modified. The most widely
studied of all modifications are methylation-demethylation,
acetylation-deacetylation, phosphorylation, ubiquitination, and
ADP-ribosylation. As discussed earlier, changes in the metabolite
pool caused by cancer metabolic reprogramming also affect the
state of epigenetic modifications. Consequently, metabolic
alterations in cancer have an effect on malignant phenotypes
of cancer cells by manipulating epigenetic modifications
(Figure3).

Glucose Metabolism
Glycolysis involves the breakdown of glucose or glycogen into
pyruvate and nicotinamide adenine dinucleotide (NADH),
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accompanied by the production of a small amount of ATP. Under
anoxic conditions, pyruvate can accept hydrogen from triose
phosphate and gets reduced to lactate under the catalytic action of
lactate dehydrogenase. Under aerobic conditions, pyruvate can be
further oxidized and decomposed to form acetyl-CoA and enter
the TCA cycle. Intermediates and metabolites, such as acetyl-
CoA, α-KG, succinate, fumarate and citrate, produced from
glucose metabolism, have diverse effects on epigenetic
modifications.

Acetyl-CoA
Acetyl-CoA is a core metabolite and a substrate for further
metabolism and acetylation. A variety of metabolic processes
in cells participate in the formation of the acetyl-CoA pool.
Glucose metabolism intermediates, such as acetate, citrate, and
pyruvate, under the catalytic action of acetyl-CoA synthetase
short-chain family member (ACSS), ATP citrate lyase (ACLY),
and the pyruvate dehydrogenase complex (PDC), respectively,
produce acetyl-CoA. In addition to glucose metabolism, the
metabolism of amino acids and fatty acids also generate
acetyl-CoA (Zaidi et al., 2012; Nagaraj et al., 2017; Sivanand
et al., 2018). Acetylation occurs widely in histones and some non-
histone proteins and plays a regulatory role in tumorigenesis and
development.

Histone acetylation is regulated by the intracellular acetyl-
CoA concentration. Acetyl-CoA serves as an acetyl group donor
in acetylation reactions. This process is catalyzed by HATs (Lee
et al., 2014). Histone acetylation is determined by the ratio of
acetyl-CoA/coenzyme A and is generally deregulated in cancer. In
human gliomas and prostate tumors, Histone acetylation marks
are significantly regulated by pAkt (Ser473) levels, which
modulates the metabolic enzyme ATP-citrate lyase, a key
determinant of acetyl-CoA metabolism (Lee et al., 2014).
Tumor cell surface GRP78 of activated α2-macroglobulin
signals regulate tumor cell proliferation by inducing and
activating ACLY and ACSS1 expression to generate acetyl-
CoA (Gopal and Pizzo, 2017). Acetyl-CoA also serves as
nonhistone acetylation modification substrate to produce
effects on the development of tumors. PHD finger-like
domain-containing protein 5A (PHF5A) is acetylated at lysine
29 by p300 to promote cancer cell capacity for stress resistance
and consequently, contributes to colon carcinogenesis. PHF5A
K29 hyperacetylation induces the alternative splicing of KDM3A
mRNA, which enhances its stability and promotes its expression
(Wang H.-Y. et al., 2019; Wang Z. et al., 2019). Under low oxygen
states or hypoxia, lysine acetyltransferase and CBP rely on
acetate-dependent acetyl CoA synthetase 2 (ACSS2) to
acetylate HIF-2, which contributes to cancer cell proliferation,
migration, and invasion (Chen et al., 2015).

Nicotinamide Adenine Dinucleotide (NAD+)
The metabolite NAD+ serves as a catalytic cofactor for sirtuins,
class III HDACs, and is essential for the deacetylation of lysine
residues of sirtuins. NAD+ homeostasis is related to many
diseases, including neurodegeneration, diabetes, and cancer.
The ratio of NAD+/NADH regulates sirtuins activity, which is
found to be higher in cancer cells than in noncancerous cells

(Houtkooper et al., 2012; Moreira et al., 2016; Katsyuba et al.,
2020). Under genotoxic stress or nutrient restriction conditions,
upregulation of the NAD+ biosynthetic enzyme NAMPT protects
cells against death via the deacetylation activity of SIRT3 and
SIRT4 (Yang et al., 2007). In cancer, NAD+ is intended to
reprogram metabolism to enable tumor progression,
development, and survival (Hanahan and Weinberg, 2011). As
an NAD+-consuming enzyme, SIRT1 acts as a tumor promoter
and is upregulated in several human cancers. In HCC, the
inhibition of NAD+ metabolism causes DNA damage in the
early stages of tumorigenesis because of the inactivation of
NAD+-consuming enzymes such as SIRT1. Genomic stability
can be improved by NAD+ supplementation to prevent
tumorigenesis (Tummala et al., 2014). Apart from deacetylase
activity, sirtuins have multiple NAD+-dependent catalytic
functions, such as desuccinylase, demalonylase, demyristoylase,
depalmitoylase, and/or mono-ADP-ribosyltransferase activities.
In ovarian cancers, nicotinamide mononucleotide adenylyl
transferase 2 (NMNAT2), which mediates the synthesis of
NAD+ is highly upregulated. Knockdown of NMNAT2
significantly decreases NAD+ in cytoplasm but increases
NAD+ in the nucleus and consequently supports the catalytic
activity of the mono (ADP-ribosyl) transferase (MART) PARP-
16, resulting in ribosomemono-ADP-ribosylation (MARylation).
There is a significant positive correlation between NMNAT-2 and
MARylation levels in the samples of ovarian cancer patients, and
a high level of MARylation will lead to poor prognosis with
respect to progression free survival (Challa et al., 2021). In
addition, mitochondrial dysfunction also affects the level of
acetylation. Mitochondrial dysfunction causes a decreased
NAD+/NADH ratio and increased reactive oxygen species
(ROS), resulting in senescence (Wiley and Campisi, 2016).
STAT3 deficiency induces senescence, mitochondrial
dysfunction, and a lower NAD+/NADH ratio (Igelmann et al.,
2021). The dynamic changes of NAD+/NADH ratio also has an
effect on nonhistone deacetylation of lysine residues of sirtuins. In
breast cancer, NAMPT causes p53 deacetylation and SIRT1
activation by increasing the NAD+ pool (Behrouzfar et al., 2017).

α-Ketoglutarate, Succinyl-CoA, Fumarate
Intermediates of the TCA cycle, α-KG, succinyl-CoA, fumarate,
and citrate, regulate epigenetic modifications through their
concentration in the metabolite pool. α-KG is a key cofactor
for jumonji-domain-containing histone demethylases (JHDMs),
which synergistically catalyze histone demethylation (Klose et al.,
2006). In Acute Myeloid Leukemia (AML) stem cells, the
α-KG level is restricted by the branched-chain amino acid
transaminase 1 (BCAT1), which is overexpressed in leukemia
stem cells and transfers α-amino groups from BCAAs to α-KG,
resulting in α-KG instability to maintain leukemia stem-cell
function (Raffel et al., 2017). The α-KG dehydrogenase
complex (α-KGDC) is the hub enzyme of various metabolic
pathways involved in mitochondrial function and is a
modulator of α-KG (Vatrinet et al., 2017). Succinyl-CoA is a
substrate for succinylation (Zhang et al., 2011). Succinylation, as a
post-translational modification of proteins, can convert the side
chain of cationic lysine residues into anionic ones and then affect
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the structure and function of proteins (Smestad et al., 2018). The
increase of succinylation has different functions in the
progression of a variety of tumors. α-KGDC binds to the
promoter regions of lysine acetyltransferase 2A (KAT2A, also
known as GCN5), and KAT2A also acts as a succinyltransferase
and succinylates histone H3 on lysine 79, which facilitates histone
succinylation and tumor cell proliferation (Wang et al., 2017).
Lysine-222 succinylation is increased in gastric cancer, and
LDHA lysine-222 succinylation, catalyzed by CPT1A via the
stabilization of LDHA, promotes GC invasion and
proliferation (Li X. et al., 2020). In pancreatic ductal
adenocarcinoma, succinyl-CoA synthetase ADP-forming
subunit β (SUCLA2) phosphorylation at S79 leads to
dissociation from kidney-type glutaminase (GLS). Thus, the
concentration of succinyl coenzyme A is increased and
upregulates the succinylation of GLS at site K311. GLS K311
succinylation enhances the oligomerization, activity, and
glutaminolysis to improve the concentration of nicotinamide
adenine dinucleotide phosphate (NADPH) and glutathione,
thereby, counteracting oxidative stress and promoting tumor
growth (Tong et al., 2021).

Loss-of-function mutations in the TCA cycle enzymes
fumarate hydratase (FH) and succinate dehydrogenase (SDH)

have been identified as driver mutations in cancer and mediators
of epigenetic reprogramming (Pollard et al., 2003). In an SDH-
loss cell model, the accumulation of succinate and succinyl-CoA
results in global lysine hypersuccinylation, which modulates
genome-wide transcription and hinders DNA repair ability
and drug resistance (Smestad et al., 2018). In paraganglioma,
SDH deficiency causes succinate accumulation and establishes a
hypermethylation phenotype resulting from epigenetic silencing
through the inhibition of 2-OG-dependent histone and DNA
demethylases. In addition to SDH, inactivating FHmutations can
also lead to this phenomenon (Letouze et al., 2013). The
hypermethylation phenotype caused by SDH-inactivating
mutations also exists in gastrointestinal stromal tumors
(Killian et al., 2013). In renal cancer, the inactivating
mutations of SDH or FH deficiency results in the subsequent
accumulation of succinate or fumarate, respectively, thus, the
inhibition of hypoxia-inducible factor (HIF) prolyl hydroxylases
(HPH), which protect the stabilization of HIF and promote
angiogenesis by increasing α-KG intake can alleviate this
situation (Isaacs et al., 2005; Selak et al., 2005; MacKenzie
et al., 2007). Moreover, germline mutations of FH cause an
aggressive and metastatic form of type 2 papillary renal-cell
carcinoma, which is linked to a widespread DNA

TABLE 1 | Regulation of epigenetic modifications by metabolites and metabolic enzymes.

Metabolites or
metabolic enzymes

Epigenetic modifications Functions in cancer References

Metabolites
Acetyl-CoA DNA, RNA and Protein acetylation Plays a regulatory role in tumorigenesis

and development
Gopal and Pizzo (2017)

NAD+ Protein dacetylation,
desuccinylase, demalonylase

Enables tumor progression, development
and survival

Hanahan and Weinberg (2011)

Succinyl CoA Protein succinylation Promotes tumor growth and progression Li et al. (2020b)
2-hydroxyglutarate Protein hypermethylation Contributes to poor prognosis Cavalli and Heard (2019)
Lactate Protein lactylation Contributes to tumorigenesis and

indicates poor prognosis
Yu et al. (2021)

Palmitic acids Protein palmitoylation Participates in tumorigenesis and cell
survival

Yao et al. (2019)

Farnesyl group Protein farnesylation Contributes to cancer cell growth Tamanoi et al. (2001)
Geranylgeranyl group Protein geranylgeranylation Essential for cell proliferation and

migration
Dou et al. (2015), Mi et al. (2015); Lin and Yang (2016)

β-hydroxybutyrate Protein β-hydroxybutyrylation Promotes tumor growth Liu et al. (2019)
Glutamine Produce a variety of metabolites Replenishes the TCA cycle for

biosynthesis to meet the needs of
proliferation

DeBerardinis et al. (2008), Kuhn et al. (2010)

SAM DNA, RNA and Protein
methylation

Enhances subcutaneous tumor growth Dann et al. (2015)

UDP-GlcNAc O-GlcNAcylation Promotes tumorigenesis Peng et al. (2017)
Metabolic enzymes
ACLY and ACSS1 Acetylation Contributes to cancer cell proliferation,

migration and invasion
Gopal and Pizzo (2017)

α-KGDC Protein succinylation Promotes tumor growth and progression Wang et al. (2017)
SDH Hypersuccinylation;

Hypermethylation
SDH loss causes drug resistance and
promotes angiogenesis

Isaacs et al. (2005); Selak et al. (2005); MacKenzie et al.
(2007); Smestad et al. (2018)

FH Hypersuccinylation;
Hypermethylation

FH deficiency results in angiogenesis
and EMT

Isaacs et al. (2005); Selak et al. (2005); MacKenzie et al.
(2007); Cancer Genome Atlas Research et al. (2016);
Sciacovelli et al. (2016)

IDH1 and IDH2 Protein hypermethylation Contributes to poor prognosis Figueroa et al. (2010); Lu et al. (2012)
OGT O-GlcNAcylation Promotes tumorigenesis Slawson and Hart (2011); de Queiroz et al. (2014); Yang and

Qian (2017)
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hypermethylation pattern (Cancer Genome Atlas Research et al.,
2016). Loss of FH triggers epigenetic suppression of miR-200 and
epithelial-to-mesenchymal transition by inhibiting Tet-mediated
demethylation (Sciacovelli et al., 2016).

2-Hydroxyglutarate
Gain-of-function isocitrate dehydrogenase (IDH) mutations
produce an oncometabolite, 2-hydroxyglutarate (2-HG),
specifically the D enantiomer (D-2HG), and affect clinical
therapy and prognosis (Dang et al., 2010; Cancer Genome
Atlas Research et al., 2015). IDH1 and IDH2 mutations result
in global hypermethylation and specific hypermethylation in
AML by inhibiting demethylases such as KDM4C (Figueroa
et al., 2010; Lu et al., 2012). 2-HG-mediated inhibition of the
H3K9 demethylase KDM4C is induced during adipocyte
differentiation (Lu et al., 2012). In addition to affecting the
function of methyltransferase, 2-HG might also perturb the
overall architecture of the genome and contribute to cancer
and prognosis by affecting methyltransferase activity (Cavalli
and Heard, 2019). Interestingly, kidney tumors present an
accumulation of the L enantiomer of 2HG (L-2HG), because
of the low expression of L-2HG dehydrogenase (L2HGDH).
Similar to the function of D-2HG, L-2HG inhibits ten-eleven
translocation (TET) as well, which converts 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC). L-2HG is
significantly increased in tumors compared with their
expression in normal kidney, and L2HGDH expression
inhibits proliferation and colony formation in RCC cells (Shim

et al., 2014). In response to hypoxia, L-2HG is selectively
produced to increase histone methylation levels, especially
histone 3 lysine 9 (H3K9me3) (Intlekofer et al., 2015).

Lactate
Lactate, a metabolic by-product of pyruvate metabolism in cancer
cells, is a substrate for histone lactylation. The lactylation of
histone lysine residues (Kla) driven by lactate directly stimulates
gene transcription from chromatin, linking metabolism and gene
regulation. The production of intracellular lactic acid is the main
determinant of lactylation modification. Therefore, the balance
between glycolysis and mitochondrial metabolism can regulate
lactylation modification (Izzo and Wellen, 2019; Zhang et al.,
2019; Liberti and Locasale, 2020). Histone lactylation is elevated
in ocular melanoma and is indicative of poor prognosis. Histone
lactylation also contributes to tumorigenesis by facilitating
YTHDF2 expression, which acts as an m6A reader to
recognize and mediate the degradation of m6A-modified
Period Circadian Regulator 1 PER1 and P53 mRNAs to
accelerate tumorigenesis (Yu et al., 2021).

Lipid Metabolism
Lipid signal transduction, especially the phosphatidylinositol 3 kinase
(PI3K) pathway, is one of the most common signal transduction
systems in cancer cells. Lipophilic groups are widespread modifiers
and the following five types of lipids can be covalently attached to
proteins: fatty acids, isoprenoids, sterols, phospholipids, and
glycosylphosphatidylinositol anchors (Resh, 2013). In addition to

FIGURE 3 | Chromatin modification by metabolites. Metabolites produced from cellular metabolic pathways are used as substrates for DNA, RNA, and
chromatin modification. Moreover, the intracellular pools of metabolites can modulate the activity of chromatin-modifying enzymes. TCA, tricarboxylic acid;
αKG, α-ketoglutarate; SucCoA, succinyl-CoA; PAR, poly (ADP–ribose); GlcNAc, β-N-acetylglucosamine; SAH, S-adenosylhomocysteine; SAM,
S-adenosylmethionine.
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providing a substrate for rare acylation, fatty acid metabolism also
produces acetyl-COA, as a substrate for energy metabolism and
epigenetic modifications (Edmunds et al., 2014).

Palmitic Acid
Palmitoylation is a type of fatty acylation in which long-chain fatty
acids (usually 16-carbon-long palmitic acid) are covalently modified
to protein cysteine residues by thioester bonds. Palmitoylation plays
a vital role in many biological processes (Zhang et al., 2018). In
several human cancers, signal transducer and activator of
transcription 3 (STAT3) is palmitoylated by zinc finger DHHC-
Type palmitoyltransferase 19 (ZDHHC19), a palmitoyl
acyltransferase, at the SRC homology 2 (SH2) domain, which
promotes its dimerization and transcriptional activation. Under
cytokine stimulation, the association between ZDHHC19 and
STAT3 is promoted, which directly activates STAT3 by
enhancing its palmitoylation with fatty acids (Niu et al., 2019).
Palmitoylation mediated by the palmitoyltransferase zinc finger
DHHC-Type palmitoyltransferase 3 (ZDHHC3) in the
cytoplasmic domain of PD-L1 blocks its ubiquitination to
stabilize PD-L1, thereby, suppressing PD-L1 degradation by
lysosomes and PD-L1-mediated immune evasion in cancer (Yao
et al., 2019). In addition to ZDHHC3, ZDHHC9 has been identified
as a palmitoyltransferase for PD-L1 in breast cancer (Yang et al.,
2019). In p53-mutant glioma, zinc finger DHHC-Type
palmitoyltransferase 5 (ZDHHC5) is transcriptionally upregulated
and mediates EZH2 palmitoylation, which affects methyltransferase
activity of EZH2 and causing trimethylation of histone 3 at lysine 27
(H3K27me3 level) decreased, and then contributes to malignancy
and tumor progression (Chen X. et al., 2017). MC1R palmitoylation
mediated by the protein-acyl transferase zinc finger DHHC-Type
palmitoyltransferase (ZDHHC13) activates MC1R signaling, which
triggers increased pigmentation, ultraviolet-B-induced G1-like cell
cycle arrest, and the control of senescence and melanomagenesis.
Thus, MC1R palmitoylation protects against melanomagenesis
(Chen S. et al., 2017). The c-Met β-chain is palmitoylated at the
cysteine site, which enhances its stability and release from the Golgi
for transport to the plasmamembrane, making it a novel therapeutic
target for c-Met-driven cancers (Coleman et al., 2016).
Palmitoyltransferases are upregulated in GBM and induce
marked palmitoylation of proteins that participate in cell survival
control and cell cycle regulation in GBM (Chen et al., 2020).

Farnesyl Group
Protein farnesylation is a lipid PTM essential for the cancer-
causing activity of proteins, such as gtpase Ras (Sebti, 2005).
Farnesyltransferase inhibitors inhibit cancer cell growth and
regulate cell cycle changes (Tamanoi et al., 2001).

Geranylgeranyl Group
GGylation is an essential modification affecting cell survival in
many types of cancer. In breast cancer, the Hippo pathway
mediates GGylation-dependent cell proliferation and migration
(Dou et al., 2015; Mi et al., 2015; Lin and Yang, 2016). In gastric
cancer, GGylation promotes proliferation, migration, and invasion
of gastric cancer cells through the YAP signaling pathway.
Inhibition of GGylation by the mevalonate pathway inhibitor

atorvastatin and the geranylgeranyltransferase I inhibitor GGTI-
298 can impair cell proliferation and migration (Wei et al., 2020).

β-Hydroxybutyrate
Acetyl CoA produced by lipolysis can not only enter the TCA
cycle for oxidation but also result in the synthesis of ketone bodies
in the liver. β-Hydroxybutyrate (β-HB) is a ketone body produced
by fatty acid hydrolysis. Elevated β-HB levels lead to a new type of
histone mar, lysine β-hydroxybutyrylation (Kbhb) (Xie et al.,
2016). β-HB is an endogenous and specific inhibitor of class I
HDACs (Shimazu et al., 2013). In HCT116 cells, β-HB-mediated
p53 Kbhb at K120, K319, and K370 sites results in lower levels of
p53 acetylation and consequently, decreased activity of p53,
leading to weakened tumor-suppressive function (Liu et al.,
2019). MTA2 can transcriptionally regulate BDH1-mediated
histone β-HB modification through the R-loop structure in
synergy with HDAC2/CHD4 and promote the proliferation of
hepatoma stem cells (Zhang et al., 2021).

Amino Acid and One-Carbon Metabolism
One-carbon metabolism plays a crucial role in integrating
metabolites from amino acids, glucose, and vitamins and
participating in a variety of biosynthetic processes,
including the biosynthesis of lipids, nucleotides, and
proteins. Hyperactivation of the one-carbon metabolism
pathway drives oncogenesis and forges links between
cellular epigenetic status and metabolism (Locasale, 2013).
Serine metabolism is also an important determinant of
S-adenosylmethionine (SAM) levels. Serine is a single
carbon donor of the folate cycle and is used for methionine
regeneration and SAM synthesis (Locasale, 2013).

Glutamine
Glutamine is the most abundant amino acid in the intracellular
metabolite pool. After entering a cell, in the mitochondria,
glutamine is transformed into glutamate, the precursor of the
TCA cycle intermediate α-KG. Cells rely on glutamine to
replenish the TCA cycle. Anaplerosis allows cancer cells to use
the TCA cycle for biosynthesis to meet the needs of proliferation,
and glutamine as an indispensable nutrient therein (DeBerardinis
et al., 2008; Kuhn et al., 2010).

SAM
SAM, a major methyl donor, is synthesized from the methionine
cycle and serves as a substrate for methylation to maintain the
epigenetic status, including histone methylation catalyzed by
histone methyltransferases, DNA methylation mediated by
DNA methyltransferase (DNMT), RNA methylation (Teperino
et al., 2010; Varier and Timmers, 2011; Anderson et al., 2012;
Locasale, 2013), and PTMs such as the methylation of lysine and
arginine residues of nonhistone proteins (Chen et al., 2011; Yang
and Bedford, 2013). Amino-acid transporters are often required
for tumor cell import of essential amino acids. The amino acid
transporters LAT1 and LAT4 are significantly upregulated in
tumors to facilitate the uptake of methionine for cell proliferation
and differentiation in cancer cells (Haase et al., 2007). In lung
cancer, cells that highly express LAT1 show increased abundance
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of SAM, improving the activity of the histone methyltransferase
EZH2 and consequently, increasing H3K27me3 levels to enhance
subcutaneous tumor growth (Dann et al., 2015). The levels of
SAM are controlled by multiple metabolic pathways and
intracellular metabolism, as well as environmental inputs, such
as nutrient availability, which also elevate SAM concentrations.

Uridine Diphosphate N-Acetylglucoseamine
(UDP-GlcNAc)
The hexosamine biosynthetic pathway produces nucleotide
sugars that can be used as substrates for glycosylation.
UDP-GlcNAc is a metabolite of the hexosamine
biosynthetic pathway, which integrates glucose, amino acid,
fatty acid, and nucleotide metabolism. O-GlcNAc transferase
(OGT) adds O-GlcNAc groups from the donor substrate UDP-
GlcNAc to proteins for O-GlcNAcylation (Yang and Qian,
2017; Li et al., 2018). The methylcytosine dioxygenases TET1,
TET2, and TET3 can also become O-GlcNAcylated by OGT
through protein–protein interactions (Hardiville and Hart,
2016; Yang and Qian, 2017). Previous studies have shown
that O-GlcNAc glycosylation is abnormally upregulated in
many tumors and plays an essential role in the proliferation
of malignant cancer cells (Slawson and Hart, 2011; de Queiroz
et al., 2014; Yang and Qian, 2017). Phosphoglycerate kinase 1
(PGK1) O-GlcNAcylation levels are significantly upregulated
in colorectal cancer; O-GlcNAcylation activates PGK1 activity
to upregulate the TCA cycle and results in lactate production.
The O-GlcNAcylation of PGK1 at T255 increases colon cancer
cell proliferation. Furthermore, PGK1 T255 O-GlcNAcylation
contributes to tumorigenesis by promoting glycolysis and
upregulating the TCA cycle (Nie et al., 2020). Yes-
associated protein (YAP) is O-GlcNAcylated at serine 109
by OGT, and the O-GlcNAcylated YAP disrupts the
interaction with the upstream kinase large tumor suppressor
kinases (LATS) 1. Consequently, O-GlcNAcylation activates
the transcriptional activity of YAP by preventing the
phosphorylation mediated by LATS1. Thus, glucose-induced
YAP O-GlcNAcylation and activation promote tumorigenesis
(Peng et al., 2017). OGT O-GlcNAcylates SRPK2 at a nuclear
localization signal and triggers SRPK2 binding to importin α,
which results in the import of SRPK2 into the nucleus and the
phosphorylation of serine/arginine-rich proteins, promoting
the splicing of lipogenic pre-mRNAs. O-GlcNAc promotes
tumor growth by enhancing the intracellular localization of
SRPK2 and regulating de novo lipid synthesis in tumor cells at
the post-transcriptional level (Tan W. et al., 2021).

Epigenetic Regulation by Gut
Microbiota-Mediated Changes in the
Metabolic Pool
The biochemical reaction networks of metabolism can be
manipulated by several factors including diet, nutrition, gut
microbiota, and chemical exposure. These environmental
factors regulate chromatin methylation and acetylation by
modifying the intracellular pool of metabolites. There is
increasing evidence that the gut microbiome is closely related

to the risk, development, and progression of cancer. Metabolites
produced by gut microbiota influence host metabolism via the
modulation of metabolites, including the lipopolysaccharide
endotoxin, bile acids, trimethylamine N-oxide, and short-chain
fatty acids (SCFAs) (Schroeder and Backhed, 2016). Microbiota-
derived metabolites represent stimuli that regulate epigenetic
modifying enzymes and are involved in intestinal
inflammation and carcinogenesis (Figure 4).

Bile Acids
Bile acids are produced in the liver and metabolized by enzymes
produced by intestinal bacteria. Intestinal bacteria are very
important for maintaining a healthy intestinal microbiota,
balancing lipid and glucose metabolism, insulin sensitivity, and
natural immunity. Bile acids have a wide range of gene-
mediating effects, including bile acid metabolism, glucose and
lipid metabolism, energy expenditure, intestinal motility and
bacterial growth, inflammation, liver regeneration, and
hepatocarcinogenesis (de Aguiar Vallim et al., 2013; Wahlstrom
et al., 2016). The epigenetic regulation of cofactors senses changes in
bile acid metabolism, regulates PTMs of histones, and causes
chromatin remodeling to regulate gene transcription and
maintain the balance of bile acids. Bile acids activate Farnesoid X
receptor (FXR) and change the interaction between FXR and
transcriptional cofactors, resulting in altered PTMs of FXR and
histones to effectively modulate the expression of target genes
(Kemper, 2011). An abnormal concentration of bile acids is
believed to promote colorectal cancer (Fearon andVogelstein, 1990).

Butyrate
Butyrate is a microbiota-derived SCFA that has been confirmed
to be an inhibitor of HDAC in vitro and in vivo. Exposure to
butyrate causes the accumulation of acetylated histones (Candido
et al., 1978; Wu S.-e. et al., 2020). In intestinal epithelia, histone
H3K18 results in abundant crotonylation modification, especially
in small intestine crypts and the colon; the class I histone
deacetylases HDAC1, HDAC2, and HDAC3 can catalyze
histone decrotonylation. As an HDAC inhibitor, gut
microbiota-derived butyrate affects histone decrotonylation
and is linked to gene regulation (Fellows et al., 2018).
Clostridial clusters, Anaerostipes, and Eubacterium cause
histone acylation modification through butyrate, thus,
improving intestinal development and the immune balance
(Wu J. et al., 2020). Butyrate increases histone methylation in
the promoter region of NF-κB1, downregulating its expression
(Liu et al., 2016; Yang and Yu, 2018).

Phytate
Phytate digestion and inositol phosphates produced by phytate
metabolism induce HDAC activity in intestinal epithelial cells.
Dietary phytate metabolism mediated by microbiota-dependent
mechanisms improves recovery from intestinal damage.
Moreover, microbiota-derived phytate digestion is significantly
decreased in the intestinal contents of ulcerative colitis patients
relative to that in inflammatory bowel disease patients. In
addition, phytate-treated mice exhibit improved survival
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compared to vehicle-treated mice with dextran sodium sulfate-
induced colitis (Wu S.-e. et al., 2020).

The human gut microbiota also catabolizes the conversion of
pyruvate into succinate, lactate, or acetyl-CoA to further generate
energy (Oliphant and Allen-Vercoe, 2019); this process is
accompanied by changes in the metabolite pool. Dietary fiber,
including non-starch polysaccharides, resistant starch, and
oligosaccharides, are very rich and diverse in our diet and
facilitate gut microbial and consequently beneficial metabolite
diversity (Riva et al., 2019). The gut microbiota break cellulose
into SCFAs as a metabolic intermediate; SCFAs inhibit HDACs
and serve as energy substrates. SCFAs also affect histone
crotonylation and acetylation levels (Kasubuchi et al., 2015;
Koh et al., 2016; Zhao et al., 2016; Fellows et al., 2018; Sabari
et al., 2018). SCFAs induce epithelial anti-inflammatory IL-10
receptor alpha subunit (IL-10RA) mRNA and antimicrobial
peptides by inhibiting HDACs (Campbell et al., 2012; Zheng
et al., 2017). Lactobacillus and Bifidobacterium synthesize folate
to increase DNAmethylation and m6A mRNA in the intestine to
ensure normal development of the intestine (Wu J. et al., 2020). In
addition to folate, vitamins B2, B6, and B1 from intestinal
microbiota can also lead to the synthesis of SAM as a methyl
group donor to methylate DNA, RNA, and histones (Wu J. et al.,
2020). Microbial metabolism also provides TCA cycle
intermediates, such as α-KG, succinate, and fumarate, which
serve as substitutes for epigenetic modifications (Wu J. et al.,
2020). The gut microbiota also indirectly regulates the activity of
epigenetically modified genes by regulating gene expression.

According to a recent report, enterotoxigenic Bacteroides
fragilis stimulation promotes PHF5A-mediated RNA
alternative splicing of KAT2A via the downregulation of miR-
149–3p, promoting intestinal inflammation andmalignancy. This
process depends on METTL14-mediated m6A methylation (Cao
et al., 2021).

CLINICAL TRIALS

Recent studies have shown that tumor metabolism and epigenetic
regulation are closely linked and important for maintaining cell
growth and regulating cancer metastasis. Therefore, inhibitors of
rate-limiting enzymes in key metabolic pathways used by cancer
cells are actively being investigated (Erez and DeBerardinis,
2015). Inhibiting such key enzymes has potential for cancer
treatment, but they would also have an effect on normal cells;
therefore, inhibiting rate-limiting enzymes of metabolic pathways
is often toxic (Rodríguez-Enríquez et al., 2014).

In 2017, the FDA approved the first cancer metabolism drug
enasidenib, an IDH2 inhibitor, for which the main indication
is relapsed and refractory AML (Mullard, 2017). IDH2 is the
key rate-limiting enzyme in the TCA cycle and catalyzes the
conversion of isocitrate to α-KG. Cancer cells show a
functional mutation in IDH2 (Yao et al., 2021). Enasidenib,
an IDH2 inhibitor, is undergoing phase 1b/2 clinical trials in
multiple countries. The current research results show that
compared to that with azacitidine treatment alone, the

FIGURE 4 |Metabolites produced by the intestinal microbiota influence host metabolism by modulating the metabolite pool. The gut microbiome regulates histone
methylation and acetylation by modulating the intracellular pools of metabolites, such as SAM and acetyl-CoA. Metabolites from the gut microbiome, like phytate and
butyrate, also cause changes in histone acetylation by affecting the enzyme activity of HDAC. Pyruvate can either be catabolized into succinate, lactate, or acetyl-CoA.
SCFAs can provide acyl-CoA as a donor for histone acylation, while also directly inhibiting the activity of HDACs.
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overall drug response rate of enasidenib combined with
azacitidine is improved, and the combination has good drug
tolerance, thereby, improving the prognosis of patients with
IDH2 AML (NCT02677922) (Table 2) (DiNardo et al., 2021).
In addition, clinical studies have also shown that the drug
responsiveness and tolerability are good in patients with
IDH2-mutant myelodysplastic syndrome (NCT01915498)
(Table 2) (Stein et al., 2020).

IDH mutations result in the conversion of α-KG to 2-
hydroxyglutarate, which competitively inhibits α-KG-
dependent enzymes as the two small molecules, 2-HG and
α-KG, are similar in structure (Pirozzi and Yan, 2021). These
enzymes include histone demethylases (Jumonji domain-
containing protein/lysine demethylase family, JMJD/KDM
family) and DNA/RNA methylation-modification-related
enzymes (Tet family) (White et al., 2020; Waitkus and Yan,
2021). This causes epigenetic dysregulation and cell
differentiation arrest, a key factor in tumor cell proliferation
after mutations (White et al., 2020). In addition, in 2018, the
mutant IDH1 inhibitor ivosidenib was used to treat relapsed or
refractory AML. The IDH1 and IDH2 dual inhibitor AG-881 has
also been shown to cross the blood-brain barrier. Recently, the
results of a phase I clinical trial (NCT02481154) (Table 2) of AG-
881 for low-grade gliomas demonstrated that it is safe and can
shrink tumors in many non-enhanced glioma patients
(Mellinghoff et al., 2021).

Histone deacetylase is a key target for tumor therapy.
Therefore, many studies have explored compound inhibitors
of histone deacetylase to find new anti-tumor strategies.
HDAC inhibitor romidepsin (also called FK228) affects iron
metabolism, mediates increased intracellular iron
accumulation, decreases the expression of export-type
ferroprotein, and increases reactive oxygen species (ROS)
production, thereby, mediating iron death. This result has a
guiding role for the combined treatment strategy using HDAC
inhibitors and iron-targeted chemotherapy (Oliveira et al., 2021).
The results of the second-phase clinical study show that FK228
can effectively control T-cell lymphoma, with safety and
reliability (NCT00426764, NCT00106431) (Table 2) (Foss
et al., 2014; Foss et al., 2016). The HDAC inhibitor BAS-2
inhibits HDAC6, affects the ENO1 gene and LDHA related to
glucose metabolism, and ultimately affects glycolysis in breast
cancer (Dowling et al., 2021). Studies have shown that 1A12 can
inhibit the acetylation level of histone H3, and it can also affect
the glucose metabolism level in preclinical test subjects (Chan
et al., 2014). HDAC inhibitors (panobinostat, vorinostat, and
romidepsin) reduce glycolysis in a c-MYC-dependent manner,
triggering the metabolic reprogramming of glioblastoma
(Nguyen et al., 2020). Currently, the HDAC inhibitors
vorinostat, romidepsin, and panobinostat have been approved
by the FDA for the treatment of clinical lymphoma and multiple
myeloma (Cappellacci et al., 2020). However, current research

TABLE 2 | Clinical trials of IDH, HDAC, SAM cycle and others.

Category Drugs NCT number Title Condition Status Phase

IDH inhibitors Enasidenib NCT02677922 A Safety and Efficacy Study of Oral AG-120 Plus
Subcutaneous Azacitidine and Oral AG-221 Plus
Subcutaneous Azacitidine in Subjects with Newly
Diagnosed Acute Myeloid Leukemia (AML)

Active, not
recruiting

Leukemia, Myeloid, Acute Phase 1/
Phase 2

Enasidenib NCT01915498 Phase 1/2 Study of Enasidenib (AG-221) in Adults
with Advanced Hematologic Malignancies with an
Isocitrate Dehydrogenase Isoform 2 (IDH2)
Mutation

Active, not
recruiting

Hematologic Neoplasms Phase 1/
Phase 2

AG881 NCT02481154 Study of Orally Administered AG-881 in Patients
with Advanced Solid Tumors, Including Gliomas,
with an IDH1 and/or IDH2 Mutation

Active, not
recruiting

Glioma Phase 1

HDAC
inhibitors

Romidepsin NCT00426764 A Trial of Romidepsin for Progressive or Relapsed
Peripheral T-cell Lymphoma

Completed Peripheral T-cell Lymphoma Phase 2

Romidepsin NCT00106431 A Single Agent Phase II Study of Romidepsin
(Depsipeptide, FK228) in the Treatment of
Cutaneous T-cell Lymphoma (CTCL)

Completed Cutaneous T-cell
Lymphoma

Phase 2

Vorinostat NCT01266031 Phase I/II Adaptive Randomized Trial of
Bevacizumab Versus Bevacizumab Plus
Vorinostat in Adults with Recurrent Glioblastoma

Completed Recurrent Glioblastoma Phase 1/
Phase 2

SAM cycle
inhibitors

Ethylornithine NCT01483144 Trial of Eflornithine Plus Sulindac in Patients with
Familial Adenomatous Polyposis (FAP)

Completed Familial Adenomatous
Polyposis

Phase 3

Ethylornithine NCT00033371 Celecoxib With or Without Eflornithine in
Preventing Colorectal Cancer in Patients with
Familial Adenomatous Polyposis

Completed Colorectal Cancer, Familial
Adenomatous Polyposis

Phase 2

Ethylornithine NCT01059071 Safety Study for Refractory or Relapsed
Neuroblastoma with DFMO Alone and in
Combination with Etoposide

Completed Neuroblastoma Phase 1

Others Physical activity and
dietary change

NCT00811824 Effects of Physical Activity and Dietary Change in
Minority Breast Cancer Survivors

Completed Breast Cancer Phase 2

Vitamin C NCT02877277 Epigenetics, Vitamin C and Abnormal
Hematopoiesis - Pilot Study

Completed Myelodysplastic Syndrome,
Acute Myeloid Leukemia

Not
Applicable
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shows that vorinostat does not work well in glioma
(NCT01266031) (Table 2) (Puduvalli et al., 2020).

SAM is a methyl donor for DNA and histone methylation
(Haws et al., 2020). Metformin has been found to affect the
epigenetic metabolic regulation of tumors in recent years. It
reduces SAH (a potent inhibitor of all SAM-dependent
methylation reactions) and promotes the accumulation of
SAM. This leads to an increase in the overall DNA
methylation level of metastatic cancer cells (Cuyàs et al.,
2018). One study found that ethylornithine has
chemopreventative and therapeutic effects on colon cancer,
reducing folate-dependent metabolites such as SAM, the
thymidine pool, and other intermediate products of related
pathways (Witherspoon et al., 2013). On one hand,
ethylornithine has an important effect in delaying the
progression of familial polyposis (NCT01483144,
NCT00033371) (Table 2) (Burke et al., 2020), while on the
other, studies have shown that it has the potential to prevent
the recurrence of high-risk neuroblastoma (NCT01059071)
(Table 2) (Saulnier Sholler et al., 2015).

In addition to drugs, lifestyle changes can affect epigenetic
changes. A healthy lifestyle is associated with high levels of DNA
methylation, whereas overall tissue and blood DNA
hypomethylation are associated with an increased risk of cancer.
The results of clinical trials (NCT00811824) (Table 2) show that
lifestyle changes (diet and weight loss) can effectively change DNA
methylation (Delgado-Cruzata et al., 2015). A high-fat diet can
induce DNA methylation changes in the whole genome, which
was found to involve metabolic disease-related genes and cancer-
related genes (Jacobsen et al., 2012). Previous studies have shown
that patients with malignant hematological tumors often lack
vitamin C. Vitamin C can enhance the activity of TET protein in
tumor cells, increase the level of 5hmC, decrease the level of 5mC in
cells, and increase sensitivity to anticancer drugs. A clinical study in
Denmark (NCT02877277) (Table 2) showed that vitamin C
supplementation in patients with myeloma increases the 5hmC/
5mC ratio of mononuclear myeloid cells, enhancing the clinical
efficacy of DNMT inhibitors (Gillberg et al., 2019).

CONCLUSION AND PERSPECTIVES

In this review, we elucidated how the crosstalk between epigenetic
regulation and metabolic reprogramming changes during the
process of tumorigenesis and development. Metabolic
reprogramming in tumors changes the epigenetic landscape of
tumor cells. Metabolites can serve as substrates for epigenetic

modifications, and some metabolic enzymes can also affect
chromatin modification. Therefore, we suggest that the
metabolism-epigenome axis must be considered while
approaching cancer biomarker studies.

Additionally, the role of metabolism synergy and epigenetic
modifications in the physiology and pathology of the gut
microbiota and corresponding effect on the host is proposed
to be valuable and have prospective applications in cancer
research. On the one hand, the metabolism of the gut
microbiota and the products provide substrates for
epigenetic modifications, whereas on the other hand, they
directly affect the activity of epigenetic modification
enzymes, resulting in epigenetic modification changes.
Lifestyle-related factors, such as exercise and nutrition, are
very important factors that affect human health through the
gut microbiota, and the emerging role of gut microbial
diversity in epigenetics emphasizes the link between lifestyle
choices and cancer.

Although great progress has been made in understanding the
epigenetic–metabolism axis in the past few decades, the internal
mechanism of this heritable change in tumorigenesis and
development and its application to tumor prevention and
treatment remain elusive. Therefore, the mechanisms of
metabolically-regulated epigenomic landscape responses in
tumorigenesis and development need to be investigated, and
further potential therapeutic applications in this regard must
be studied.
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