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The rise of antimicrobial-resistant Neisseria gonorrhoeae is a significant public health concern. Against this background, rapid

culture-independent diagnostics may allow targeted treatment and prevent onward transmission. We have previously

shown metagenomic sequencing of urine samples from men with urethral gonorrhea can recover near-complete N. gonor-
rhoeae genomes. However, disentangling the N. gonorrhoeae genome from metagenomic samples and robustly identifying an-

timicrobial resistance determinants from error-prone Nanopore sequencing is a substantial bioinformatics challenge. Here,

we show an N. gonorrhoeae diagnostic workflow for analysis of metagenomic sequencing data obtained from clinical samples

using R9.4.1 Nanopore sequencing. We compared results from simulated and clinical infections with data from known ref-

erence strains and Illumina sequencing of isolates cultured from the same patients. We evaluated three Nanopore variant

callers and developed a random forest classifier to filter called SNPs. Clair was the most suitable variant caller after

SNP filtering. A minimum depth of 20× reads was required to confidently identify resistant determinants over the entire

genome. Our findings show that metagenomic Nanopore sequencing can provide reliable diagnostic information in

N. gonorrhoeae infection.

[Supplemental material is available for this article.]

Antimicrobial-resistant Neisseria gonorrhoeae is a major public
health threat, with only limited treatment options available
(Unemo2015).We have recently described that rapid long-read se-
quencing using the Oxford Nanopore Technologies (ONT) R9.4.1
platformoffers the potential to detect and sequence near-complete
N. gonorrhoeae genomes directly from urine samples (Street et al.
2020). This clinical metagenomic approach has the advantage
that it does not require prior bacterial culture, which typically
adds two to three days to diagnostic workflows and may not be
available in all cases, particularly in settings where diagnostics
are based on molecular testing alone. With analysis possible dur-
ing sequencing (Sanderson et al. 2018), it could potentially offer
a same day diagnostic tool for gonorrhea infection that can guide
antimicrobial treatment.

ONT data have several potential advantages in addition to
speed and the portability of the diagnostic platform. The long
reads generated can allow taxonomic classification with greater
specificity than is possible with short reads (Cuscó et al. 2018).
Additionally, as reads containing antimicrobial resistance determi-
nants (with the exception of those on plasmids) contain greater
amounts of genetic context than is found with short reads, assign-
ment of resistance determinants to a species is more precise.
However, ONT data contain a substantial per base error rate of
up to 10%with assemblies containing open reading frame disrupt-

ing insertion or deletion errors (Watson and Warr 2019).
Generation of hybrid assemblies with short-read data to mitigate
the error rate (De Maio et al. 2019) negates the speed and portabil-
ity available with ONT. If Nanopore sequencing is to be used alone
for pathogen sequencing applications directly from clinical sam-
ples, for example, for antimicrobial resistance prediction and
transmission tracking, then this needs to be overcome.

Previous work (Golparian et al. 2018) shows that Nanopore
2D–based sequencing of N. gonorrhoeae isolates can be used to
identify drug resistance determinants and to undertake phyloge-
netic inference. However, this work was undertaken on isolates,
rather than clinical samples directly, andNanopore 2D sequencing
has since been deprecated. This study (Golparian et al. 2018) also
found some differences between the phylogenies obtained from
ONTand Illumina sequencing of the same isolates as a result of dif-
ferences in consensus sequences called by the two methods. Most
of the previous work optimizing consensus sequence calling from
Nanopore data has been undertaken following viral sequencing,
for example, of Ebola using Nanopolish (Quick et al. 2016) or fre-
quency and strand bias (Grubaugh et al. 2019). Some investigators
have successfully transferred these approaches to bacterial se-
quence data, for example, Escherichia coli using an optimized appli-
cation of the GATK package (Greig et al. 2019).

Here, we build on this work by releasing a packaged workflow
for analysis of 1D R9.4.1 Nanopore data from N. gonorrhoeae

Corresponding author: nicholas.sanderson@ndm.ox.ac.uk
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.262865.120.
Freely available online through the Genome Research Open Access option.

© 2020 Sanderson et al. This article, published inGenome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0/.

Method

1354 Genome Research 30:1354–1363 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/20; www.genome.org
www.genome.org

mailto:nicholas.sanderson@ndm.ox.ac.uk
http://www.genome.org/cgi/doi/10.1101/gr.262865.120
http://www.genome.org/cgi/doi/10.1101/gr.262865.120
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


obtained from direct sequencing of clinical samples. To generate a
whole-genome consensus sequence, we use a variant calling ap-
proach from aligned reads. For resistance determinant detection,
we adopt multiple approaches including analyzing reads aligned
to specific genes. Formore diverse genes, we use assembled contigs
to first select a reference gene before undertaking alignment.

Results

Data from ONT (Table 1) sequencing of five Neisseria gonorrhoeae–
containing samples were used for initial method development:
threemetagenomic sequences of urine samples spikedwith known
reference strains (WHO F, V, and X) and two from sequencing of
isolates (WHO Q and H18-208). The median sequencing depth
was >100× for each sample, and coverage breadth was 97%–

99.7% at 1× coverage or higher (Supplemental Fig. S1). Each se-
quence was subsampled to varying depths between 2× and 100×.

Tuning variant calling

Variants were called for each subsampled genome using
Nanopolish, Clair, and Medaka. Previous Illumina sequences of
the same isolates were used as a “truth set” or “gold standard”
(Supplemental Table S1). All three variant callers identified numer-
ous false positive SNPs compared to the Illumina data. Variant cal-
ler reported QUAL scores were unable to reliably differentiate false
and true SNPs (Fig. 1), for example, using Nanopolish and a QUAL
score cutoff of ≥25 for calling variants, at 100× coverage, recall was
0.94–0.97, precision 0.68–0.99, and number of false SNPs 32–1870
across the five genomes. Recall, precision, and false positive rates

for Medaka and Clair were even worse (Fig. 1; Supplemental
Table S2).

To improve performance, we trained a random forest classifier
to filter the variants using input features from SAMtools and the
variant callers (detailed inMethods). Performance was assessed us-
ing the 50% of bases in the validation set for each genome across
all subsampled depths. This approach improved the area under
the curve (AUC) for true SNP identification for Nanopolish from
0.86 using a QUAL threshold alone to 0.98 (Fig. 2A). For
Medaka, the AUC improvement was less pronounced, from 0.93
to 0.97. Clair saw the biggest relative improvement from 0.84 to
0.97. The relative importance for each feature varied for each var-
iant caller (Fig. 2B).

Impact of depth of coverage

Using our trained classifier, we assessed the impact of depth of cov-
erage on SNP detection, reporting findings across the whole ge-
nome. Increasing coverage up to 20× improved SNP detection,
for example, using Nanopolish, SNP sensitivity was 0.35–0.56,
0.88–0.92, and 0.93–0.95 at 2×, 10×, and 20× coverage, respective-
ly, across the five genomes (Fig. 3A). Medaka had recall rates ∼5%
lower than Nanopolish and Clair. Higher coverage depth also re-
duced the number of false positive SNPs (Fig. 3B). Nanopolish
had the fewest false positives at depths below 20× coverage. At
100× coverage, the numbers of false SNPs per genome ranged
from 8 to 13 using Nanopolish (i.e., <1 in 100,000 bases), from 7
to 28 using Medaka, and from 15 to 130 using Clair (Fig. 3), with
recall rates of 93%–95%, 85%–92%, and 94%–98%, respectively.

Table 1. Sequenced isolates and samples

Strain
(alternative
name) Sample type Resistance present

Resistance
determinants

Nanopore
sequence data:
N. gonorrhoeae
Gb/total Gb (%)

Accession numbers
for ONT and matched

Illumina data Reference

WHO F Metagenomic
(spiked urine)

– – 3.968/15.729
(34%)

ERS4214385
(SAMEA6448825)
SAMN03201670
(SRR1661324)

Unemo et al.
(2009);
Demczuk
et al.
(2015)

WHO V
(H041)

Metagenomic
(spiked urine)

Penicillin, high-level
azithromycin,
ciprofloxacin,
tetracycline

penA variant, mtrR
promoter deletion of
A, porB, ponA, gyrA,
parC, 23S rRNA
A2059G, rpsJ variants,
TEM1 plasmid

9.347/15.771
(73%)

ERS4214375
(SAMEA6448815)
SAMEA3905804
(ERS1092938)

Unemo et al.
(2009)

WHO X (F89) Metagenomic
(spiked urine)

Penicillin, ceftriaxone,
azithromycin
(intermediate),
tetracycline,
ciprofloxacin

penA variant, mtrR
promoter deletion of
A, porB, ponA, gyrA,
parC, rpsJ variants

6.631/10.671
(68%)

ERS4214384
(SAMEA6448824)
ERR1447937
(SAMEA2448468)
(WGSIM)

Unemo et al.
(2009)

WHO Q
(G7944)

Sequenced
isolate

Penicillin, ceftriaxone,
high-level
azithromycin,
tetracycline,
ciprofloxacin

penA variant, mtrR
promoter deletion of
A, mtrR, porB, ponA,
gyrA, parC, 23S rRNA
A2059G, rpsJ variants,
tetM plasmid

2.642/2.642
(100%)

ERR2560197
(SAMEA4641462)
ERR2560139
(SAMEA4641050)

Eyre et al.
(2018)

H18-209 Sequenced
isolate

Penicillin, ceftriaxone,
azithromycin
(intermediate),
tetracycline,
ciprofloxacin

penA variant, mtrR
promoter deletion of
A, porB, ponA, gyrA,
parC variants

3.668/3.668
(100%)

ERS4280418
(SAMEA6515997)
ERS4281303
(SAMEA6516883)

Eyre et al.
(2019)

Resistance to azithromycin, ciprofloxacin, tetracycline, penicillin, and ceftriaxone is listed with associated genetic determinants. More details on the
specific resistance variants can be found in the referenced articles.
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Recall performance in important regions and missing SNP calls

We used Clair for subsequent analyses as it offered similar perfor-
mance to Nanopolish, without requiring resource intensive access
to fast5 files. In common with all variant callers tested, Clair
missed SNPs (1.5%–3%) such that theywere not available at the fil-
tering step. If these errors occur systemically, they do not affect
comparisons between genomes; however, if they occur randomly,
they can lead to genomes appearing falsely more similar or
different.

Missed SNPs were associated with divergence from the refer-
ence genome, such that missed SNPs were more closely located
to other SNPs (Supplemental Fig. S2A). There was no increase in
SNP heterozygosity in genes shared between Neisseria species
(Supplemental Fig. S2A), suggesting potential contamination
from commensal bacteria is being removed by centrifuge in these
samples. For antimicrobial resistance prediction, we only called
variants on chromosomal genes with low expected diversity and
selected the closest reference genes for diverse targets, for example,

Figure 1. Detection of SNPs using QUAL scores alone. Swarm plots of true (orange) and false SNPs (blue) detected by Clair (top), Nanopolish (middle),
and Medaka (bottom). Each column is a different sequence. Each row has different y-axis values.

BA

Figure 2. Random forest–based variant filtering using Nanopolish, Medaka, and Clair. (A) Receiver operating characteristic (ROC) curve for random for-
est classifier using different features including Quality (QUAL only, dashed line) and a composite selection of input features (Composite, solid line) for
Nanopolish (green), Medaka (orange), and Clair (blue). AUC for each variant caller: Nanopolish 0.86 to 0.98, Medaka 0.93 to 0.97, Clair 0.84 to 0.97,
using QUAL and Composite features, respectively. (B) Bar chart of feature importance for composite selection of features used to train the classifier.
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penA. Missed SNPs were not seen within gyrA, porB, mtrR, parC, or
ponA at coverage depths above 10× (Supplemental Fig. S3).

Antimicrobial resistance determinant identification

in conserved genes

Antimicrobial resistance determinants were reliably identified by
all three variant callers with only a handful of exceptions. All
four copies of the 23S rRNA gene were identified separately using
long Nanopore reads. WHO V and WHO Q contain four copies
of the A2059G mutation conferring high-level azithromycin
resistance. All four mutations were identified at 5×, 10×, or 20×
coverage usingClair, Nanopolish, orMedaka, respectively (Supple-
mental Table S3). Mutations conferring substitutions at positions
91 and 95 in gyrA and at positions 86–88 in parC confer ciproflox-
acin resistance. These amino acids were correctly identified in gyrA
for all genomes at ≥10× coverage with Clair and Nanopolish, but
Medaka failed to detect 95N in WHO X at any depth. Expected re-
sults were obtained for parC for all variant callers even at 2× depth
(Supplemental Table S4). Similarly, ponA and rpsJmutations (asso-
ciated with penicillin and tetracycline resistance, respectively)
were identified at all depths with all variant callers.

Two different types of mutations were examined for themtrR
gene, the G45D substitution, and promoter variants, which are as-
sociated with resistance to azithromycin, ceftriaxone, penicillin,
and tetracycline. The amino acid at position 45was correctly called
for all genomes at all depths and with all variant callers, except at
2× coverage for WHO Q with Medaka (Supplemental Table S4). A
single-base deletion within the promoter, present within all ge-
nomes studied exceptWHOF, was also detected. Because the refer-
ence sequence contained the deletion, it was expected to be
detected as an insertion inWHO F. This insertion was only detect-
ed by Nanopolish with 100× coverage. Medaka and Clair detected
the insertion at all depths, but also incorrectly identified the inser-
tion inWHOX at≤5× coverage (Supplemental Table S5). As indels
were not part of our SNP filtering, wedeveloped a heuristic filter for
the insertion: 40% or more reads containing an inserted adeno-

sine, with a coverage depth above 5×, suggested wild-type geno-
type (Supplemental Fig. S4).

penA characterization using whole-genome and local de novo assemblies

The penA gene, associated with penicillin and ceftriaxone resis-
tance, is a chromosomal antimicrobial resistance determinant
with relatively high nucleotide sequence variationwithinN. gonor-
rhoeae species arising from recombination events. We identified it
using whole-genome and local de novo assemblies followed by
mapping the closest known allele.

The required average coverage depth to generate contigs con-
taining the penA gene was variable between strains (Supplemental
Table S6): H18-208,WHOQ,WHOX,WHOV consistently provid-
ing the correct allele with depths of ≥10×. WHO F required 50×
coverage for the whole-genome assembly (WGA) method to recall
the allele. The local assembly approach worked for all strains from
10× coverage and higher, and it showed better sensitivity at lower
read coverage, but did not provide as much genomic context.

Detection of plasmid-mediated resistance determinants

Plasmid-carried tetM and blaTEM-1 confer tetracycline and penicil-
lin resistance, respectively. Reads containing tetM or blaTEM-1 se-
quence were extracted and assembled. To determine if the
plasmids were consistent with those in N. gonorrhoeae rather
than other contaminating species present, we analyzed the gene
and flanking plasmid sequence. To reliably confirm the presence
of these genes, contigs containing blaTEM-1 or tetM needed to
share >60% sequence proportion matching a known carrier
plasmid (Supplemental Fig. S5) with >95% sequence identity.
Using this heuristic threshold, it was possible to correctly deter-
mine that WHO Q and WHO V contained tetM and blaTEM-1,
respectively.

Longer reads improve metagenomic species disentanglement

To avoid erroneous results arising from DNA from other species,
only reads classified as Neisseria gonorrhoeae to the species level

BA

Figure 3. Effect of read coverage depth on SNP calling for each strain and variant caller. (A) SNP recall by median depth of coverage. (B) False positive
SNPs (FP) by median depth of coverage. Color represents different sequences, shapes represent variant callers, circles are Clair, crosses are Medaka, and
squares are Nanopolish. Insets show upper and lower regions of the y-axis in more detail for A and B, respectively.
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were used for analysis. By limiting the analysis to only this subset
of reads, there is a risk of missing regions of the genome by filter-
ing reads that assign to a lower taxon (Nasko et al. 2018). We
therefore tested the expected proportion of the N. gonorrhoeae ge-
nome that would be classified to the species level by simulation
(Supplemental Fig. S6). In contrast to other species, N. gonorrhoeae
could reliably be identified to the species level with read lengths of
a few hundred base pairs. Themean read length from our sequenc-
ing was between 2 and 4 kb (Street et al. 2020), which enabled a
high proportion of N. gonorrhoeae sequence to be assigned to the
species level. Furthermore, given Centrifuge’s ability to distin-
guish between closely related Neisseria species (Supplemental
Fig. S6), we expect this process to be applicable to other samples
such as nasopharyngeal swabs that often contain commensal
Neisseria species.

Further filtering to remove false SNP calls

When using SNP data to reconstruct transmission events, false
SNPs can lead to transmission being incorrectly excluded or
deemed unlikely. Similarly, missed SNPs occurring at random, in
which the consensus sequence is wrongly set to be wild type,
can increase measured genetic distance between two similar
strains. In contrast, the expected sequence difference at filtered
sites, where the base is unknown, can be adjusted for in proportion
to the percentage of the genome filtered and variation in the
known genome. Therefore, for transmission studies, a strategy of
favoring removing false positive and false negative SNPs over recall
is preferred. To achieve this, the SNP classificationswere further fil-
tered by masking nucleotide classifications to N if the proportion
of bases at a given position supporting the classification was less
than 0.8. This value was chosen as the proportion of true positive
SNPs with support less than 0.8 is relatively low, but this threshold
is sufficiently high to avoidmost false negative calls (Supplemental
Fig. S7).

By using this final filter with Clair base-called data at 100×
coverage, the number of false positive SNPs was reduced from
15–130 to 9–35 across the five genomes analyzed (Table 2). The
number of false negative SNPs also fell from 49–249 to 4–19.
Overall this resulted in false SNP rates (false negative+ false posi-
tive SNPs) falling from 66–428 to 15–45, with a reduction in recall
from 0.93–0.99 to 0.76–0.94, which is likely to still remain accept-
able for most transmission studies.

Application of the workflow on clinical samples

We analyzed previously generated Nanopore metagenomic se-
quencing data from 10 urine samples frommenwith urethral gon-
orrhea.We compared findings with our workflow to Illumina data

obtained as part of this study from sequencing isolates from the
same infections. By Nanopore sequencing, ≥92.8% coverage of
an N. gonorrhoeae reference genome was achieved in all samples,
with ≥93.8% coverage breath at ≥10-fold depth in seven samples.

All resistance gene SNPs were correctly identified in themeta-
genomic clinical samples (Table 3). Using the heuristic method,
the mtrR promoter deletion was correctly detected in samples
202, 250, 301, and 314, and the wild-type sequencing in samples
271, 294, and 315. However, sample 303 was incorrectly identi-
fied, with only 11×mean genome coverage depth and 8× coverage
over the mtrR gene suggesting a lack of sequencing depth to accu-
rately call the position (Table 3). The penA allelewas correctly iden-
tified in nine of the 10 clinical samples (Supplemental Table S7).
All clinical metagenomic samples identified corresponded with
Illumina sequenced cultures at 100% identity according to
BLASTN results. Sample 303 produced insufficient data to detect
the penA gene. It was also possible to determine that samples
206, 271, 294, and 304 contained the tetM gene on the pEP5050
plasmid, and samples 294 and 303 contained the blaTEM-1 gene
on the pEM1 plasmid (Supplemental Fig. S8).

By producing aNanopore consensus sequencewith only high
probability SNPs added, and sites with <80% support set to N (i.e.,
unknown), conventional tree building methods can be used. This
approach showed comparable findings between cultured isolates
sequenced with Illumina and clinical metagenomic samples se-
quencedwithNanopore (Fig. 4). Samples 303 and 304 provided in-
sufficient data to generate complete consensus sequences (only
53% and 56% of the reference genome length was identified).
For the remaining eight clinical samples and five method develop-
ment sequences, the median (IQR) [range] genetic distance be-
tween the Illumina and Nanopore sequences from the same
infection was 5 (3–6) [1–10] SNPs, which is close enough to
make transmission studies possible using metagenomic data
alone.

Time to results

Speed of determining antimicrobial resistance is an important goal
of clinical metagenomics. Laboratory work before sequencing
starts takes 6–7 h. This includes DNA extraction of 2–3 h and se-
quencing library preparation of 4.5 h (which includes a 3.5-h
PCR step). From the start of a sequencing run it took a range of
times for the clinical samples to reach 20× coverage required for
confident analysis (Supplemental Fig. S9). Four samples, 301,
314, 271, and 250, took <1 h. Sample 315 took <2 h. Samples
294 and 206 took 5 h and 9 h, respectively. Samples 202 and
304 passed 10× coverage after 6 h, and sample 303 never reach
10× coverage.

Table 2. Recall rates for filtered and unfiltered spiked genomes, variant called with Clair and a random forest classifier

Sample
Total SNP
positions

Filtered
FN

Filtered
FP

Filtered
TP

Unfiltered
FN

Unfiltered
FP

Unfiltered
TP

Unfiltered
recall

Filtered
recall

H18-
208

4297 12 9 3740 289 130 4008 0.93 0.87

WHO F 6095 19 12 5660 130 15 5965 0.98 0.93
WHO Q 3844 12 4 2913 167 16 3677 0.96 0.76
WHO V 1799 4 11 1620 49 17 1750 0.97 0.90
WHO X 3366 10 35 3153 50 45 3316 0.99 0.94

Show with (Filtered) and without (Unfiltered) additional filtering by requiring 80% of bases to support the called nucleotide. Data shown for 100×
coverage.
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Discussion

We show an approach that allows Nanopore sequencing data to be
used to reconstruct accurate consensus bacterial genomes. This can
be done without accompanying Illumina short-read data and can
be applied to metagenomic sequencing data. We show the recon-
structed genomes allow accurate resistance detection and trans-
mission inferences to be made in N. gonorrhoeae, including using
samples obtained from clinical infections.

We evaluated three variant callers, Nanopolish, Medeka, and
Clair, against Illumina variant calling from sequenced cultures.
After filtering variant calls with a trained random forest classifier,
we found that Clair performed better than Nanopolish and
Medaka, identifying 94%–98% of SNPs present in Illumina se-
quences at 100× coverage, compared to 93%–95% and 85%–

92%, respectively. Initially, Clair had the highest number of false
positive SNPs per genome (15–130, compared to 8–13 and7–28, re-
spectively). By using further filtering, requiring the proportion of

reads supporting any call to be ≥0.8, the number of false positive
SNPs could be reduced using Clair to 4–35/genome, albeit with a
reduction in SNP detection to 76%–94%. This filtering and mask-
ing approach also reduced the number of false negative SNPs from
49–289/genome to 4–19/genome, that would otherwise increase
genetic distance during phylogenetic inference. For variant detec-
tion in resistance genes specifically, Clair was able to detect all the
important SNPs with a coverage of 10× and above, whereas
Medaka missed an important SNP in the WHO X strain.

Medaka (v0.10) is still an early release experimental research
tool that is focused more on diploid variant calling and haplotype
phasing rather than the application tested here. Medaka and Clair
have the advantage of not requiring the fast5 files, which have a
huge storage and computational requirement. One limitation for
neural network–based variant callers, including Clair and
Medaka, is understanding the decisions made to call positions.
The threshold analysis workflow written here has been designed
to drop in different variant calling components to allow for testing
new variant calling options in future.

Because our Illumina data truth set pipeline only produced
SNP calls, our current variant call filtering was limited to SNPs.
Indels were not considered except for the mtrR promoter region
where a bespoke heuristic method was used. Therefore, further
work on the Illumina sequences will be needed to provide a truth
set for indel data to allow the development of robust indel calling
from Nanopore data, which may also improve with future
Nanopore pore technology.

By subsampling reads to produce artificially reduced coverage
depths, we have determined the required depth needed to accu-
rately call variants from Nanopore data: 10× fold coverage is suffi-
cient to define resistance determinants with minimal increase in
recall above 20× fold coverage.

Wewere successfully able to detect relevantN. gonorrhoeae an-
timicrobial resistance determinants conferring resistance to clini-
cally important antibiotics across all samples tested with a
coverage depth above 10×. Most variants could be detected from
appropriately filtered variant calls frommapped data, and penA al-
lele determination could be achieved using a combined assembly
and mapping approach. The WGA approach provided more geno-
mic context around the penA allele that could guarantee the allele
was from Neisseria gonorrhoeae and not a contaminating commen-
sal, whereas local gene assembly (LGA) performed better at lower
read depths. Ra was chosen as the assembler for WGA as
WTDBG2 (redbean) produced some misassembly that prevented

Table 3. Antimicrobial resistance determinant detection in clinical samples

Gene 23S gyrA mtrR pilQ ponA rpsJ

Site 2045 2597 91 95 39 45 Promoter 666 421 57
Sample Mean depth
202 20.4 A C S D A G deletion E P V
206 48.7 A C F A T G wild type E L M
250 188.3 A C S D A G deletion E P V
271 381.5 A C F A T G wild type E L M
294 37.4 A C F A T G wild type E L M
301 309.3 A C F G A G deletion E P M
303 11.7 A C F A T G deletion E L M
304 14.4 A C S D T G wild type E L M
314 325.4 A C S D A G deletion E P V
315 114.3 A C F A T G wild type E L M

Clinical sample names, average coverage depth over the entire genome, and the nucleotide base or amino acid residue detected for several important
AMR genes. Yellow highlights where the Nanopore results were not consistent with the Illumina results.

Figure 4. Recombination-corrected maximum likelihood tree of meta-
genomic Nanopore and paired Illumina isolate sequences. All Nanopore
consensus sequences were generated from metagenomic sequencing
with the exception of H18-208 and WHO Q, which were sequenced
from isolates.
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remapping of reads to the penA locus (Supplemental Fig. S10).
However, Ra failed to produce contigs for most of the attempts
when used for the LGA. It was possible to recover the four 23S
rRNA loci separately from each sample containing the expected
A2059G mutation. This was not possible using short-read
Illumina sequencing. The Nanopore read length allowed us to
span the entire gene with enough genomic context to confidently
map to each locus independently. We predict the Centrifuge and
mapping strategy will distinguish between closely related
Neisseria species commonly found in nasal pharyngeal samples.
Further sequencing of samples from these sites would be required
to empirically show this strategy works.

Our final consensus sequence comparison yielded a median
of five SNPs between Illumina and Nanopore sequences.
Although this does not match the reproducibility seen in
Illumina sequencing of isolates (De Silva et al. 2016), it is close
enough to judge whether infections are part of specific transmis-
sion clusters (De Silva et al. 2016), even if precise reconstruction
of individual transmission events may remain challenging with
Nanopore data alone. A limitation of this study was only using
the NCCP11945 reference genome. Using a reference genome
more closely related to a cluster of genomes may reduce the false
positive variant call rate to enable transmission analysis, as seen
with Illumina data (Bush et al. 2020). However, this is beyond
the scope of this analysis and will be attempted in future work
with samples from the same clusters.

The bioinformatic workflow takes ∼30 min to run. However,
the biggest bottlenecks are species classification, read binning, and
mapping. These could be optimized further, or run in real time as
shown previously (Sanderson et al. 2018), which performs these
steps as read files are produced and continuously combines the
output into a single sorted BAM file.

The current generation of ONT flow cells used in this analysis
is R9.4.1. However, newpores such as R10 are currently in develop-
ment andmay offer increased accuracy. The validation part of this
workflow should be run on new sequences generated by future
pores to set new threshold values and filtering models that are ap-
propriate to these new pore error profiles.

The approaches we have developed provide a mechanism for
determining antimicrobial resistance and undertaking transmis-
sion tracking using clinical samples. This, taken together with re-
cent advances in optimizing DNA extraction for metagenomic
Nanopore sequencing of N. gonorrhoeae direct from urine samples
(Street et al. 2020), now provides an opportunity to test the perfor-
mance of Nanopore sequencing as a clinical diagnostic inN. gonor-
rhoeae infection. Furthermore, this approach may have wide
applicability across a range of bacterial pathogens, not just N. gon-
orrhoeae,where bacterial genomes can be successfully disentangled
frommetagenomic samples withmodest sequencing read lengths.
Evaluations in clinical data sets will allow the potential utility of
our approaches to be further investigated and potentially provide
new diagnostics to guide patient and public health management
of gonorrhea.

Methods

We developed an optimized workflow to deliver several outputs
from metagenomic sequence data containing N. gonorrhoeae:
(1) classification of sequence reads by species of origin to allow
the presence/absence of N. gonorrhoeae to be determined, (2) iden-
tification of N. gonorrhoeae antimicrobial resistance determinants,

and (3) a consensus whole-genome sequence to facilitate compar-
isons between genomes for tracking transmission.

Data sources

To develop and test the performance of our workflow, we used
ONT data generated in a previous study (Street et al. 2020) from
metagenomic sequencing of N. gonorrhoeae nucleic acid amplifica-
tion test (NAAT)-negative urine samples spiked with varying con-
centrations of threeWHON. gonorrhoeae reference strains:WHO F,
WHOV, andWHOX. Sequencing was described previously (Street
et al. 2020). Briefly, samples were sequenced on FLO-MIN106D
(v.R9.4.1) flow cells using the Rapid PCR barcoding kit (SQK-
RPB004) (ONT), with modifications to the manufacturer’s proto-
col as described previously (Charalampous et al. 2019).
Additional data from ONT sequences of isolates WHO Q (Eyre
et al. 2018; Jennison et al. 2019) and H18-208 (Eyre et al. 2019)
were also used, using the same flow cells. Details of sequences
and accession numbers are given in Table 1. ONT data were com-
pared with Illumina data available for the reference strains and
clinical isolates, which were used as a gold standard together
with published descriptions of the variants present (Unemo et al.
2016; Eyre et al. 2018, 2019). Illumina data were processed as de-
scribed previously (De Silva et al. 2016; Eyre et al. 2017).

In addition, we also tested our final algorithm on 10
Nanopore metagenomic sequences from N. gonorrhoeae positive
urine samples obtained frommenwith symptomatic urethral gon-
orrhea, described previously (Street et al. 2020). Cultured isolates
from the same infections were sequenced with an Illumina
MiniSeq, following the manufacturer’s instructions, to allow for
comparisons.

Workflow

Our end-to-end workflow is written in Nextflow’s domain specific
language (Di Tommaso et al. 2017) and consists of various open
source programs and databases (Supplemental Fig. S11). A second
workflow was used to determine the thresholds needed to filter
SNPs based on input sequences, truth sequences, and the variant
caller used. Both workflows can also be found within a GitLab re-
pository (https://GitLab.com/ModernisingMedicalMicrobiology/
ngonpipe).

Base calling

Raw Nanopore reads were base called with Guppy version 3.1.5 +
781ed57 using the high accuracyHACmodels (dna_r9.4.1_450bps_
hac.cfg, template_r9.4.1_450bps_hac.jsn). Runs had single
barcodes per flow cell and so were not demultiplexed.

Read classification with centrifuge and read binning

Taxonomic classification of base-called Nanopore reads was per-
formed using Centrifuge version 1.0.4-beta (Kim et al. 2016),
with a database built from NCBI RefSeq genomes including bacte-
ria and virus genomes deposited as of August 10, 2018, as well as
the Human hg38 reference genome. Centrifuge was run with a
minimumhit length of 16 (‐‐min-hitlen 16) and reporting a single
distinct primary assignment for each read (-k 1). Reads that were
classified as, or were a strain of, N. gonorrhoeae were collected in a
separate FASTQ file using a custom Python script (bin_reads.py)
available within the GitLab repository.

Genome alignment

To reduce errors arising from reads from other species mapping to
similar genes in the N. gonorrhoeae genome, as observed in other
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metagenomic samples, for example, withMycobacterium tuberculo-
sis (Wyllie et al. 2018), only reads classified as N. gonorrhoeae were
aligned. N. gonorrhoeae reads were mapped to the NCCP11945
N. gonorrhoeae reference genome (accession NC_011035.1) using
minimap2 version 2.17-r941 (Li 2018) using settings for
Nanopore data (-ax map-ont). Aligned reads were filtered to re-
move alignments with a map quality score less than 50 and sorted
and indexed using SAMtools version 1.9 (Li et al. 2009).

Subsampling genome depth

To understand the effect of read depth on variant calling accuracy,
aligned BAM files for each of the five isolates were subsampled. A
custom wrapper script (subSampleBam.py, in the GitLab reposito-
ry) for “SAMtools view” (Li et al. 2009) was used to target 2, 5, 10,
20, 50, and 100× average coverage depths.

Variant calling

Variants were called from the aligned Nanopore reads to either
the full genome or, for variable genes, after remapping to the clos-
est available resistance gene allele from the NG-STAR database
(https://ngstar.canada.ca). Several variant callers were tested.
Nanopolish version 0.11.1 (Simpson et al. 2017) was used with
the methylation aware options (‐‐methylation-aware dcm,dam),
‐‐fix-homopolymers, and ploidy set to 1 (‐‐ploidy 1). Medaka ver-
sion v0.10.0 (https://github.com/nanoporetech/medaka) was
used with the consensus and variant subcommands. Clair
callVarBam (git commit 54c7dd4) (Luo et al. 2020) was used
with default ONT settings. Additional information was acquired
from pysamstats version 1.1.2 (https://github.com/alimanfoo/
pysamstats, pysam 0.15.2) using the variation strand (-t variation_
strand) option.

Variants identified by the variant callers were filtered based
on metrics generated by pysamstats together with Nanopolish,
Medaka, or Clair. Filtering was undertaken using a random forest
classifier, using the scikit-learn package (Pedregosa 2011), by com-
paring Nanopore variant caller outputs and “truth” data from
Illumina sequencing of the same isolate. Because the purpose of
the classifier was to filter potential variants identified by the vari-
ant caller, only these sites were used for training. However, sum-
maries of the performance of the classifier at the whole-genome
level are provided in the results. We defined true positive (TP)
SNPs as those that were called and passed by both methods, false
positive (FP) Nanopore SNPs that were not foundwith Illumina se-
quencing, and true negative (TN) sites were called as wild type by
both methods. Sites could be falsely negative (FN) by Nanopore
when an Illumina SNP was either missed by the variant caller ini-
tially or filtered out incorrectly by the random forest classifier.

To train and test the classifier, we used the Nanopore and
Illumina sequence for each of the five isolates. To include read
depth as a component of the SNP classification, the five genome
strains were subsampled to six target depths of 2, 5, 10, 20, 50,
and 100× coverage. All sites from each of the 30 subsampled
genomes were randomly divided into a 50% training and
50% validation set. Default hyperparameter values were
used. Reported performance metrics include sensitivity or recall,
Recall = TP/(TP + FN) and precision (or positive predictive value
for a variant call), Precision = TP/(TP + FP).

We considered the following additional metrics obtained us-
ing Nanopolish and pysam as input features for the classifier:
Variant quality (QUAL), Nanopolish support fraction (Support
fraction), total number of reads aligned to each position (Total
reads), proximity to the nearest variant in base pairs (proximity),
the combination of reference and variant base (baseChange), the

proportion of bases the same as the majority base (majority base
%), concordance between dominant base and the variant reported
(Top base matches variant caller), the proportion of reads in each
direction (strand bias), and proportion of reads that are indels (de-
letions %, insertions %). This was repeated for Medaka and Clair
with the exception of the Support fraction metric that is specific
to Nanopolish.

Heterozygosity in shared genes

Prokka v1.14.6 (Seemann 2014) and Roary v3.13.0 (Page et al.
2015) were used to identify shared genes between several different
species including N. gonorrhoeae (NC_002946.2), N. meningitidis
(NC_003112.2), N. lactamica (NC_014752.1), N. elongata (NZ_
CP007726.1), N. mucosa (NZ_CP020452.2), N. subflava (NZ_
CP031251.1), N. cinerea (NZ_LS483369.1), N. weaveri (NZ_LT5
71436.1), and N. zoodegmatis (NZ_LT906434.1). Genes that were
shared by two or more species with >95% identity were described
as shared genes. SNPs classified by Clair and filtered by the trained
random forest were used to visualize the difference in supporting
bases (additional data from pysamstats) between different samples
and shared gene status.

Indel detection within the mtrR promoter

Indels were detected at specific positionswithin the BAM file using
a bespoke Python script (indel_class.py, available in the GitLab re-
pository) that uses pysam (https://github.com/pysam-developers/
pysam) to count the proportion of inserted reads at a position.

Whole-genome assembly (WGA)

Binned reads were filtered for length and quality using Filtlong
commit 13504b7 (https://github.com/rrwick/Filtlong) for a mini-
mum length of 1000 bp (‐‐min_length 1000), keeping up to 90%of
bases (‐‐keep_percent 90) and using a target bases value of 500
mega bases (‐‐target_bases 500000000) as determined in previous
work on long-read assembly (De Maio et al. 2019). Filtered reads
were assembled into contigs using Ra commit 07364a1 (https
://github.com/lbcb-sci/ra) using the -x ont parameters.

Local gene assembly (LGA) and remapping for penA
characterization

For highly variable genes, that is, penA, mapping to a single refer-
ence sequence was not possible given the diversity present.
Therefore, reads containing genes of interest were identified and
isolated using minimap2 and the bin_reads.py script. These local
reads were subsequently assembled using wtdbg2 version 2.3
(Ruan and Li 2020) with a longest subread of 3 kb (-L 3000), that
is, the default setting at the time the workflow was developed. A
database of available alleles for penA was created using the alleles
available within the NG-STAR database (https://ngstar.canada
.ca). The closestmatched allele for each genewas determined using
BLASTN (Altschul et al. 1990) to search the LGA/WGAcontigs. The
closestmatchwas chosen as having >95% subject coverage and the
highest bitscore. The closest matched allele was then used as a ref-
erence to realign binned reads against, using the same mapping
and variant calling methods described above.

Neisseria gonorrhoeae antibiotic resistance determinant

identification

Following the data processing outlined above, the remaining anti-
microbial resistance determinants were identified similarly to our
previous approach (Eyre et al. 2017) developed for short-read se-
quencing of isolates. Variants in the following genes in the NG-
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STAR scheme were sought: penA, mtrR, porB, ponA, gyrA, parC, 23S
rRNA, as well as rpsJ mutations and tet family genes conferring re-
sistance to tetracycline. Amino acid changes were identified using
variant calls inVCF format converted to consensusDNA sequences
and then translated. Mutations and variants in promoter sequenc-
es were identified from the consensus DNA sequences.

For penA, exact matches with one of the alleles in the NG-
STAR database were sought (because all isolates/references se-
quenced were already in the database), but variation from these
could also be detected.

To identify mutations in each of the four copies of the 23S
rRNA genes associated with macrolide resistance, the four 23S
rRNA loci were independently examined for depth of coverage
and base changes. This is in contrast to previous approaches using
short-read data in which the different loci had to be analyzed to-
gether by mapping to a single copy of the gene (Eyre et al. 2017).

Antimicrobial resistance conferred by the presence of a specif-
ic accessory gene, for example, plasmid-associated tetM/blaTEM-1,
was identified using an assembly strategy. Readswere identified us-
ing minimap2 overlaps (-x ava-ont) of all the base-called reads
against a database of accessory gene sequences and assembled
with wtdbg2. The resulting contigs were analyzed for tetM/
blaTEM-1 sequence and known carrier plasmids for Neisseria
gonorrhoeae using BLASTN searches of the same database includ-
ing pEP5289 (GU479464), pEP5233 (GU479465), pEP5050
(GU479466) for tetM (Pachulec and van der Does 2010) and
pEM1 (HM756641.1), pGF1 (U20421), pJD5 (U20375) and pJD7
(U20419) for blaTEM-1 (Müller et al. 2011).

Phylogenetic inference

We compared phylogenetic inferences using Nanopore and
Illumina data usingwhole-genome consensus sequences produced
after filtering. To reduce the number of false positive and false neg-
ative Nanopore SNP calls, we also tested additionally masking po-
sitions (i.e., setting the base to N) where the proportion of reads
supporting the called base was less than a given threshold, for ex-
ample, 0.8. Maximum likelihood phylogenetic trees were con-
structed with IQ-TREE (v1.6.1) (Chernomor et al. 2016) and
branch lengths readjusted to account for recombination with
ClonalFrameML (v1.11-1) (Didelot andWilson 2015) using default
settings. Theworkflow used is provided within the Nextflowwork-
flow and is based on runlistcompare (https://github.com/
davideyre/runListCompare).

Data access

The Nanopore data generated in this study, including fast5 files,
have been submitted to the NCBI BioProject database (https
://www.ncbi.nlm.nih.gov/bioproject/) under accession numbers
PRJEB35173 and PRJEB26560. Illumina sequenced culture isolates
are available under accession number PRJNA603903. Data analysis
workflow is available as a Git repository (https://gitlab.com/
ModernisingMedicalMicrobiology/ngonpipe) and as Supplemen-
tal Code.
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