18119 measured reflections

 $R_{\rm int} = 0.026$

4866 independent reflections

4035 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E,2'E)-1,1'-Bis(6-chloro-2-methyl-4phenylauinolin-3-yl)-3.3'-(1.4-phenylene)diprop-2-en-1-one ethyl acetate disolvate

Allaoua Kediadia,^a Rachid Merdes,^a Sofiane Bouacida,^b*‡ Thierry Roisnel^c and Ali Belfaitah^d

^aLaboratoire de Chimie Appliquée, Faculté des Sciences, Université de Guelma 24000, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, ^cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and ^dLaboratoire des Produits Naturels, d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria Correspondence e-mail: bouacida_sofiane@yahoo.fr

Received 28 November 2012; accepted 2 December 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.140; data-to-parameter ratio = 17.2.

In the title solvate, $C_{44}H_{30}Cl_2N_2O_2 \cdot 2C_4H_8O_2$, the complete polycyclic molecule is generated by inversion symmetry. The dihedral angle between the quinolyl ring system (Q; r.m.s. deviation = 0.020 Å) and the pendant phenyl ring is 78.80 (6) $^{\circ}$; the dihedral angle between Q and the central benzene ring is $85.92 (7)^{\circ}$. In the crystal, the components are linked by C- $H \cdots O$ and $C - H \cdots \pi$ interactions, generating (110) layers. Weak aromatic π - π stacking [centroid-centroid distances = 3.7025 (11) and 3.8124 (10) Å] is also observed.

Related literature

For our previous studies in the area of potentially bioactive molecules, see: Menasra et al. (2005); Kedjadja et al. (2004). For further synthetic details, see: Wang et al. (2006).

Experimental

Crystal data

 $C_{44}H_{30}Cl_2N_2O_2 \cdot 2C_4H_8O_2$ $\gamma = 95.290 \ (2)^{\circ}$ V = 1092.94 (5) Å³ $M_r = 865.81$ Triclinic, P1 Z = 1a = 9.9851 (3) Å Mo $K\alpha$ radiation b = 10.0086 (2) Å $\mu = 0.20 \text{ mm}^{-1}$ c = 11.3676 (3) Å T = 150 K $\alpha = 102.350 \ (1)^{\circ}$ $0.25 \times 0.15 \times 0.1 \ \mathrm{mm}$ $\beta = 97.108 \ (1)^{\circ}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{\rm min}=0.884,\;T_{\rm max}=0.980$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.048$	283 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 1.02 \text{ e } \text{\AA}^{-3}$
4866 reflections	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12-C17 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13\cdots O19^{i} C23-H23\cdots O53 C24-H24\cdots O56^{ii} C51-H51B\cdots Cg1^{iii}$	0.95 0.95 0.95 0.98	2.54 2.57 2.48 2.76	3.218 (2) 3.468 (2) 3.410 (3) 3.627 (3)	128 157 165 147
Symmetry codes:	(i) $-x, -y,$	-z + 1; (ii) -x + 1, -y -	+1, -z; (iii)

-x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

We are grateful to all personnel of the research squad "Synthèse de molécules à objectif thérapeutique" of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are also due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7004).

References

- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

[‡] Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

- Kedjadja, A., Moussaoui, F., Debache, A., Rhouati, S. & Belfaitah, A. (2004). J. Soc. Alger. Chim. 14, 225–233.
- Menasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). *Synth. Commun.* **35**, 2779–2788.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, G.-W., Jia, C.-C. & Dong, Y.-W. (2006). Tetrahedron Lett. 47, 1059–1063.

supplementary materials

Acta Cryst. (2013). E69, o37-o38 [doi:10.1107/S1600536812049422]

(2*E*,2'*E*)-1,1'-Bis(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3,3'-(1,4-phenylene)diprop-2-en-1-one ethyl acetate disolvate

Allaoua Kedjadja, Rachid Merdes, Sofiane Bouacida, Thierry Roisnel and Ali Belfaitah

Comment

In continuation of our interest related to the synthesis and structures of potentially bioactive products (Kedjadja *et al.* 2004; Menasra *et al.* 2005), we report herein the synthesis and the structure determination of the title compound, (I). The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I)consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. In the title molecule the centrosymmetric phenyl ring is attached to two prop-2-en-1-one linked to two 6-chloro-2-methyl-4-phenylquinolin-3-yl and two molecules of ethyl acetate are co-crystalized with it. The two rings of quinolyl group are fused in axial fashion and form adihedral angle of 1.72 (5)° and this quasi plane system forms a dihedral angle of 78.80 (6)° with the phenyl ring (C12—C17) attached to quinolyl moiety. The crystal packing can be described as layers in zigzag parallel to the (110) plane. (Fig. 2). It features C—H···O and C—H··· π interactions (Table. 1) and strong π - π stacking interactions between quinolyl rings with a centroid-centroid distance of 3.7025 (11) and 3.8124 (10)å. These interactions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

Experimental

A mixture of 2-aminobenzophénone (1.0 mmol), acetylacetone (1.2 mmol), water (1 ml) and 1.0 eq. of 1 N HCl, gave the corresponding 1-(2-methyl-4-phenylquinolin-3-yl) ethanone as a white solid in 86% yield, according to the procedure reported by Wang *et al.* (2006). Next, the title compound was prepared in 75% of yield, by an aldol condensation reaction of the Friedländer product with 0.5 eq. of terephthalaldehyde in an ethanolic solution of NaOH at room temperature. Colourless prisms of (I) were obtained by crystallization from ethyl acetate/petroleum ether (1/1) solution.

Refinement

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: C_{aryl} — $H_{aryl} = 0.95$ Å; $C_{methylene}$ — $H_{methylene} = 0.99$ Å and C_{methyl} — $H_{methyl} = 0.98$ Å and; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in *SHELXL97* (Sheldrick, 2008). $U_{iso}(H_{methyl}) = 1.5U_{eq}(C_{methyl})$ or $U_{iso}(H_{aryl}$ or $H_{methylene}) = 1.2 U_{eq}(C_{aryl}$ or $C_{methylene})$.

Computing details

Data collection: *APEX2* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97*

(Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012) and *DIAMOND* (Brandenburg & Berndt, 2001); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Figure 1

The molecular geometry of (I) with displacement ellipsoids drawn at the 50% probability level. Only the contents of the asymmetric unit are numbered. The two ethyl acetate co-crystalized molecules were omitted for clarity.

Figure 2

A diagram of the layered crystal packing of (I) viewed down the *c* axis.

(2*E*,2'*E*)-1,1'-Bis(6-chloro-2-methyl-4-phenylquinolin-3- yl)-3,3'-(1,4-phenylene)diprop-2-en-1-one ethyl acetate disolvate

Crystal data	
$C_{44}H_{30}Cl_2N_2O_2 \cdot 2C_4H_8O_2$	Z = 1
$M_r = 865.81$	F(000) = 454
Triclinic, P1	$D_{\rm x} = 1.315 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.9851 (3) Å	Cell parameters from 8289 reflections
b = 10.0086 (2) Å	$\theta = 2.5 - 27.5^{\circ}$
c = 11.3676 (3) Å	$\mu=0.20~\mathrm{mm^{-1}}$
$\alpha = 102.350 \ (1)^{\circ}$	T = 150 K
$\beta = 97.108 \ (1)^{\circ}$	Prism, colourless
$\gamma = 95.290 \ (2)^{\circ}$	$0.25 \times 0.15 \times 0.1 \text{ mm}$
V = 1092.94 (5) Å ³	

Data collection

Bruker APEXII diffractometer Graphite monochromator CCD rotation images, thin slices scans Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{min} = 0.884, T_{max} = 0.980$ 18119 measured reflections	4866 independent reflections 4035 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.140$ S = 1.04 4866 reflections 283 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0694P)^2 + 0.8188P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 1.02$ e Å ⁻³ $\Delta\rho_{min} = -0.42$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
053	0.31158 (16)	0.42524 (16)	0.11802 (16)	0.0417 (4)	
Cl1	0.31876 (5)	0.75570 (5)	0.69990 (4)	0.02960 (15)	
C1	0.23208 (18)	0.65060 (19)	0.56441 (16)	0.0234 (4)	
C2	0.15254 (19)	0.70928 (19)	0.48229 (18)	0.0265 (4)	
H2	0.1473	0.8057	0.4995	0.032*	
C3	0.08296 (19)	0.6252 (2)	0.37739 (18)	0.0265 (4)	
H3	0.0294	0.6642	0.3215	0.032*	
C4	0.08921 (18)	0.48125 (18)	0.35046 (16)	0.0220 (4)	
C5	0.17208 (17)	0.42485 (18)	0.43299 (16)	0.0209 (4)	
C6	0.24378 (18)	0.51286 (18)	0.54149 (16)	0.0226 (4)	
H6	0.2995	0.4763	0.5978	0.027*	
N7	0.01376 (16)	0.40156 (16)	0.24584 (14)	0.0248 (3)	
C8	0.01928 (18)	0.26750 (19)	0.22137 (16)	0.0232 (4)	
C9	-0.0649 (2)	0.1817 (2)	0.10685 (18)	0.0309 (4)	
H9A	-0.1169	0.2411	0.0654	0.046*	
H9B	-0.1277	0.112	0.1274	0.046*	
H9C	-0.0051	0.1361	0.0531	0.046*	

C10	0.10213 (17)	0.20250 (18)	0.29886 (16)	0.0210 (4)	
C11	0.17907 (17)	0.28022 (18)	0.40423 (16)	0.0206 (4)	
C12	0.26671 (18)	0.21649 (18)	0.48762 (16)	0.0214 (4)	
C13	0.20937 (19)	0.14663 (19)	0.56647 (18)	0.0262 (4)	
H13	0.1138	0.1385	0.5664	0.031*	
C14	0.2911 (2)	0.0889 (2)	0.64504 (18)	0.0300 (4)	
H14	0.2515	0.0424	0.6993	0.036*	
C15	0.4301 (2)	0.0989 (2)	0.64447 (18)	0.0305 (4)	
H15	0.4858	0.0584	0.6976	0.037*	
C16	0.4880 (2)	0.1681 (2)	0.56644 (19)	0.0303 (4)	
H16	0.5834	0.1745	0.5658	0.036*	
C17	0.40700 (19)	0.2279 (2)	0.48915 (17)	0.0265 (4)	
H17	0.4474	0.2769	0.437	0.032*	
C18	0.10551 (18)	0.04827 (18)	0.26507 (16)	0.0228 (4)	
019	0.02241 (15)	-0.02933 (15)	0.29611 (15)	0.0380 (4)	
C20	0.21001 (18)	-0.00520 (18)	0.19329 (16)	0.0218 (4)	
H20	0.2189	-0.1008	0.1793	0.026*	
C21	0.29293 (17)	0.07597 (18)	0.14703 (15)	0.0202 (3)	
H21	0.2831	0.1714	0.1651	0.024*	
C22	0.39718 (17)	0.03406 (17)	0.07162 (15)	0.0191 (3)	
C23	0.47009 (18)	0.13423 (18)	0.02708 (16)	0.0216 (4)	
H23	0.4496	0.2266	0.0455	0.026*	
C24	0.57142 (18)	0.10142 (18)	-0.04320 (16)	0.0218 (4)	
H24	0.6197	0.1711	-0.0722	0.026*	
C51	0.5390 (2)	0.5546 (3)	0.1748 (2)	0.0432 (5)	
H51A	0.5797	0.4728	0.139	0.065*	
H51B	0.6037	0.6128	0.2421	0.065*	
H51C	0.5165	0.6066	0.1127	0.065*	
C52	0.4113 (2)	0.5106 (2)	0.2220 (2)	0.0398 (5)	
H52A	0.4331	0.4563	0.2836	0.048*	
H52B	0.3716	0.5928	0.2611	0.048*	
C54	0.2331 (2)	0.4949 (3)	0.0581 (2)	0.0412 (5)	
C55	0.1442 (3)	0.3999 (3)	-0.0465 (2)	0.0465 (6)	
H55A	0.0557	0.376	-0.0225	0.07*	
H55B	0.1867	0.3159	-0.0712	0.07*	
H55C	0.1314	0.4451	-0.1148	0.07*	
O56	0.23575 (18)	0.61974 (16)	0.08844 (18)	0.0503 (5)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U ²³
053	0.0426 (9)	0.0300 (8)	0.0574 (10)	0.0100 (7)	0.0142 (8)	0.0142 (7)
Cl1	0.0318 (3)	0.0239 (2)	0.0291 (2)	0.00118 (18)	0.00172 (18)	-0.00038 (18)
C1	0.0207 (9)	0.0231 (9)	0.0252 (9)	0.0010 (7)	0.0050 (7)	0.0024 (7)
C2	0.0250 (9)	0.0198 (8)	0.0357 (10)	0.0050 (7)	0.0068 (8)	0.0062 (8)
C3	0.0255 (9)	0.0245 (9)	0.0312 (10)	0.0074 (7)	0.0035 (7)	0.0087 (8)
C4	0.0207 (9)	0.0222 (9)	0.0243 (9)	0.0045 (7)	0.0069 (7)	0.0054 (7)
C5	0.0192 (8)	0.0214 (8)	0.0233 (8)	0.0034 (7)	0.0068 (6)	0.0055 (7)
C6	0.0227 (9)	0.0218 (9)	0.0243 (9)	0.0035 (7)	0.0045 (7)	0.0061 (7)
N7	0.0240 (8)	0.0257 (8)	0.0248 (8)	0.0056 (6)	0.0037 (6)	0.0052 (6)

C8	0.0208 (9)	0.0266 (9)	0.0229 (9)	0.0030 (7)	0.0069 (7)	0.0048 (7)
C9	0.0328 (10)	0.0299 (10)	0.0268 (10)	0.0058 (8)	-0.0002 (8)	0.0012 (8)
C10	0.0190 (8)	0.0221 (8)	0.0240 (8)	0.0030 (7)	0.0103 (7)	0.0056 (7)
C11	0.0197 (8)	0.0214 (8)	0.0229 (8)	0.0038 (7)	0.0089 (6)	0.0064 (7)
C12	0.0234 (9)	0.0180 (8)	0.0228 (8)	0.0045 (7)	0.0051 (7)	0.0031 (7)
C13	0.0248 (9)	0.0239 (9)	0.0328 (10)	0.0042 (7)	0.0091 (7)	0.0095 (8)
C14	0.0374 (11)	0.0252 (9)	0.0314 (10)	0.0062 (8)	0.0088 (8)	0.0121 (8)
C15	0.0362 (11)	0.0261 (9)	0.0293 (10)	0.0108 (8)	0.0001 (8)	0.0063 (8)
C16	0.0225 (9)	0.0315 (10)	0.0362 (11)	0.0067 (8)	0.0039 (8)	0.0053 (8)
C17	0.0247 (9)	0.0285 (10)	0.0291 (9)	0.0051 (7)	0.0088 (7)	0.0092 (8)
C18	0.0231 (9)	0.0224 (9)	0.0229 (8)	0.0018 (7)	0.0065 (7)	0.0036 (7)
019	0.0385 (8)	0.0268 (7)	0.0525 (9)	-0.0009 (6)	0.0267 (7)	0.0083 (7)
C20	0.0237 (9)	0.0189 (8)	0.0227 (8)	0.0041 (7)	0.0053 (7)	0.0029 (7)
C21	0.0211 (8)	0.0188 (8)	0.0200 (8)	0.0041 (6)	0.0040 (6)	0.0019 (6)
C22	0.0189 (8)	0.0198 (8)	0.0184 (8)	0.0036 (6)	0.0027 (6)	0.0032 (6)
C23	0.0237 (9)	0.0167 (8)	0.0252 (9)	0.0050 (7)	0.0061 (7)	0.0041 (7)
C24	0.0235 (9)	0.0183 (8)	0.0249 (9)	0.0025 (7)	0.0076 (7)	0.0058 (7)
C51	0.0440 (13)	0.0422 (13)	0.0419 (13)	0.0048 (10)	0.0016 (10)	0.0096 (10)
C52	0.0454 (13)	0.0374 (12)	0.0354 (11)	0.0053 (10)	-0.0002 (9)	0.0090 (9)
C54	0.0376 (12)	0.0418 (13)	0.0482 (13)	0.0055 (10)	0.0113 (10)	0.0158 (11)
C55	0.0407 (13)	0.0438 (13)	0.0527 (14)	-0.0015 (10)	-0.0001 (11)	0.0131 (11)
O56	0.0483 (10)	0.0284 (8)	0.0802 (13)	0.0103 (7)	0.0120 (9)	0.0216 (8)

Geometric parameters (Å, °)

O53—C54	1.318 (3)	C15—C16	1.384 (3)
O53—C52	1.496 (3)	C15—H15	0.95
Cl1—C1	1.7427 (18)	C16—C17	1.387 (3)
C1—C6	1.366 (3)	C16—H16	0.95
C1—C2	1.409 (3)	C17—H17	0.95
C2—C3	1.368 (3)	C18—O19	1.219 (2)
С2—Н2	0.95	C18—C20	1.472 (2)
C3—C4	1.417 (3)	C20—C21	1.337 (2)
С3—Н3	0.95	С20—Н20	0.95
C4—N7	1.371 (2)	C21—C22	1.464 (2)
C4—C5	1.416 (3)	C21—H21	0.95
C5—C6	1.418 (2)	C22—C24 ⁱ	1.399 (2)
C5—C11	1.424 (2)	C22—C23	1.402 (2)
С6—Н6	0.95	C23—C24	1.385 (2)
N7—C8	1.319 (2)	C23—H23	0.95
C8—C10	1.431 (3)	C24—C22 ⁱ	1.399 (2)
C8—C9	1.502 (3)	C24—H24	0.95
С9—Н9А	0.98	C51—C52	1.507 (3)
С9—Н9В	0.98	C51—H51A	0.98
С9—Н9С	0.98	C51—H51B	0.98
C10—C11	1.376 (2)	C51—H51C	0.98
C10—C18	1.513 (2)	C52—H52A	0.99
C11—C12	1.493 (2)	С52—Н52В	0.99
C12—C17	1.393 (3)	C54—O56	1.219 (3)
C12—C13	1.393 (3)	C54—C55	1.485 (3)

C13—C14	1.388 (3)	С55—Н55А	0.98
C13—H13	0.95	С55—Н55В	0.98
C14—C15	1.383 (3)	С55—Н55С	0.98
C14—H14	0.95		
C54—O53—C52	115.38 (17)	С16—С15—Н15	120
C6—C1—C2	122.05 (17)	C15—C16—C17	120.13 (18)
C6—C1—Cl1	118.43 (14)	C15—C16—H16	119.9
C2—C1—Cl1	119.52 (14)	C17—C16—H16	119.9
C3—C2—C1	118.92 (17)	C16—C17—C12	120.35 (17)
С3—С2—Н2	120.5	C16—C17—H17	119.8
С1—С2—Н2	120.5	С12—С17—Н17	119.8
C2—C3—C4	121.30 (17)	O19—C18—C20	121.15 (16)
С2—С3—Н3	119.4	O19—C18—C10	120.30 (15)
С4—С3—Н3	119.4	C20-C18-C10	118.54 (15)
N7—C4—C5	122.46 (16)	C21—C20—C18	122.36 (16)
N7—C4—C3	118.70 (16)	C21—C20—H20	118.8
C5—C4—C3	118.84 (16)	C18—C20—H20	118.8
C4—C5—C6	119.40 (16)	C20—C21—C22	127.20 (16)
C4—C5—C11	118.38 (16)	C20—C21—H21	116.4
C6—C5—C11	122.22 (16)	C22—C21—H21	116.4
C1—C6—C5	119.46 (17)	C24 ⁱ —C22—C23	118.45 (15)
С1—С6—Н6	120.3	C24 ⁱ —C22—C21	122.88 (16)
С5—С6—Н6	120.3	C23—C22—C21	118.67 (15)
C8—N7—C4	118.54 (16)	C24—C23—C22	121.39 (16)
N7—C8—C10	122.57 (16)	С24—С23—Н23	119.3
N7—C8—C9	117.80 (16)	С22—С23—Н23	119.3
C10—C8—C9	119.64 (16)	C23—C24—C22 ⁱ	120.16 (16)
С8—С9—Н9А	109.5	C23—C24—H24	119.9
С8—С9—Н9В	109.5	C22 ⁱ —C24—H24	119.9
Н9А—С9—Н9В	109.5	С52—С51—Н51А	109.5
С8—С9—Н9С	109.5	C52—C51—H51B	109.5
Н9А—С9—Н9С	109.5	H51A—C51—H51B	109.5
Н9В—С9—Н9С	109.5	С52—С51—Н51С	109.5
C11—C10—C8	120.02 (16)	H51A—C51—H51C	109.5
C11—C10—C18	119.87 (16)	H51B—C51—H51C	109.5
C8—C10—C18	120.11 (16)	O53—C52—C51	109.09 (18)
C10—C11—C5	118.01 (16)	O53—C52—H52A	109.9
C10—C11—C12	121.72 (16)	С51—С52—Н52А	109.9
C5-C11-C12	120.27 (16)	O53—C52—H52B	109.9
C17—C12—C13	119.09 (17)	С51—С52—Н52В	109.9
C17—C12—C11	120.53 (16)	H52A—C52—H52B	108.3
C13—C12—C11	120.37 (16)	O56—C54—O53	122.8 (2)
C14—C13—C12	120.34 (17)	O56—C54—C55	126.9 (2)
C14—C13—H13	119.8	O53—C54—C55	110.3 (2)
C12—C13—H13	119.8	С54—С55—Н55А	109.5
C15—C14—C13	120.11 (18)	С54—С55—Н55В	109.5
C15—C14—H14	119.9	H55A—C55—H55B	109.5
C13—C14—H14	119.9	С54—С55—Н55С	109.5

C14—C15—C16	119.97 (18)	H55A—C55—H55C	109.5
C14—C15—H15	120	H55B—C55—H55C	109.5
C6—C1—C2—C3	1.2 (3)	C6—C5—C11—C12	-1.6 (2)
Cl1—C1—C2—C3	-178.76 (14)	C10-C11-C12-C17	103.4 (2)
C1—C2—C3—C4	0.2 (3)	C5-C11-C12-C17	-77.3 (2)
C2—C3—C4—N7	177.88 (17)	C10-C11-C12-C13	-77.7 (2)
C2—C3—C4—C5	-1.6 (3)	C5-C11-C12-C13	101.7 (2)
N7—C4—C5—C6	-177.88 (16)	C17—C12—C13—C14	-0.2 (3)
C3—C4—C5—C6	1.5 (2)	C11—C12—C13—C14	-179.20 (17)
N7—C4—C5—C11	1.4 (3)	C12—C13—C14—C15	-0.8 (3)
C3—C4—C5—C11	-179.16 (16)	C13—C14—C15—C16	0.8 (3)
C2-C1-C6-C5	-1.2 (3)	C14—C15—C16—C17	0.3 (3)
Cl1—C1—C6—C5	178.76 (13)	C15—C16—C17—C12	-1.3 (3)
C4—C5—C6—C1	-0.2 (3)	C13—C12—C17—C16	1.3 (3)
C11—C5—C6—C1	-179.47 (16)	C11—C12—C17—C16	-179.74 (17)
C5—C4—N7—C8	-0.2 (3)	C11—C10—C18—O19	92.4 (2)
C3—C4—N7—C8	-179.66 (16)	C8-C10-C18-O19	-87.7 (2)
C4—N7—C8—C10	-0.8 (3)	C11—C10—C18—C20	-88.2 (2)
C4—N7—C8—C9	179.53 (16)	C8-C10-C18-C20	91.7 (2)
N7—C8—C10—C11	0.7 (3)	O19—C18—C20—C21	172.69 (18)
C9—C8—C10—C11	-179.70 (16)	C10-C18-C20-C21	-6.7 (3)
N7—C8—C10—C18	-179.25 (16)	C18—C20—C21—C22	-178.00 (16)
C9—C8—C10—C18	0.4 (2)	$C20-C21-C22-C24^{i}$	-3.7 (3)
C8—C10—C11—C5	0.6 (2)	C20—C21—C22—C23	177.15 (17)
C18—C10—C11—C5	-179.55 (14)	C24 ⁱ —C22—C23—C24	-0.2 (3)
C8-C10-C11-C12	179.94 (15)	C21—C22—C23—C24	179.00 (16)
C18—C10—C11—C12	-0.2 (2)	C22—C23—C24—C22 ⁱ	0.2 (3)
C4—C5—C11—C10	-1.5 (2)	C54—O53—C52—C51	-86.6 (2)
C6-C5-C11-C10	177.76 (15)	C52—O53—C54—O56	-3.7 (3)
C4—C5—C11—C12	179.09 (15)	C52—O53—C54—C55	176.92 (18)

Symmetry code: (i) -x+1, -y, -z.

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С13—Н13…О19іі	0.95	2.54	3.218 (2)	128
С23—Н23…О53	0.95	2.57	3.468 (2)	157
C24—H24…O56 ⁱⁱⁱ	0.95	2.48	3.410 (3)	165
C51—H51 B ···Cg1 ^{iv}	0.98	2.76	3.627 (3)	147

Symmetry codes: (ii) -x, -y, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+1, -z+1.