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Simple Summary: Ovarian cancer is a common gynecological malignancy, with the highest fatality
rate. At the time of this study, there were no available biomarkers with high sensitivity and specificity
for screening ovarian cancer. Our study provided a proteomic signature of circulating small extracel-
lular vesicles derived from the serum in ovarian cancer. The diagnostic proteomic panel constructed
for ovarian cancer may complement current clinical diagnostic measures for screening ovarian cancer
in the general population and the differential diagnosis of ovarian masses.

Abstract: Although ovarian cancer, a gynecological malignancy, has the highest fatality rate, it still
lacks highly specific biomarkers, and the differential diagnosis of ovarian masses remains difficult to
determine for gynecologists. Our study aimed to obtain ovarian cancer-specific protein candidates
from the circulating small extracellular vesicles (sEVs) and develop a protein panel for ovarian cancer
screening and differential diagnosis of ovarian masses. In our study, sEVs derived from the serum of
healthy controls and patients with cystadenoma and ovarian cancer were investigated to obtain a
cancer-specific proteomic profile. In a discovery cohort, 1119 proteins were identified, and significant
differences in the protein profiles of EVs were observed among groups. Then, 23 differentially
expressed proteins were assessed using the parallel reaction monitoring in a validation cohort.
Through univariate and multivariate logistic regression analyses, a novel model comprising three
proteins (fibrinogen gamma gene (FGG), mucin 16 (MUC16), and apolipoprotein (APOA4)) was
established to screen patients with ovarian cancer. This model exhibited an area under the receiver
operating characteristic curve (AUC) of 0.936 (95% CI, 0.888–0.984) with 92.0% sensitivity and
82.9% specificity. Another panel comprising serum CA125, sEV-APOA4, and sEV-CD5L showed
excellent performance (AUC 0.945 (95% CI, 0.890–1.000), sensitivity of 88.0%, specificity of 93.3%,
and accuracy of 89.2%) to distinguish malignancy from benign ovarian masses. Altogether, our study
provided a proteomic signature of circulating sEVs in ovarian cancer. The diagnostic proteomic panel
may complement current clinical diagnostic measures for screening ovarian cancer in the general
population and the differential diagnosis of ovarian masses.

Keywords: ovarian cancer; extracellular vesicle; proteomics; ovarian cancer screening; differential
diagnosis
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1. Introduction

Ovarian cancer is one of the most common gynecological malignancies, with 313,959 new
cases and 207,252 deaths worldwide in 2020 [1]. The high fatality rate accounts for 2.5%
of all malignancies among females, but 5% of cancer-related deaths. More than 70% of
patients are diagnosed at stage III or IV because of a lack in exhibiting typical symptoms and
effective screening. For all stages of ovarian cancer, the 5-year survival rate is approximately
46%. The 5-year survival rate is less than 20% in women diagnosed with advanced stage
(Federation of Gynecology and Obstetrics (FIGO) stage III or IV) invasive epithelial ovarian
cancer (EOC); however, it exceeds 90% for those at stage I [2]. Therefore, increasing early
ovarian cancer detection is the primary strategy to improve ovarian cancer patient survival.

Ovarian cancer is highly heterogeneous and demonstrates various molecular, patho-
logical, and other features. EOC is the most common histomorphological type and accounts
for more than 90% of ovarian cancer. Currently, transvaginal ultrasound scan (TVS), level of
serum carbohydrate antigen 125 (CA125), and pelvic examination are the most commonly
used EOC diagnostic methods [3]. Unfortunately, pelvic examination lacks objective data
standards and depends on the proficiency of the attending physician. Moreover, patients
with early disease are likely to be overlooked because of the lack of typical signs. TVS can
provide valuable information on an ovarian mass, including its size, location, composition,
morphology, and blood flow, and these features are frequently used to assess malignancy.
Although TVS has a sensitivity of more than 90% for the differential diagnosis of ovarian
masses, its performance largely depends on the skill and experience of the ultrasound
specialists [4]. Furthermore, CA125 is elevated in only about 80% of EOC and is associated
with other diseases, resulting in an unsatisfactory diagnostic performance when served as
the sole diagnostic indicator [5]. Alternative to the single current indicator, many studies
have also proposed the comprehensive model of multiple indicators for diagnosing ovarian
cancer, including the risk of malignancy index (RMI), the risk of ovarian cancer algorithm
(ROMA), and the One Variable-at-a-Time (OVAT1) [6–8]. However, the application of larger
population data demonstrated that these combined models failed to produce a more stable
and reliable diagnostic performance than a single index. Therefore, a new biomarker with
superior sensitivity and specificity is still urgently needed for ovarian cancer.

Extracellular vesicle (EV) is a generic term for particles naturally released from cells
that are delimited by a lipid bilayer and cannot replicate. Small EVs (sEVs), with a diameter
of <200 nm, are present in various bodily fluids such as blood, urine, saliva, and ascitic
fluid [9]. By delivering nucleic acids, proteins, lipids, ions, and other specific components,
sEVs participate in different pathophysiological processes to maintain cell homeostasis and
regulate intercellular communication [10]. The diverse effects mediated by tumor-derived
sEVs have gradually been discovered, including epithelial–mesenchymal transition, metas-
tasis, angiogenesis, immune regulation, cell metabolism, pre-metastasis niche formation,
and therapeutic resistance [11,12]. In addition to their role as biocommunication mediators,
the great potential of sEVs as circulating biomarkers for the diagnosis and prognosis of
various cancers has attracted considerable attention [13]. For example, in ovarian cancer,
sEVs can be isolated from the ascitic fluid and blood of patients, making them potentially
less invasive biomarkers for its diagnosis and prognosis. Moreover, microRNA (miR-200a,
miR-200b, miR-200c, and miR-373) levels in sEVs derived from the serum of EOC patient
showed diagnostic and prognostic values in a study conducted by Meng et al. [14]. Further-
more, proteins from sEVs, including claudin-4, transforming growth factor-β1 (TGF-β1),
and melanoma-associated antigen 3 and 6 (MAGE3/6), were considered as candidate
biomarkers because of their enrichment in the serum of ovarian cancer patients compared
to that in the patients with benign tumors or healthy controls [15,16]. However, these
indicators have not yet been verified with a large sample size and developed for further
clinical applications, owing to their unsatisfactory diagnostic performance or the difficulty
and poor stability in detection methods.

In this study, we performed tandem mass tag-based liquid chromatography/tandem
mass spectrometry (TMT-LC-MS/MS) analysis to obtain the proteomic profiles of sEVs de-
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rived from patients with EOC. Our study aimed to obtain cancer-specific protein candidates
in sEVs from the serum of ovarian cancer patients and develop a protein panel for ovarian
cancer screening in the general population and differential diagnosis of
ovarian masses.

2. Materials and Methods
2.1. Patients and Serum Samples

In total, 66 patients with ovarian masses (16 patients with cystadenoma and 50 patients
with ovarian cancer) and 29 healthy subjects from the first affiliated hospital of the Sun
Yat-sen University (Guangzhou, Guangdong Province, China) were enrolled in this study
conducted between January 2018 and January 2020. All human blood samples were
procured after obtaining the approval of the institutional review board of the first affiliated
hospital of Sun Yat-sen University and informed consent from all participants. The detailed
characteristics of all the participants are provided in Table S1. Whole-blood samples were
obtained in vacutainer serum blood collection tubes (BD Biosciences, Franklin Lakes, NJ,
USA) from participants who were made to fast. After coagulation, the blood samples
without hemolysis were centrifuged at 3000 rpm for 10 min at 4 ◦C to obtain serum samples.
The supernatants were aliquoted and were stored at −80 ◦C for subsequent sEVs’ isolation.

2.2. Isolation of sEVs

The serum samples were removed from storage at −80 ◦C and centrifuged at 12,000× g
for 15 min at 4 ◦C. Next, the supernatants were transferred to a new centrifuge tube
and filtered with a 0.22-µm microporous membrane. In HPLC/LC-MS/MS analysis and
targeted proteomics, 1 mL aliquots of serum were subjected to the isolation of sEVs using
commercially available qEVoriginal size-exclusion chromatography (SEC) columns (Izon
Science, Christchurch, New Zealand), according to the manufacturer’s protocol [17]. The
purified sEVs were then used immediately or stored at −80 ◦C.

2.3. Transmission Electron Microscopy (TEM)

Isolated sEVs were resuspended in 50–100 µL of 2% paraformaldehyde solution, and
5 µL of this suspension was added to the Formvar–carbon copper grip and 100 µL PBS
was added to the sealing film. The copper grid was placed on PBS drops and washed. The
copper grid was placed on a 50 µL 1% glutaraldehyde droplet for 5 min and then washed
with 100 µL double distilled water. Next, the copper grid was placed on 50 µL uranium
oxalate drops for 75 min and then placed on 50 methylcellulose drops for 10 min (placed on
ice). The excess liquid was absorbed on the filter paper and the copper grid was air-dried
for 5–10 min. Finally, the copper grid was placed in the box, and electron microscopy
photos were acquired at 80 kV.

2.4. Nanoparticle Tracking Analysis (NTA)

The particle size and concentration of sEVs were measured using NTA at Viva Cell
Biosciences with ZetaView PMX 110 (Particle Metrix, Munich, Germany) and the ZetaView
8.04.02 software. The isolated sEVs were diluted 500 times with PBS before measurement.
NTA measurements were recorded and analyzed at 11 positions. The ZetaView system was
calibrated using 110 nm polystyrene particles. Temperature was maintained between 24.41
and 25.74 ◦C. Each process was repeated thrice.

2.5. Western Blotting Analysis

Isolated sEVs from 1 mL aliquots of serum were lysed in RIPA buffer with a protease
inhibitor cocktail and quantified using a BCA protein assay reagent kit (Thermo Scientific,
Waltham, MA, USA). The protein samples were denatured at 95 ◦C for 10 min in a 5×
protein loading buffer. Equal amounts of the protein extracts were separated using 10%
SDS-PAGE and transferred onto a PVDF membrane (Millipore, MA, USA). The membranes
were blocked with 5% evaporated skimmed milk for 1 h in TBST at room temperature
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and then incubated overnight with primary antibodies against the following human pro-
teins: TSG101 (#ab125011, 1:1000 dilution, Abcam, Cambridge, UK), CD63 (#ab134045,
1:5000 dilution, Abcam, Cambridge, UK), Albumin (#GTX102419, 1:1000 dilution, GeneTex,
Irvine, CA, USA), FGG (#GTX108640, 1:5000 dilution, GeneTex, Irvine, CA, USA), MUC16
(#20077-1-AP, 1:500 dilution, Proteintech, Wuhan, China), and APOA4 (#17996-1-AP, 1:8000
dilution, Proteintech, Wuhan, China) at 4 ◦C. The membranes were then incubated with
HRP-conjugated secondary antibody for 1 h at room temperature. The protein bands
were visualized using enhanced chemiluminescence detection reagents (Thermo Scientific)
following the manufacturer’s instructions.

2.6. Protein Extraction and Digestion

For protein lysis, an 8 M urea and 1% protease inhibitor cocktail was added to the
sEVs, followed by sonication thrice on ice using a high-intensity ultrasonic processor.
Subsequently, the protein concentration was determined using the BCA kit, following the
manufacturer’s instructions. For digestion, the protein solution was reduced with 5 mM
dithiothreitol for 30 min at 56 ◦C and alkylated with 11 mM iodoacetamide for 15 min at
room temperature in the dark. The protein sample was then diluted by adding 100 mM
TEAB to achieve a urea concentration less than 2 M. Finally, trypsin was added at a 1:50
trypsin-to-protein mass ratio for the first digestion overnight and a 1:100 trypsin-to-protein
mass ratio for the second 4 h digestion.

2.7. Tandem Mass Tag (TMT) Labeling, HPLC Fractionation, and LC-MS/MS Analysis

After trypsin digestion, the peptide was desalted using Strata X C18 SPE column
(Phenomenex Inc., Torrance, CA, USA) and vacuum dried. Based on the results of peptides’
quantification, the least number of peptides, 14 µg peptides, were sampled for labeling.
The peptide was reconstituted in 0.5 M TEAB and processed following the manufacturer’s
protocol for the TMT kit, and 2 µg peptides were sampled from each sample and mixed
as MIX samples. After thorough mixing, 14 µg peptides were sampled from the MIX
samples. Following the standardized quality inspection, the labeled samples of each group
were mixed and subjected to HPLC fractionation. The tryptic peptides were fractionated
using high pH reverse-phase HPLC using Agilent 300Extend C18 column. The peptides
were subjected to the NSI source followed by tandem mass spectrometry (MS/MS) in Q
ExactiveTM Plus (Thermo Scientific), coupled online to the UPLC. The resulting MS/MS
data were processed using the MaxQuant search engine (v.1.5.2.8) (Max-Planck Institute
of Biochemistry, Munich, Germany). Tandem mass spectra were searched against the
SwissProt human database concatenated with a reverse decoy database.

2.8. Targeted Proteomics

For the validation study, sEVs isolated from 1 mL aliquots of serum were lysed and
digested, as described above. After digestion, the peptides were quantified. Then, 1.5 µg
peptides from each sample were analyzed with LC-MS operated using the parallel reaction
monitoring (PRM) acquisition scheme, a targeted proteomics technique based on high-
resolution and high-precision mass spectrometry. Finally, the resulting MS data were
processed using Skyline (v.3.6) (MacCoss Lab Software, University of Washington, Seattle,
WA, USA).

2.9. Bioinformatic Analysis

The software used for the bioinformatics analysis is listed in Table S2. Gene ontology
(GO) annotation proteome was derived from the UniProt–GOA database. Proteins were
classified into three GO annotation categories: biological process, cellular compartment,
and molecular function. For each category, a two-tailed Fisher’s exact test was employed to
test the enrichment of the differentially expressed proteins against all identified proteins.
The GO term with an adjusted p-value < 0.05 was considered significant [18]. The reactome
pathway database was used to identify enriched pathways using a two-tailed Fisher’s
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exact test for differentially expressed protein. The pathway with an adjusted p-value < 0.05
was considered significant. Finally, the STRING database was used for protein–protein
interaction (PPI) network analysis. The medium confidence was set as 0.4, and line thickness
indicated the strength of data support.

2.10. Statistical Analyses

All statistical analyses were performed using the R version 4.1.3 (available online:
https://www.R-project.org/ (accessed on 10 March 2022)) and SPSS 25.0 (SPSS Inc.,
Chicago, IL, USA). Continuous variables are described in terms of medians (interquartile
range (IQR)). Group differences in protein expression were analyzed using the two-tailed
t-test. ROC curve analyses were employed to assess the diagnostic efficacy. Univariate
and multivariate logistic regression analyses were used to develop a diagnostic model.
Estimates were presented as odds ratios (ORs) and 95% confidence intervals (CIs). All
significance tests were two-tailed and conducted at a p-value < 0.05.

3. Results
3.1. General Experimental Design and Clinical Synopsis

A method based on proteomic analysis was designed to obtain a comprehensive un-
derstanding of the proteins present in the sEVs derived from the serum of patients with
ovarian cancer, as shown in Figure 1. In the discovery study, nine patients with ovarian can-
cer (Ca group), nine patients with cystadenoma (a representative of benign ovarian tumor,
Cys group), and nine healthy controls (HC group) were enrolled (Table S1). In addition,
50 patients with ovarian cancer, 15 patients with cystadenoma, and 20 healthy controls
were enrolled in the validation cohort. Of the 50 ovarian cancer patients, the pathological
stages were distributed as follows: stage I in 12 patients, stage II in 2 patients, stage III in
25 patients, and stage IV in 11 patients (Table S1). Participants in the discovery cohort were
included in the validation cohort, except for one patient with cystadenoma, because the
serum sample was not sufficient for subsequent analyses. Thus, in the validation study, the
Cys group included six patients with serous cystadenoma and ten patients with mucinous
cystadenoma; the Ca group included 30 patients with serous carcinoma, two patients with
mucinous carcinoma, four patients with endometrioid carcinoma, nine patients with clear
cell carcinomas, and five EOCs with undefined pathological type.

3.2. Isolation and Identification of sEVs

SEC isolated sEVs from the serum samples of healthy controls and patients with
ovarian cancer or cystadenoma. Then, sEVs were characterized using NTA, TEM, and
immunoblotting. TEM analysis displayed round or ellipsoidal shaped, lipid layer-enclosed
vesicles ranging 80–200 nm in diameter (Figure 2A). NTA revealed that the average size of
the purified sEVs was 176.4 ± 2.9 nm, and the primary peak size was at 120 nm (Figure 2B).
Moreover, western blotting showed that sEVs’ markers (CD63 and TSG101) were abun-
dantly expressed, and the main contaminant of serum (Albumin) was rarely expressed
in sEVs compared to that in the serum (Figure 2C). Though there were no significant
differences in the protein concentrations of sEVs between HC, Cys, and Ca groups, the
concentration of the proteins expressed in the Ca group showed a slight increase compared
to that of the other two groups (Figure 2D). These results demonstrated that we isolated
and purified sEVs from clinical serum samples successfully.

https://www.R-project.org/
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Figure 1. The overall design and flow chart to obtain protein profiles of serum sEVs for ovarian
cancer and establish novel diagnostic models. In the discovery study, nine patients with ovarian
cancer or cystadenoma and nine healthy controls were enrolled. Isolated sEVs were subjected to TMT
labeling LC-MS/MS analysis. PRM was used to further assess candidate biomarkers in a validation
cohort composed of 50 patients with ovarian cancer, 15 patients with cystadenoma, and 20 healthy
controls. Through ROC analyses, logistic regression analyses and a multistage refinement, novel
diagnostic models were constructed for the purpose of ovarian cancer screening in a population or
differential diagnosis between ovarian cancer and cystadenoma.
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3.3. Proteomic Profiles of sEVs

In the present study, 1119 proteins were identified in the TMT-based proteomic analysis
of sEVs, among which 996 proteins were available for quantification analysis (Figure S1A
and Table S3). Compared to those known vesicular proteins in the Exocarta and Vesiclepedia
databases, 85.8% (855/996) proteins were found in previously published data, including the
canonical sEVs biomarkers CD9, CD81, CD63, TSG101, flotillin, and syntenin (Figure 3A).
With WoLF PSORT software, we found that these proteins were mainly located in the
extracellular region (41%), cytoplasm (22%), and plasma membrane (12%) (Figure 3B). To
identify the DEPs among the three groups of sEVs, we set the fold change of differential
expression as >1.2 and p-value < 0.05. Compared to the HC group, the sEVs derived from
the Ca group had 201 DEPs, comprising 123 upregulated proteins and 78 downregulated
proteins (Table S4). In the Cys group versus HC group, there were 148 DEPs, comprising
99 upregulated proteins and 49 downregulated proteins (Table S5). Moreover, 90 DEPs
comprising 43 upregulated proteins and 47 downregulated proteins were found in sEVs of
the Ca group compared to the Cys group (Figure S1B and Table S6). To better meet the need
for liquid biopsy and early diagnosis of ovarian cancer, it is important to identify biomarkers
that can distinguish patients with ovarian cancer from patients with benign ovarian tumors
and healthy controls. Therefore, we intersected the DEPs of the Ca versus HC group and
the DEPs of the Ca versus Cys group to obtain 42 potential candidate protein markers,
comprising 20 upregulated proteins and 22 downregulated proteins (Tables 1 and 2 and
Figure 3C,D). Altogether, we successfully identified a series of potential biomarkers of
ovarian cancer in the discovery cohort.
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Table 1. The upregulated DEPs existed in both Ca/Cys group and Ca/HC group (>1.2 fold).

No. Protein Accession Protein Description Gene Name Ca/(Cys + HC) Ratio

1 Q96T88 Ubiquitin-like with PHD and ringer finger
domains 1 UHRF1 3.79

2 P02042 Hemoglobin subunit delta HBD 1.81
3 Q86UP2 Kinectin 1 KTN1 2.30
4 Q9UEW3 Macrophage receptor with collagenous structure MARCO 1.22
5 Q06033 Inter-alpha-trypsin inhibitor heavy chain 3 ITIH3 1.60
6 P05164 Myeloperoxidase MPO 1.71
7 P49281 Solute carrier family 11 member 2 SLC11A2 5.81
8 P02679 Fibrinogen gamma chain FGG 2.73
9 P01031 Complement C5 C5 1.39
10 P02675 Fibrinogen beta chain FGB 2.30
11 P02741 C-reactive protein CRP 6.00
12 P01011 Serpin family A member 3 SERPINA3 1.33
13 P12259 Coagulation factor V F5 1.27
14 Q8WXI7 Mucin-16 MUC16 * 2.69
15 P69892 Hemoglobin subunit gamma-2 HBG2 2.02
16 P02671 Fibrinogen alpha chain FGA 2.14
17 Q9UPN9 Tripartite motif containing 33 TRIM33 1.80
18 P68871 Hemoglobin subunit beta HBB 1.96
19 P00738 Haptoglobin HP 2.63
20 Q08830 Fibrinogen-like protein 1 FGL1 2.45

* Also known as CA125. Generally, CA125 is determined by ELISA kits, and the CA125 levels in this study are
examined by immunoassay in clinical practice. In our study, CA125 levels were measured by mass spectrometry.
We defined CA125 in EV as MUC16 to differentiate it from CA125 in serum.

Table 2. The downregulated DEPs existed in both Ca/Cys group and Ca/HC group (<1/1.2 fold).

No. Protein Accession Protein Description Gene Name OVCa/BT + HC Ratio

1 P01019 Angiotensinogen AGT 0.67
2 P61626 Lysozyme C LYZ 0.75
3 P55157 Microsomal triglyceride transfer protein MTTP 0.41
4 Q04756 Hepatocyte growth factor activator HGFAC 0.79
5 P08648 Integrin alpha-5 ITGA5 0.71
6 P02749 Apolipoprotein H APOH 0.69
7 P06310 Immunoglobulin kappa variable 2-30 IGKV2-30 0.50
8 O00139 Kinesin family member 2A KIF2A 0.59
9 Q6NUP7 Protein phosphatase 4 regulatory subunit 4 PPP4R4 0.51
10 O14791 Apolipoprotein L1 APOL1 0.65
11 P49747 Cartilage oligomeric matrix protein COMP 0.78
12 P00488 Coagulation factor XIII A chain F13A1 0.63
13 P06396 Gelsolin GSN 0.80
14 P01766 Immunoglobulin heavy variable 3-13 IGHV3-13 0.70
15 A0A0J9YX35 Immunoglobulin heavy variable 3-64D IGHV3-64D 0.59
16 Q9BUN1 Chromosome 1 open reading frame 56 MENT 0.69
17 P06727 Apolipoprotein A-IV APOA4 0.47
18 Q16610 Extracellular matrix protein 1 ECM1 0.63
19 P02768 Albumin ALB 0.61
20 P21741 Midkine MDK 0.60

21 Q8N2S1 Latent-transforming growth factor beta-binding
protein 4 LTBP4 0.79

22 P05154 Serpin family A member 5 SERPINA5 0.62

3.4. Functional Enrichment of DEPs

To provide insights into the biological functions mediated by proteins within sEVs
in the pathogenesis of ovarian cancer, 42 DEPs identified above were subjected to GO
analysis. The enriched biological processes included the response to stress (detoxification
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and hemostasis), localization, cell adhesion, coagulation, secretion (exocytosis and vesicle-
mediated transport), defense response (innate immune response), and lipid transport. The
blood microparticle, extracellular space, fibrinogen complex, and secretory vesicle consti-
tuted the main cellular components of DEPs. In addition, molecular function annotations
included antioxidant activity, metal ion binding, transporter activity, enzyme regulator
activity, and cytokine receptor binding were closely involved among the DEPs (Figure 4A).
Based on the REACTOME pathway analyses, the DEPs were enriched in 10 significant
signaling pathways, including common pathways of fibrin clot formation, MAPK signaling,
integrin signaling, platelet degranulation, and complement activation (Figure 4B). A PPI
network was constructed using the STRING database to explore the potential interactions
among the 42 DEPs (Figure 4C). Overall, through functional enrichment analyses, we found
that the DEPs were involved in the secretion and transportation of the vesicle, the cellular
signal transduction, coagulation, and complement activation, implying that circulating sEV
proteins derived from patients with ovarian cancer probably actively participate in the
regulation of cellular homeostasis, immune response, and tumor growth.
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Figure 4. Functional enrichment of DEPs. (A) Functional classification chart of DEPs under three GO
categories (biological process, cellular component, and molecular function). The yellow wavy line
represented the number of proteins enriched to each function, and the bar chart represents the values
of statistical p-values enriched by each function after LOG10 conversion. (B) The above 42 DEPs were
included in KEGG pathways analysis; the horizontal axis represents the values of fold change by each
pathway after LOG2 conversion, the colored scale bar represents the values of statistical p-values
enriched by each function after LOG10 conversion, and the black circles represent the number of
proteins enriched to each pathway. (C) The protein interaction network of DEPs. Protein-to-protein
connections were shown in solid lines, and line thickness indicated the strength of data support. The
medium confidence was 0.40.
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3.5. Biomarkers Validation by Targeted Proteomics

We used a multistage refinement workflow for biomarker selection based on the stable
expression and functional specificity of proteins (Figure 5A). Based on the robust MS signals
and confident quantitation data, a final list of 23 proteins was selected for further validation
in an additional cohort comprising 20 healthy controls, 15 patients with cystadenoma,
and 50 patients with ovarian cancer (Tables S1 and S7). We used median-throughput
MS to quantify dozens of protein candidates under the PRM acquisition scheme. The
PRM-based targeted proteomics measured 44 tryptic peptides containing unique sequences
from 23 protein candidates, among which 22 proteins exhibited reliable and quantitative
data across the validation cohort (Table S8). In addition, the expression profiles revealed
significant intergroup differences (Figure 5B). Among these protein candidates, we further
screened out 14 potential proteins, comprising 11 upregulated proteins (FGA, FGB, FGG,
FGL1, C9, OLFM4, ITIH3, MUC16, HBD, DEFA3, and MPO) and 3 downregulated proteins
(APOL1, APOA4, and CD5L), according to the consistency of results in the discovery cohort
and the validation cohort. The overall principal component analysis (PCA) model based on
these 14 protein candidates demonstrated clear separation between the Ca and HC/Cys
groups (Figure 5C). These results suggest that there is a protein profile with high specificity
in the serum sEVs of patients with ovarian cancer, which could distinguish patients with
ovarian cancer from healthy controls and patients with ovarian cystadenoma.
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processes of narrowing the potential candidates and, finally, establishing a diagnostic model. The
orange funnel-shaped picture in the left column represents the process of step-by-step screening of
protein candidates, and the numbers inside represent the number of proteins in each step. The middle
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column represents the performed screening conditions, and the right column represents the cor-
responding data tables. (B) Heatmap of relative abundance of 14 candidate proteins using PRM
approach. Colored red represents an increasing trend, colored blue represents a decreasing trend, and
the right scale bar represents the fold change of the relative quantitation data. (C) PCA plot based on
the quantification of 14 proteins based on PRM. The multi-dimensional variables are reduced by the
statistical method of PCA and converted into two-dimensional variables with high precision.

3.6. Development of a Protein Panel for Liquid Biopsy of Ovarian Cancer

The 14 proteins selected above were individually subject to ROC analysis to eval-
uate their performance to distinguish patients with ovarian cancer from patients with
cystadenoma or healthy controls. At this step, eight proteins, comprising six upregulated
proteins and two downregulated proteins, were found to have potential diagnostic value
(AUC > 0.7) for ovarian cancer (Figure 6A and Table 3). They were involved with the
coagulation system (FGA, FGB, FGG, and FGL1), lipid metabolism/transport (APOL1 and
APOA4), and protein binding (ITIH3 and MUC16). Univariate logistic regression analysis
revealed that the selected six upregulated proteins were risk factors, and two downregu-
lated protein biomarkers were protective factors for patients with ovarian cancer (Table 4).
Subsequently, to construct the most simplified model without significant loss of AUC, the
diagnostic model was constructed based on the multivariate logistic regression analysis
using the stepwise (LR) method (variable was entered if p < 0.05 and removed if p > 0.1).
Finally, a diagnostic model comprising three proteins (FGG, MUC16, and APOA4) was
developed (Table 5). Based on the multivariable logistic regression analysis, a diagnostic
equation was built as follows: LogitP = 2.481 × FGG + 8.970 × MUC16 − 1.709 × APOA4
− 0.184. ROC analysis revealed that the AUC of the diagnostic model was 0.936 (95%
CI, 0.888–0.984), with a sensitivity of 92.0% and a specificity of 82.9%, at the cut-off point
of 0.40 (Figure 6B and Table 6). This model exhibits excellent diagnostic performance in
advanced ovarian cancer or serous ovarian cancer (Figure S2). It also showed advantages
in identifying the relatively rare types of ovarian cancer, such as clear cell carcinoma and
endometrioid carcinoma, compared to the serum CA125 level (Figure S2). Moreover, the
model yielded an AUC of 0.820 (95%CI, 0.699–0.941), with 71.4% sensitivity and 82.9%
specificity in patients with early stage (FIGO stage I and II) ovarian cancer (Figure 6C,
Tables 6 and S9). In addition, western blot analysis of the three selected sEVs proteins
showed consistent results with the targeted proteomics, which indicated that our proteomic
analysis was reliable (Figure S3). Taken together, the three-protein panel established here
had an excellent diagnostic performance to identify ovarian cancer in a population.

Table 3. Area under the ROC curve of proteins for diagnosis of ovarian cancer.

Proteins AUC p-Value
95% Confidence Interval (CI)

Lower Bound Upper Bound

FGA 0.814 <0.001 0.717 0.910
FGB 0.856 <0.001 0.774 0.938
FGG 0.879 <0.001 0.808 0.951
FGL1 0.741 <0.001 0.635 0.846

C9 0.698 0.002 0.582 0.815
OLFM4 0.638 0.031 0.519 0.757
ITIH3 0.783 <0.001 0.683 0.883

MUC16 0.807 <0.001 0.716 0.898
HBD 0.629 0.045 0.507 0.750

DEFA3 0.670 0.008 0.553 0.787
MPO 0.579 0.218 0.457 0.700

APOL1 0.744 <0.001 0.640 0.848
APOA4 0.746 <0.001 0.643 0.850
CD5L 0.673 0.007 0.558 0.788
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Figure 6. Development of a protein panel for liquid biopsy of ovarian cancer. (A) Scatter plots of
quantitative comparisons between the Ca group and the HC/Cys group for indicators with potential
diagnostic value for ovarian cancer. The blue circles represent relative quantification values for
cystadenomas and healthy controls. Green boxes represent relative quantification values for ovarian
cancer patients. * p < 0.05, ** p < 0.01, *** p < 0.001. (B) ROC analysis of the novel model to diagnose
ovarian cancer in a general population. Multivariate logistic regression analysis was performed in
all patients to establish a screening diagnostic model followed by receiver operating curve analysis.
(C) ROC analysis of the novel diagnostic model to diagnose early-stage ovarian cancer.

Table 4. Univariate logistic regression analysis for the prediction of ovarian cancer.

Univariate Analysis

Parameters OR (95%CI) p-Value

FGA 5.04 (1.80–14.09) 0.002
FGB 9.10 (2.79–29.74) <0.001
FGG 22.48 (4.61–109.51) <0.001
FGL1 3.26 (1.37–7.74) 0.007
ITIH3 4.03 (1.72–9.44) 0.001

MUC16 595.52 (4.53–9038.36) 0.01
APOL1 0.170 (0.06–0.48) 0.001
APOA4 0.195 (0.08–0.49) 0.001

Table 5. The 3-proteins logistic regression model for ovarian cancer diagnosis.

Proteins Functions
Multivariate Analysis

Coef. p-Value

FGG Blood coagulation cascade, platelet
activation 2.481 0.005

MUC16 Cell adhesion, up-regulated in ovarian
cancer cells 8.970 0.037

APOA4 Chylomicrons and VLDL secretion and
catabolism Lipid transporter activity −1.709 0.014

constant −0.184 0.801
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Table 6. Area under the ROC curve of the 3-proteins diagnostic panel in validation cohort.

Validation Cohort Validation Cohort with Early Stage

Cut-Off AUC (95%CI) SN (%) SP (%) AUC (95%CI) SN (%) SP (%)

3-proteins model 0.40 0.936 (0.888–0.984) 92.0 82.9 0.820 (0.699–0.941) 71.4 82.9

SN, sensitivity; SP, specificity.

3.7. Development of a Novel Model for Differential Diagnosis between Ovarian Cancer and
Ovarian Cystadenoma

When an ovarian tumor presents some ambiguous characteristics, the differential
diagnosis between cystadenoma and ovarian cancer is essential for therapy. In ROC
analysis, eight protein candidates (FGB, FGG, FGL1, MUC16, MPO, APOL1, APOA4, and
CD5L) with AUC > 0.65 were subjected to univariate logistic regression analysis. Then,
we selected six parameters (FGB, FGG, MUC16, APOL1, APOA4, and CD5L) based on the
statistical p-value and our experience (Tables S10 and S11) for the subsequent multivariate
logistic regression analysis. We used the stepwise (LR) method as described before to
establish a novel model for accurately identifying ovarian cancer in the presence of a
definite ovarian mass suspected to be ovarian cancer or ovarian cystadenoma. Finally, a
diagnostic model comprising three proteins (MUC16, APOA4, and CD5L) was developed
(Figure 7A and Table 7). The diagnostic equation was as follows: LogitP = 9.468 × MUC16
− 1.887 × APOA4 − 3.260 × CD5L + 4.961. ROC analysis revealed that the AUC of the
diagnostic model was 0.915 (95% CI, 0.847–0.983), with a sensitivity of 80.0%, specificity
of 93.3%, and accuracy of 83.1% (Table 8). The CA125 level in serum (serumCA125)
exhibited similar diagnostic performance in terms of AUC, sensitivity, specificity, and
accuracy in ROC analyses (Figure 7A and Table 8). Once serumCA125 was incorporated
in the multivariate logistic regression analysis, a novel model (equation: LogitP = 0.009 ×
serumCA125 − 1.253 × APOA4 − 1.592 × CD5L + 2.348) was developed with serumCA125,
APOA4, and CD5L using the LR method (Table 7). The new integrative model showed an
AUC of 0.945 (95% CI, 0.890–1.000), sensitivity of 88.0%, specificity of 93.3%, and accuracy of
89.2% (Figure 7A and Table 8). Compared with the single index of serumCA125 in ovarian
cancer at early stages (FIGO stage I + II), the AUC of this model was only slightly increased
(0.867 (95% CI, 0.733–1.000) versus 0.843 (95% CI, 0.701–0.985)), whereas the sensitivity,
specificity, and accuracy of this model were significantly improved (Figure 7B and Table 9).
Altogether, the model displayed excellent performance for differential diagnosis between
ovarian cancer and ovarian cystadenoma and showed better early-stage ovarian cancer
(FIGO I + II) recognition than serumCA125 alone.

Table 7. The logistic regression model for differential diagnosis of ovarian masses.

Proteins
Multivariate Analysis

Variables
Multivariate Analysis

Coef. p-Value Coef. p-Value

MUC16 9.468 0.041 serumCA125 0.009 0.060
CD5L −3.260 0.005 CD5L −1.592 0.122

APOA4 −1.887 0.030 APOA4 −1.253 0.175
constant 4.961 0.002 constant 2.348 0.153

Table 8. The evaluation indicators of the differential models in patients with ovarian masses.

Cut-Off SN (%) SP (%) Accuracy (%)

MUC16 + CD5L + APOA4 0.79 80.0 93.3 83.1
serumCA125 35 84.0 86.7 84.6

serumCA125 + CD5L + APOA4 0.58 88.0 93.3 89.2
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Table 9. The evaluation indicators of the model for diagnosis of ovarian cancer at early stages.

Cut-Off SN (%) SP (%) Accuracy (%)

serumCA125 35 57.1 86.7 72.4
serumCA125 + CD5L + APOA4 0.58 71.4 93.3 82.8
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Variables 
Multivariate Analysis 

Coef.  p‐Value  Coef.  p‐Value 

MUC16  9.468  0.041  serumCA125  0.009  0.060 

CD5L  −3.260  0.005  CD5L  −1.592  0.122 

APOA4  −1.887  0.030  APOA4  −1.253  0.175 

constant  4.961  0.002  constant  2.348  0.153 

Table 8. The evaluation indicators of the differential models in patients with ovarian masses. 

  Cut‐Off  SN (%)  SP (%)  Accuracy (%) 

MUC16 + CD5L + APOA4  0.79  80.0  93.3  83.1 

serumCA125  35  84.0  86.7  84.6 

serumCA125 + CD5L + APOA4  0.58  88.0  93.3  89.2 

Figure 7. Development of a novel model for differential diagnosis between ovarian cancer and
ovarian cystadenoma. (A) ROC analyses of serumCA125, a panel comprising MUC16, CD5L, and
APOA4 in sEVs, and a panel comprising serumCA125, CD5L, and APOA4 in sEVs. The protein
biomarkers in sEVs and serum CA125, or their combination to establish a diagnostic model, analyze
their performance in the differential diagnosis of cystadenoma and ovarian cancer. (B) Comparison of
serumCA125 and the novel panel comprising serumCA125, CD5L, and APOA4 in sEVs for patients
with early-stage ovarian cancer.

4. Discussion

In the present study, we performed TMT-based LC-MS/MS analysis to obtain the
proteomic profiles of serum sEVs for EOC. Potential biomarkers were identified and further
validated via a targeted proteomic approach. A panel composed of three proteins (FGG,
MUC16, and APOA4) in serum sEVs showed remarkable performance for ovarian cancer
screening in populations. Moreover, a novel panel integrated with serum CA125, sEV-
CD5L, and sEV-APOA4 showed potential value for the differential diagnosis between
ovarian cancer and ovarian cystadenoma, even at their early stages.

Recently, great advances have been made in ovarian cancer screening and prevention,
including the use of tailored prevention and screening methods that combine genetic
and epidemiological factors to predict the individual risk of ovarian cancer [19,20]. No
definitive mortality reduction was reported for screening compared with no screening until
now, suggesting that there is a need to find screening strategies better than CA125 that are
noninvasive, simple, and specific for detecting ovarian cancer, especially in its early stage.
By far, a major focus of ovarian cancer biomarker discovery is tumor-specific biomarkers
in plasma. Examination of various information on tumor cells in the blood represents the
new diagnostic tool, namely, liquid biopsy, which quickly identifies biological behaviors of
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cancer cells, including cell death, clonal evolution, and drug resistance [21,22]. Although
many potential benefits of circulating tumor cells (CTCs) have been demonstrated in
ovarian cancer patients, the major challenge is processing and analyzing CTCs [23]. In
the study conducted by Shao, cell-free DNA carried genetic and epigenetic changes that
mimic tumor cells and may be used as a tumor-specific biomarker with higher sensitivity
and specificity than CA125 [24]. Inconsistent results have been demonstrated for cfmiRNA
in the diagnosis of cancers, which may be attributed to difficulties in sample collection,
processing, and RNA stability and quantification, limiting the opportunity to use cfmiRNA
as a promising cancer biomarker [25]. EVs provide a protective environment for miRNAs
against RNase destruction and are, therefore, considered promising targets for liquid
biopsies [26]. Moreover, typical characteristics of sEVs such as size, appearance, specific
biomarkers, circulation stability, and the wide availability of sEV isolation kits make it a
more suitable target for liquid biopsy than others.

In ovarian cancer, protein and miRNA are the main objects of sEV components con-
sidered as biomarkers for diagnosis and/or prognosis and are closely correlated to drug
resistance, tumor microenvironment, and immune regulation [27]. We established a three-
protein model for liquid biopsy for ovarian cancer with minimal loss of diagnostic efficacy,
which showed good diagnostic efficacy even in the early-stage disease. In addition to
early diagnosis, differential diagnosis of ovarian masses is also an important reference
for preoperative therapeutic options [28]. Elevated CA125 level is associated with other
conditions besides ovarian cancer, indicating that the differential diagnosis of benign and
malignant ovarian tumors is still worth further optimization [29]. For this purpose, we
also established a three-protein panel whose performance is comparable to CA125 using
tumor-specific sEVs proteomics. Once serumCA125 was included in the protein candidates,
a new integrative model with improved sensitivity and accuracy was generated, with
APOA4, CD5L, and serumCA125 replacing sEV-MUC16. This may be due to the poor en-
capsulation of MUC16 as a macromolecule in sEVs and the limitations of detection methods.
Importantly, this new integrated model still has superior AUC, sensitivity, specificity, and
accuracy in the differential diagnosis between early-stage ovarian cancer and cystadenoma.

As mediators of cellular communication, sEVs may play the same role in similar
biological behaviors of different types of cancer. For example, ALCAM/CD166 mediates
the docking and uptake of cancer cell derived EVs and promotes the peritoneal metastasis
cascade in colorectal cancer and ovarian cancer [30]. For diagnosis of cancer, biomarkers
often contain the characteristic information of different cancer types. A recent study trying
to diagnose multiple types of early-stage cancer isolated and purified EVs in plasma to
determine the levels of potential protein markers by immunoassay. By utilizing artificial in-
telligence, 13 EV protein markers were analyzed to predict the likelihood of malignancy [31].
CA19-9 is commonly used to monitor the therapeutic efficacy and recurrence of pancre-
atic cancer. The novel diagnostic method contains CA19-9 and has excellent diagnostic
performance for early-stage pancreatic cancer (95.7% detection rate), while detection of
early-stage ovarian cancer and bladder cancer were 74.4% and 43.8% [31], suggesting the
importance of characteristic biomarkers for diagnosing specific cancer type. The novel
diagnostic protein panel in our study included CA125, a specific marker for ovarian cancer,
and its performance in diagnosing ovarian cancer including their early-stage disease and
discriminating between benign and malignant ovarian tumors in the population was more
effective than CA125. Aiming at identification of sEV proteins as diagnostic biomarkers for
ovarian cancer, early studies have shown that some proteins from EVs such as claudin-4,
TGF-β1 and MAGE3/6 may have certain diagnostic value in ovarian cancer [15,16], but no
further demonstration was made in a larger population sample. A recent study utilized
mass spectrometry to detect the specific protein profiles in serum exosomes of ovarian
cancer and revealed that the coagulation pathway was significantly enriched and that those
cascade-related proteins present diagnostic and prognostic values [32]. Our study also
discovers relevant changes in the coagulation pathway, and our conclusions are more con-
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vincing because of the larger sample size, the stringent controls, an integrative multi-index
model to optimize diagnostic performance, and the validation using targeted proteomics.

Circulating proteins within sEVs carry tumor-specific signals and communicate ex-
tensively with tissues throughout the body, thus mediating important events in tumor
growth, cancer-associated microenvironment, and tumor evolution [33]. The elucidation
of the signaling network can provide new perspectives for the treatment of ovarian can-
cer. Among the biomarker candidates we screened, MUC16 has been proposed to exert
roles in the innate defense of tracheal epithelium or the immune microenvironment of
cancer [34]. The FGG gene encodes the gamma chain of fibrinogen, a major component of
blood clots, which promotes coagulation. Furthermore, fibrinogen has also been related
to leukocyte migration, phagocytosis of microorganisms, tumor growth and metastasis,
chemoresistance, and epithelial-mesenchymal transition [35–38]. APOA4 is not only a
lipid-binding protein, but also has a role in the immune response [39,40]. Our model not
only reflects the key role of CA125 for diagnosing ovarian cancer, but also suggests that the
occurrence and development of ovarian cancer may be accompanied by the remodeling of
cellular lipid metabolism and the complex interaction between the tumor and their hosts’
immune system [41–44]. These findings suggest that these proteins within sEVs found in
our study can serve as diagnostic markers for ovarian cancer and provide new perspectives
for therapeutic research on ovarian cancer. However, the specific molecular mechanism and
the functional roles of sEVs still need to be further studied, complementing the limitations
of the current study. The sample size of the study was limited, and more patients should
be included to reduce bias and prove the universality of the model. Moreover, it is our
next research plan to establish a standardized process for detection of multiple indicators
through ELISA and perform integrative analyses of quantitative data. Until now, more
research is still needed to collect sufficient serum samples and establish a more robust
testing process.

5. Conclusions

In summary, we have developed a novel diagnostic panel for ovarian cancer screening
and differential diagnosis between benign and malignant ovarian masses based on the
proteomic profiles study of serum sEVs. The model has shown robust performance in
ovarian cancer, even at the early stage, supplementing the current clinical diagnostic
measures and providing a new idea and strategy for diagnosing ovarian cancer.
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