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Abstract

Introduction: The present study aimed to investigate sex differences in response

to repetitive transcranial magnetic stimulation (rTMS) in Major Depressive Disorder

(MDD) patients. Identifying the factors that mediate treatment response to rTMS

in MDD patients can guide clinicians to administer more appropriate, reliable, and

personalized interventions.

Methods: In this paper, we developed a novel pipeline based on convolutional LSTM-

based deep learning (DL) to classify 25 female and 25 male patients based on their

rTMS treatment response.

Results: Five different classification models were generated, namely pre-/post-rTMS

female (model 1), pre-/post-rTMS male (model 2), pre-rTMS female responder versus

pre-rTMS female nonresponders (model 3), pre-rTMS male responder vs. pre-rTMS

male nonresponder (model 4), and pre-rTMS responder versus nonresponder of both

sexes (model 5), achieving 93.3%, 98%, 95.2%, 99.2%, and 96.6% overall test accuracy,

respectively.

Conclusion: These results indicate the potential of our approach to be used as a

response predictor especially regarding sex-specific antidepressant effects of rTMS in

MDDpatients.
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1 INTRODUCTION

Major depressive disorder (MDD) is a psychiatric condition con-

comitant of dysregulated mood and one of the leading causes of

disability worldwide, affecting approximately 17% of the population

(Kessler et al., 2003; Picco et al., 2017; Seney et al., 2018). Preva-

lence of MDD has been estimated to be twice as high in women,

and females typically have more severe and a greater risk of recur-
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rent episodes than men (Perugi et al., 1990). There is evidence

regarding the role of sex and reproductive hormones in the patho-

physiology of depression, as well as differences in the brain at the

structural, cellular, and network levels that can potentially contribute

to the susceptibility of sex to MDD (Tripp et al., 2012). Sex hormones

have been shown to modulate functional neural networks, such as

modulation of the central glutaminergic and serotonergic system by

ovarian steroids. Considering the evidence regarding sex-dependent
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physiological and neural dynamics, it is possible to form hypotheses

regarding potential differences between men and women, in terms

of response to treatment across different conditions and treatments

(Huang et al., 2008; Rubinow & Schmidt, 2019). Investigation of the

potential differences between men and women has been the focus

of the current research, with the condition and treatment of focus

being MDD and repetitive transcranial magnetic stimulation (rTMS),

respectively.

Repetitive TMS is a noninvasive, nonpharmacological brain stimula-

tion treatment that takes advantage of a pulsedmagnetic field near the

scalp to induce neuronal depolarization in a targeted brain region. TMS

for MDD starts with motor threshold (MT) determination, which cali-

brates the stimulator to an individual’s cortical excitability. During MT

determination, a clinician delivers single pulse TMS to the motor cor-

tex, and records the amount of stimulator output necessary to induce

movement in the contralateral hand in 50%of delivered pulses. Follow-

ing calibration, a course of TMS is delivered to the prefrontal cortex at

120% of MT on a daily basis for up to 30 (or more) sessions, often fol-

lowed by a taper phase (Philip et al., 2018). TMS treatment protocols

have shown preliminary clinical efficacy for numerous neuropsychi-

atric and behavioral disorders; randomized clinical trials recently led to

theUS FDA approvals for TMS to treatOCDand for smoking cessation

(Greenberg et al., 2021). The dorsolateral prefrontal cortex (DLPFC)

of the brain is shown to be correlated with the cognitive-control

and affective network thus playing a significant role in mood regu-

lation (Downar & Daskalakis, 2013). Repetitive transcranial magnetic

stimulation of the left DLPFC has been shown to induce an inverse cor-

relation between resting connectivity of the DLPFC and the default

mode network (DMN), a dysfunctional circuit characteristic of MDD

(Williams et al., 2021). Superior clinical outcomeswere associatedwith

targets exhibiting thegreatestDLPFC-to-sgACCnegative connectivity,

or anticorrelation, suggesting the antidepressant mechanism of TMS

(Philip et al., 2018). TMS uses a pulsed magnetic field to induce neu-

ronal depolarization in a targeted brain region, either “high” (≥5Hz) or

“low” (≤1Hz), considered excitatory and inhibitory, respectively (Philip

et al., 2018).

Sexual dimorphism has been observed in MDD patients not only in

lifetime risk, clinical presentation, but also in their response to phar-

macotherapy, perhaps attributed to sex-specific biological differences,

including hormone levels and metabolic enzymes, which all together

lead to different profiles of pharmacokinetics and pharmacodynam-

ics (Hu et al., 2021). Interestingly, the neural networks that include

the DLPFC have been previously shown to be affected by ovarian sex

hormones that may suggest the possibility of sex-dependent rTMS

treatment outcome (Huang et al., 2008; Rogers&Dhaher, 2017). Based

on our recent work, it is apparent that sex, especially in the context of

depression and rTMS treatment outcome, has not received appropri-

ate research attention (Phillips et al., 2020). Therefore, this study was

designed to investigate the sex differences in response to neuromodu-

lation in major depressive disorder using state of the art deep learning

methods applied on electroencephalography (EEG) data.

Among the numerous modalities of neuroimaging, EEG is by far

the least expensive and complicated which makes it a popular neu-

roimaging method especially in clinical settings (Zhang et al., 2021b).

With its high temporal resolution and noninvasive characteristics, the

EEG measurements of the sum of synaptic potentials, changes in the

amplitude, and latency of cortical reactivity can be reflected in the cor-

ticocortical interactions on a millisecond time-scale (de Aguiar Neto &

Rosa, 2019; de la Salle et al., 2020). EEG canmeasure cordance, a com-

putation of regional brain activity, that has a strong correlation with

cerebral brain perfusion, and has been used in the past before and after

TMS to assess cortical inhibition and excitation, connectivity, and phar-

macologyofTMS inpatientswithMDD(Leuchter et al., 2009; Tremblay

et al., 2019). With the use of EEG data, one can compute its recordings

of bandpower, alphaasymmetry, signal-based features, network-based

features, or evoked potentials to characterize the brains’ functional

response (Bares et al., 2015).

EEG, among many other types of data, can be used after artifacts

are removed, in deep learning models for the purposes of feature

extraction and thus classification of a variable of interest (Abbasi

& Goldenholz, 2019; Ay et al., 2019; Craik et al., 2019). Working

with the raw (uncleaned) data is not preferable in the modeling via

deep learning. Because the learning process interferes with the noise,

it may cause overfitting or biased learning. “Raw” term is generally

stated as clean data after preprocessing (noise filtered). Deep learning

automatically extracts valuable features from the preprocessed data.

The artifacts originated from various physiological or nonphysiological

sources such as eye movements, blinks, and cardiac or muscle activ-

ity, blood pressure, and magnetic field of electronic devices, mobiles

wave, power-line, while continuous EEG recordings are collected. The

artifact-corrected EEG can be estimated by subtracting the pure arti-

fact activity, which is calculated as the product of modeled artifact

patterns from the original artifact-contaminated EEG.

Convolutional neural networks (CNN), as a popular deep learning

model, has been used for biosignal classification in the past (Chen

et al., 2020; Nguyen et al., 2020; Ouhame et al., 2021; Zhang et al.,

2021a). LSTMwas developed for overcoming the challenge to address

long-term information preservation and short-term input skipping in

latent variable models. LSTM inherits a memory cell that has the same

shape as a hidden state. The memory cell is controlled by several gates

(i.e., input, output, forget). These gates represent a dedicated mecha-

nism, which can decide when to remember and when to ignore inputs

in the hidden state. The combination of CNN and LSTM is designed

for sequence prediction problems with spatial inputs, like images or

videos. The combination means that CNN-LSTM architecture involves

using CNN layers for feature extraction on input data combined with

LSTMs to support sequence prediction. Therefore, there is no need

for any feature extraction process before training the deep learning

architecture (Abdelhameed et al., 2018; Courtney & Sreenivas, 2020;

Nagabushanam et al., 2020). Improved and recurrent neural networks

(RNN) both perform optimally when classifying EEG data, but due to

size and type of data set, LSTM has been used for optimal results

here. Offering a high predictive value, machine learning approaches

have been widely used in psychiatry research (Yao et al., 2020). Deep

learning algorithms for the purposes of classifying psychiatric illnesses

and predicting treatment outcomes have yielded successful results
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in some recent studies (Cosmo et al., 2021; de Bardeci et al., 2021;

Etkin, 2019; Zhang et al., 2021a). Recently, taking advantage of sig-

nal processing methods in the context of mood disorders has been

extensively studied, however, implementing them is challenging due

to disorder heterogeneity and limitations inherently associated with

machine learning in classificationmethods. Despite several limitations,

we aimed to demonstrate that using a combined CNN-LSTM architec-

ture for advanced EEG signal processing may be a useful approach to

distinguish thedifferential responsesofmale and femaleMDDpatients

to rTMS treatment. The relatively high specificities associated with

multivariate autoregressive models and deep learning models indi-

cate that these computational frameworks may provide a basis for an

adjunctive therapy.

EEG data before and after rTMS treatment in a population diag-

nosed with MDD were used in the current study and five EEG-based

deep learning models were created to classify male and female

subjects.

2 METHODS

2.1 Participants

Fifty participants, comprising 25 males and 25 females, received 20

sessions of a bilateral rTMS protocol, that is, low-frequency (1 Hz)

stimulation of the right DLPFCwith 120% of the resting motor thresh-

old (RMT) amplitude, in 150 pulse trains each lasting for 10 s with an

intertrain interval (ITI) of 2 s. RMT has been defined as the minimum

output intensity of a single TMS pulse over the hand motor hotspot

that can cause a contraction of the Abductor Pollicis Brevis (APB)mus-

cle after a minimum 5 out of 10 pulses, that can be detected visually

(like in our case) or by means of recording electromyography. Stimula-

tion sites corresponding to the right and leftDLPFCwere located using

the EEG 10–20 international system, namely F4 and F3, respectively.

Before starting the treatment protocol the included sample in the cur-

rent study had received a diagnosis of major depression based on a

clinical interviewby a psychiatrist according to the criteria of theDSM-

V (Regier et al., 2013) and the established exclusion criteria regarding

the use of brain stimulation techniques (O’Reardon et al., 2007). For all

study participants—divided by sex and treatment response—age, clini-

cal history, and change inBeckDepression Inventorydepression scores

are presented in Table 1a, specific psychiatric comorbidities in Table 1b,

and current medications in Table 1c.

2.2 Data collection and EEG
recording/preprocessing

EEG data were recorded by a 19-channel amplifier (Mitsar, Russia)

using an ElectroCap (ElectroCap, Inc, OH) on which electrodes were

located based on the 10–20 international system. A1+A2 electrodes

were used as reference. Impedance was kept below 5 kΩ throughout

the experiment and the sampling ratewas 500Hz. Eyes-open and eyes-

closed resting state EEGs were recorded in an acoustic room for a

duration of 10 minutes, before the start and after finishing the rTMS

treatment course (20 sessions). In general, EEG artifacts can origi-

nate fromvariousphysiological or nonphysiological sources suchas eye

movements, blinks, cardiac ormuscle activity, bloodpressure, andmag-

netic field of electronic devices and the power-line. Artifact-corrected

EEG can be estimated by subtracting pure artifact activity (modeled

artifact patterns) from the original artifact-contaminated EEG. The fol-

lowing preprocessing pipeline was used for removing artifacts without

distorting the underlying brain activity.

First, statistically independent (uncorrelated) waveforms and

topographieswere estimated by the IndependentComponent Analysis

(ICA)method. Therefore, the original signal components resulting from

brain activity were identified before artifact removal. A Chebyshev

type-II band-pass filter was used to eliminate noise from the EEG

data. Then, the EEG data set was divided into equal segments with a

specific length to guarantee a balanced amount of information in each

segment. These segments were then filtered to eliminate noises and

interferences. A notch filter at 50 Hz was applied to remove electro-

magnetic interference of the power-line/other electronic devices. An

Elliptic bandpass filter with cut-off frequencies of 0.1–60 Hz was used

due to its advantages such as requiring less memory and performing

with reduced delay time.

The data matrix was made up in the following order: 19 (# of EEG

channels) × 50 (# of subjects) × 500 (# of sampling frequency) × 10

(# duration of recording in minutes) × 60 (conversion factor from

minutes to seconds for frequency (Hz) × 2 (# of conditions i.e., eyes-

closed and eyes-open)), and these data frames are directly fed into

themodel. Before constructing the classificationmodels, patientswere

categorized into responders or nonresponders to the rTMS treatment,

based on the criteria of aminimum reduction of 50% in BDI-II scores to

be considered a responder to the treatment.

2.3 Guided selection of deep learning algorithm

Long short-term memory (LSTM) is derived from the recurrent neu-

ral network (RNN), which consists of recurrent structures that locally

feed firing strength memories. Thus, RNNs are suitable for time-series

based feature learning tasks, but suffer from gradient vanishing or

exploding problems. For this reason, the LSTM network is utilized. In

this network, membership functions join the nodes depending on the

input variable, and spatial and temporal firing are sustained to assign

one-dimensional membership functions. While learning parameters

minimizes the error cost function, the learning structures decide when

to generate a rule and activate it with firing strengths exceeding the

threshold (Chen et al., 2020; Nguyen et al., 2020; Ouhame et al.,

2021). The internal structure of the LSTM algorithm is demonstrated

in Figure 1.

The sole use of the LSTM network is not feasible due to consider-

ablememory consumptionandcomputational burden that comesalong

with it. To overcome this problem, a 1D-CNN should be added to learn

local features on each sensor dimension. 1D convolutional operation



4 of 12 ADAMSON ET AL.

TABLE 1A Age, clinical history, and change in BDI-II in study participants

Total

Male

responders

Male

nonresponders

Female

responders

Female

nonresponders

Sample size 50 18 7 11 14

Age (SD) 34.38 (11.19) 37.77 (12.95) 29.71 (13.02) 32.81 (7.38) 33.57 (10.09)

Duration of illness in years (SD) 5.11 (5.12) 5.92 (6.24) 3.5 (3.17) 6.32 (5.47) 3.93 (3.9)

At least one comorbidity 35 11 6 8 10

Neurologic history 4 1 0 2 1

At least 1 suicide attempt 7 1 0 3 2

BDI pre (SD) 31.84 (8.04) 30.66 (7.79) 35.42 (9.12) 30.45 (8.46) 32.64 (7.73)

BDI post (SD) 14.1 (9.2) 7.94 (5.43) 27.14 (7.98) 8.36 (5.46) 20 (4.94)

Note: Beck Depression Inventory (BDI) of which reduction in 50% indicates a response to TMS treatment.

TABLE 1B Frequency of psychiatric comorbidities in study participants

Psychiatric

comorbidities

Total

(n= 50)

Male responders

(n= 18, 36%)

Male nonresponders

(n= 7, 14%)

Female responders

(n= 11, 22%)

Female nonresponders

(n= 14, 28%)

Adjustment disorder 2 1 None 1 None

Adult ADD 1 1 None None None

Cluster B personality disorder 3 1 None 1 1

Cluster C personality disorder 6 2 None 1 2

GAD 17 4 3 5 5

OCD 10 1 4 2 3

Panic disorder 1 None 1 None None

Phobia 3 None None 2 1

PTSD 3 None None 1 2

Social anxiety 1 None None None 1

ADD= attention deficit disorder; GAD= generalized anxiety disorder; OCD= obsessive compulsive disorder; PTSD= posttraumatic stress disorder.

TABLE 1C Current medications used in study participants

Classes of medications

Total

(n= 50)

Male responders

(n= 18, 36%)

Male nonresponder

(n= 7, 14%)

Female responders

(n= 11, 22%)

Female nonresponders

(n= 14, 28%)

Antipsychotic 23 7 6 6 4

Mood stabilizer 22 7 3 5 7

TCA 15 4 2 5 4

SSRI 13 6 2 3 2

Benzodiazepine 8 3 1 1 3

SNRI 3 1 None 2 None

Beta-blockers 3 None None 1 2

NDRI 2 1 None None 1

SARI 2 None None 2 None

Anxiolytic 1 None 1 None None

Antidepressants 1 None None 1 None

Sedative-hypnotics 1 None None None 1

Hormones (melatonin) 1 1 None None None

TCA= tricyclic antidepressants; SSRI= selective serotonin reuptake inhibitor; SNRI= serotonin–norepinephrine reuptake inhibitor;NDRI=norepinephrine-

dopamine reuptake inhibitor; SARI= serotonin antagonist and reuptake inhibitors.
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F IGURE 1 Internal structure of LSTM

on each sensor dimension for the rth filter can be expressed in the form

of Equation (1):

Cr
l = fr

(
xil:l+s−1 ∗ w

r + br
)
, l ∈ {1,2,… , L − s + 1}… ., (1)

where s is the filter size, f(.) is the activation function, w is the weight

vector, and b is the bias. Output of the 1D convolutional operation can

be stated as C ∈ R(L−s+1)×4. To obtain a more compact form, a pooling

operation can be applied to the output of the 1D convolutional opera-

tion. The max-pooling operation takes the maximum value over that of

consecutive features from one sensor dimension. The maximum value

is determined by Equation (2):

hrk = max
(
Cr
(k)d+1

,… , Cr
(k+1)d

)
, k ∈ {1,2,… , [(L − s + 1) ∕d]} .., (2)

where d is the pooling size and r is the number of filters in 1D

convolutional operation.

The feature matrix h ∈ R[(L−s+1)∕d]×r is obtained by performing the

1D convolutional and max-pooling operations. Since the convolution

window slides iteratively from the beginning to the end of the raw

signal at each sensor dimension, the first dimension of the feature

matrix holds the temporal relationships and the second dimension

highlights the high-level representation explored through the CNN at

each sequential step. Outputs of the CNN are high-level features hav-

ing temporal characteristics. A flattening layer is used between the

convolutional layers and the LSTM layer to reduce the feature maps to

a single one-dimensional vector. Then, the local features are fed into

the LSTM to solve the issue of temporal dependency. LSTM provides a

solution by saving long-term memory through memory units that can

update the previous hidden state. Output values from the previous

CNN layer are fed to gate units. In general, an LSTM network is con-

stituted from a forgetting gate, input gate, input candidate gate, and

output gate. The forget gate produces a vector with values between

zero and one, which will be then multiplied to the cell state of the

former time step for erasing values that were not required and keep-

ing those that are essential for the prediction. The input gate and the

input candidate gate work together to render the new cell state, which

will be renewed at the next time step. A combined CNN-LSTM net-

work automatically learns representative featureswith ahigh sampling

frequency (Abdelhameed et al., 2018; Courtney & Sreenivas, 2020;

Nagabushanam et al., 2020; Zhang et al., 2021b).

2.4 CNN-LSTM feature extraction and
classification

The algorithm implemented here was based on the publicly available

Google Colab, which is a free cloud service that allows AI developers

to apply DL-based algorithms. Our graphic processor unit (GPU)model

was a Tesla K80 that supports all Python codes and DL libraries. In

our deep learning models, multiple one-dimensional CNN layers were

used to extract features and reduce the length of EEG segments. After

that, the LSTM layers were applied to detect sequential relationships

to increase the training speed and classification accuracy.WhileCNN is

used to attenuate noise and consider the correlation among multivari-

able signals associated with each electrode, the LSTM model extracts
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F IGURE 2 Representation of the proposed deep learningmodel: (a) block diagram and (b) CNN-LSTM structure

temporal information and maps time series into separable domains to

realize the classification. With the help of this combined model, both

the spatial and temporal features can be revealed from the multivari-

ate nonstationary time-series input data. The block diagram of the

proposedmodel is given in Figure 2.

2.5 Training and testing

Five different classification models were built, namely pre-/post-TMS

female (model 1), pre-/post-TMS male (model 2), pre-TMS female

responders versus pre-TMS female nonresponders (model 3), pre-TMS

male responders versus pre-TMS male nonresponders (model 4), pre-

TMS responders versus nonresponders across both sexes (model 5).

The modeling process was performed using Google Colab via Ten-

sorflow.Keras framework. Training of the classification models was

conducted using 10-fold cross-validation (CV) for evaluating their

robustness against classifying unseen data. In a 10-fold CV, the data

corresponding to each classification model is randomly divided into

10 equivalent folds and class label distributions within each fold. This

process was repeated ten times and 90% and 10% of the records are

exploited for training and testing, respectively. A new training and test-

ing set was produced by shifting the folds in each iteration in which

training records are divided into two subsets, namely a training set and

a validation set. The data in each classificationmodel were divided into

10% testing, 70% training, 20%validation set. Themodelswere trained

using the training set and optimized by considering the classification

results of the validation set.

Due to the small data set size, the data augmentation techniquewas

applied for training to maximize the classification accuracy and ensure

minimal overfitting. Generalization performance can be enhanced

through the data augmentation method (Lashgari et al., 2020). The

data augmentation approach used in this paper is based on the gen-

eration of artificial signals in each iteration of the 10-fold CV by
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TABLE 2 The size of the partitioned and augmented train and test data permodel

Model 1 Model 2 Model 3 Model 4 Model 5

Initial size of data 19× 13,841,500 19× 14,025,000 19× 6,232,500 19× 7,179,000 19× 13,808,000

After reshaping process 27,683× 500× 19 28,050× 500× 19 12,465× 500× 19 14,358× 500× 19 27,616× 500× 19

After data augmentation 33,220× 500× 19 33,660× 500× 19 16,620× 500× 19 17,230× 500× 19 33,140× 500× 19

Partitioned into train &

validation data

29,898× 500× 19 30,294× 500× 19 14,958× 500× 19 15,507× 500× 19 29,826× 500× 19

Partitioned into test data 3322× 500× 19 3366× 500× 19 1662× 500× 19 1723× 500× 19 3314× 500× 19

TABLE 3 Architecture of the proposedmodel

Layer (type) Unit type # Parameters Output shape

Convolutional (1D) ReLU 9856 497× 128

Max Pooling (1D) – 0 124× 128

Convolutional (1D) ReLU 32,832 121× 64

Max Pooling (1D) – 0 30× 64

Convolutional (1D) ReLU 8224 27× 32

Max Pooling (1D) – 0 6× 32

Convolutional (1D) ReLU 2064 3× 16

Convolutional (1D) ReLU 264 2× 8

Max pooling (1D) – 0 1× 8

LSTM Tanh 11,800 1× 50

LSTM Tanh 7600 1× 25

LSTM Tanh 5100 25

Dense (fully connected) Sigmoid 52 2

randomly averaging the training set considering about 2% of time

instance values in eachEEG signal in the trainmodels (Yang et al., 2020;

Zhang et al., 2020). Therefore, the training data set was augmented

by increasing its size by about %2, for each fold in each model. Given

that the total number of the fold is 10, the total number of gener-

ated samples after data-augmentation and partitioning can be found in

Table 2.

Recall, precision, specificity, accuracy, f-measure, kappa value, and

ROC-AUC scores were selected as evaluation metrics for determining

theperformanceof the classification system. Thesemeasureswere cal-

culated for the testing set of each fold and averaged over the 10-folds.

The hyperparameters were selected as follows: the batch-size is 128,

the optimizer method is adam (adaptive momentum), the evaluation

metric is accuracy, and the loss function is cross-entropy. The baseline

1-D CNN-LSTM network architecture used in this paper is presented

in Table 3.

3 RESULTS

In this study, five different classificationmodelswere built. Thesemod-

els includepre-/post-TMS female (model 1), pre-/post-TMSmale (model

2), pre-TMS female responder versus pre-TMS female nonresponders

(model 3), pre-TMS male responder versus pre-TMS male nonrespon-

der (model 4), pre-TMS responder versus nonresponder for all sexes

(model 5). The results of the training process and accuracy plots for

the five models that have been implemented in this study are given in

Figure 3.

A confusion matrix is a table that is often used to describe the per-

formance of a classifier and visualize the correctly classified labels

for each model on a set of test data for which the true values are

known. This table layout allows for visualization of the performance

of an algorithm and the name stems from the fact that it makes it

easy to see whether the system is confusing two classes or not. Each

row of the matrix represents the instances in a predicted class, while

each column represents the instances in an actual class thus the results

wereaggregated fromthe10 testing results of the10-k cross-validated

models.

A confusion matrix is generated for each model implemented here,

as given in Figure 4.

Seen in the confusionmatrix for eachmodel, thenumberof correctly

classified labels is high, and its performance is also reflected in its high

sensitivity, specificity, overall accuracy, Cohen’s kappa value, and AUC

values of themodels in Table 4.

The results for each model are promising for employment in a clin-

ical context; however, a well-defined graphical user interface (GUI)

needs to be developed to make the process more user-friendly in

addition to further validations with more data for better approxima-

tion and generalization. Each of the five models performed with high

sensitivity, specificity, and overall accuracy thus resulting in a high-

classification performance. Cohen’s kappa is a robust statistic useful

for the purposes of either interrater or intrarater reliability testing.

Similar correlation coefficients range from −1 to +1, where 0 rep-

resents the degree of agreement that can be expected from random

chance, and1 representsperfect agreementbetween raters. Thekappa

values for the proposed models all have high areas under the ROC

curve.

4 DISCUSSION

Although all the five implemented models in the current study were

able to classify the pre- and post-rTMS responses with an accuracy

of above 91%, model 4 performed significantly better in classify-

ing responsivity in pre-rTMS data in males. However, this does not
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F IGURE 3 Real-time accuracy plots for each of the five implementedmodels

TABLE 4 Comparison of evaluationmetrics of the averaged cross-validatedmodels

Model 1 Model 2 Model 3 Model 4 Model 5

Sensitivity .973 (±.024) .984 (±.012) .941 (±.042) .994 (±.002) .978 (±.018)

Specificity .899 (±.022) 0.977 (±0.013) .960 (±.038) .988 (±.005) .948 (±.017)

Overall Accuracy .933 (±.042) .980 (±.018) .952 (±.029) .992 (±.002) .966 (±.01)

Cohen’s Kappa .869 (±.014) .961 (±.027) .902 (±.030) .982 (±.012) .929 (±.022)

AUC value .944 (±.021) .944 (±.002) .953 (±.045) .992 (±.001) .973 (±.014)

necessarily suggest that males respond better to rTMS, but only high-

lights the fact that model 4 outperformed the others in determining

sex differences in response to rTMS. Several factors may have con-

tributed to this result, one of them being that out of 25 participants

of each sex, there were 14 female while only 7 male nonresponders.

This suggests that the model may not have been able to classify the

femaleswith the same accuracy as themales. The small sample size—as

small as 7 in the male responder group—poses an additional limitation

on the significance of the results reported. Since in this study we did

not apply statistical methods, it is not correct to express the findings
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F IGURE 4 Confusionmatrix of the implementedmodels

in terms of statistical significance. Instead we used other metrics spe-

cific tomachine learning algorithms such as the confusionmatrix of the

feature set, area under ROC curve, and kappa valueswhich are listed in

Figure 4 and Table 4.

According to a recent review of sex differences in response to neu-

romodulation treatments Phillips et al. (2020) have noted that differ-

ences in cortical thickness may require different protocol parameters

such as higher intensities to achieve comparable results in females.

Considering that the treatment in the current work included low-

and high-frequency stimulation of right and left DLPFC, respectively,

further investigation of the implications of other rTMS parameters

regarding treatment response, also as a function of sex, is required to

realize a more personalized treatment approach. It must also be noted

that the study is done on an Iranian sample of depressed patients;
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therefore, cultural factors of MDD should have been accounted for

to be able to make more firm conclusions based on the reported

results. It has been noted in a recent epidemiological review that

the prevalence of MDD is twice as high for women in Iran and

some neighboring countries (Gharraee et al., 2019) thus the cul-

tural and geographical context in relation to sex may have affected

the result tendencies and thus must be considered in future inves-

tigations to understand sex differences in treatment response to

rTMS.

It is worth noting thatmodel 5was able to predict response to rTMS

with an accuracy of 94% regardless of sex, using the baseline’s pre-

rTMS EEG. Thus, the results of the current investigation provides that

it is feasible to make preliminary predictions about the likelihood of

the efficacy of rTMS for MDD patients, given all other variables are

standardized.

5 CONCLUSIONS

To the best of our knowledge, this is the first investigation using deep

learningmethods to specifically investigate sex differences in response

to rTMS based on EEG in the context of MDD. The proposed method

is robust and automated due to the representation power of time-

invariant features from raw EEG signals (Liao et al., 2021). In this

methodology, intraslice features of brain images are processed and

extracted and can be adopted for other physiological data and imaging

modalities such as fMRI, CT, or PET (Cheng & Liu, 2017). The results

verify that the proposed method could achieve comparable perfor-

mance with other state-of-the-art methods to identify sex differences

in response to rTMS in MDD patients. Therefore, it is safe to believe

that our developed model can also be used for the purposes of accu-

rate diagnosis of other neurological and psychiatric pathologies as well

(Ay et al., 2019; Saeedi et al., 2021).

While advances in neuroimaging techniques have rapidly improved

over the past few decades, there is still a lack of acceptable preci-

sion for the diagnosis and treatment of mental illness (Etkin, 2019).

The paradigm shift to a personalized approach toward treatment in

recent years has led to the use of techniques such as deep learning

among other computational methods applied on neurobiological data,

to enhancediagnosis accuracy andvalidity (deBardeci et al., 2021). The

use of neural networks may lead to a more effective and efficient way

to identify previously unrecognized patterns in EEG traces by reduc-

ing the need to extract diagnostic information from highly complex

EEG time-series and shifting to a more automated, objective, and reli-

able approach. Physician’s management of psychiatric illness can thus

be facilitated with the help of computational techniques in psychiatry

(de Bardeci et al., 2021).

The preliminary results of the models can have extensive implica-

tions in providing precise treatment parameters or target brain regions

for innovative neuromodulation treatments especially for vulnerable

populations such as females with MDD. There is definitely the need

for further studies or meta-analyses of studies on sex as well as cul-

tural differences in diagnosis of mental illness and response to specific

treatments. Considering the relative ease of use and accessibility of

EEG equipment, it is a very promising candidate for investigations of

predictors of response to treatment and diagnostic markers. With fur-

ther replicable deep learning investigations on EEGdata across diverse

populations, mental health care providers can will be able to provide

more efficacious treatment protocols, personalized to a patient’s sex,

medication profile, or transdiagnostic symptoms, among many other

potential variables each of which requiring more research efforts and

attention.
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