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The three-component reactions of aldehydes, electron deficient alkynes and ureas/thioureas have been smoothly performed to yield

a class of unprecedented 3,4-dihydropyrimidinones and thiones (DHPMs). The reactions are initiated by the key transformation of

an enamine-type activation involving the addition of a secondary amine to an alkyne, which enables the subsequent incorporation of

aldehydes and ureas/thioureas. This protocol tolerates a broad range of aryl- or alkylaldehydes, N-substituted and unsubstituted

ureas/thioureas and alkynes to yield the corresponding DHPMs with specific regioselectivity.

Introduction

DHPMs are well-known heterocyclic scaffolds with abundant
biological relevance [1-3]. The DHPM backbone has been
found in a class of marine natural products possessing anti-HIV
activity [4]. What’s more, diversified other biological activities
have been discovered in many synthesized small DHPMs. For
example, monastrol (A) [5], (R)-SQ 32926 (B) [6] and (+)-
SNAP-7941(C) [7] are lead compounds possessing outstanding
antitumor, antihypertensive and melanin-concentrating hormone

receptor antagonism activities, respectively (Figure 1).

More recently, it was shown that DHPMs display many new
bioactivities such as antioxidation [8], antibacterial [9], anti-

malaria [10], antimicrobial [11] and sodium iodide symporter
inhibition [12], suggesting the great potential of DHPMs in
discovering new lead compounds and medicines. Besides their
attractiveness in biological and medicinal researches, DHPMs
have also been demonstrated as quite flexible precursors for the

synthesis of many other derived heterocyclic scaffolds [13].

For a rather long period, the Biginelli reaction involving the
condensation of aldehydes, B-ketoesters and ureas (thioureas)
[14] has been dominantly employed for DHPMs synthesis in
both racemic [15-18] and asymmetric versions [19-23]. Despite

of many recognized advantages of the Biginelli reaction, the
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Figure 1: Some DHPMs-based lead compounds.

product diversity suffered from limitations because -ketoesters
or 1,3-diketones are intrinsically required as donors of the
C5-C6 fragment in this reaction, which predetermined the pres-
ence of a C6 substitution in the produced DHPMs. On the other
hand, DHPMs without a substituent at the C6 site were hardly
accessible by the classical Biginelli reaction, probably because
of either the rare availability of the corresponding B-formylke-
tone/ester substrates or the intolerance of B-formylketones/
esters in the Biginelli reaction. In regard to the daily increasing
requirements on molecular diversity, developing powerful
methods for the rapid synthesis of DHPMs with diverse and
unprecedented substitution patterns has become an issue of
central importance. During the last decade, tremendous endeav-
ours have been made to devise efficient synthetic routes to
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access structurally diverse DHPMs by employing multicompo-
nent reactions (MCRs) [24-26]. Interestingly, in the process of
designing new MCRs yielding DHPMs, the utilization of new
C5-C6 fragment donors constituted the major strategy.
Representative new C5—C6 building blocks used in the multi-
component synthesis of DHPMs are 2-oxosuccinic acid [27],
acetylaldehydes [28], cyclic and acyclic ketones [29-31], B-oxo
dithioesters [32], diketenes [33] and enaminones [34]. On the
other hand, as frequently utilized building blocks in organic
synthesis, alkynes have been known to possess versatile reactiv-
ity in the synthesis of small molecules. For example, a previous
protocol employing aryl alkynes, aldehydes and urea/thiourea
has been found to selectively provide various 1,3-thiazine
derivatives 4 [35]. Amazingly, a generally applicable alkyne-
based method regioselectively yielding DHPMs has not yet
been achieved [36]. Herein, we report the regioselective three-
component synthesis of DHPMs employing alkynes, aldehydes
and ureas/thioureas by making use of the activation effect of a
secondary amine to alkynes (Scheme 1) [37].

Results and Discussion

The work began from the three-component model reaction of
p-chlorobenzaldehyde (1a), thiourea (2a) and ethyl propiolate
(3a). The optimization results are outlined in Table 1. Firstly,
parallel studies respectively employing TMSCI, morpholine and
mixed TMSCl/morpholine as catalysts have been conducted. It
was found that the target product could be formed only when
both morpholine and TMSCI were present (Table 1, entries
1-3). Extended experiments using different amounts and types
of amine catalysts demonstrated that 0.5 equiv of piperazine
was favorable (Table 1, entries 4-6). Reducing the amount of
TMSCI led to a decrease in product yield (Table 1, entry 7).
Other Lewis acid or Brensted acids such as FeCl3 and p-TSA
gave no better result for the same reaction (Table 1, entries 8
and 9). In addition, the non-polar solvent toluene was not able
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Scheme 1: Regioselective 1,3-thiazines and DHPMs via aldehydes, ureas/thioureas and alkynes.
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Table 1: Optimization of reaction conditions?2.

Cl
CIOCHO
T catalysts, solvent
T, amine

i . EtO,C | NH
HoN” NH, =——COOEt NAS

2a 3a 5a H
Entry Catalysts Solvent T (°C) Yield (%)P
1 morpholine/TMSCI DMF 90 45
2¢ TMSCI DMF 90 nr
3¢ morpholine DMF 90 nr
4d morpholine/TMSCI DMF 90 25
5 pyrrolidine/TMSCI  DMF 90 13
6 piperazine/TMSCI DMF 20 59
7€ piperazine/TMSCI DMF 90 40
8 piperazine/FeCl3 DMF 90 nr
9 piperazine/p-TSA  DMF 90 15
10 piperazine/TMSCI CH3CN 90 39
11 piperazine/TMSCI  toluene 90 nr
12 piperazine/TMSCI DMF 80 27
13 piperazine/TMSCI DMF 100 39

14f piperazine/TMSCI DMF 90 81

aGeneral conditions: 1a (0.3 mmol), 2a (0.4 mmol), 3a (0.3 mmol), sec-
ondary amine (0.15 mmol) and acid (0.6 mmol) in 4 mL solvent, stirred
for 12 h. PYields of isolated product. °No reaction. 90.09 mmol

(30 mol %) morpholine was used. €0.45 mmol TMSCI was used.
fAdditional 0.5 equiv of p-TSA was used.

to mediate the reaction, while a lower yield of product was
observed when MeCN was used as solvent (Table 1, entries 10
and 11). Altering the reaction temperature also failed to enhance
the yield (Table 1, entries 12 and 13). Finally, employing addi-
tional 0.5 equiv of p-TSA has been found to significantly
improve the yield (Table 1, entry 14). This result may be attrib-
uted to the double activation effect involving both Lewis and
Brensted acid (see Scheme 3).

With the optimal conditions in hand, we conducted the investi-
gation on examining the application scope. Various aldehydes
of different properties have been subjected to react with
thioureas/N-substituted thioureas/urea as well as different propi-
olates. Typical results were listed in Table 2. It can be seen
from these reactions that aldehydes containing various func-
tional groups tolerate the protocol of the corresponding DHPMs
synthesis. For reactions involving aromatic aldehydes, the elec-
tronic properties of the substituent exhibited evident impact on
the product yield. Aldehydes containing an electron with-
drawing group (EWGQG) facilitated the reactions to give related
DHPMs with evidently higher yields than those containing an
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Table 2: Multicomponent synthesis of different DHPMs.2

R?
R'-CHO piperazine R30,C
x 1 TMCl/p-TSA \f\NH
Rz Lt f DMF, 90 °C NAX
N° NH2  cooRs or THF, reflux R2
2 3 5
R R2 R X  Product Yield (%)°
4-CICgH4 H Et S 5a 81
4-BrCgHj H Et S 5b 70
4-CF3CgHs H Et S 5¢ 72
4NO)CgHs H Et S  5d 85
4-MeCgHg H E S 5e 58
4-CICgH4 Me Et S  5f 78
4-BrCgHj Me Et S 5g 63
4-CF3CeHs Me Et S  5h 83
4-CICgHg H Me S 5i 72
4-CF3CBH4 H Me S 5j 81
4-MeCgHg H Me S 5k 66
3-OHCCgHs, H Et S 5l 68
3-MeOCgHs H Et S 5m 61
24ClhCeH; H Et S  5n 64
2-CICgHj Me Et S 50 75
2-CICgH4 H Me S 5p 60
4-CICgHg4 H E O 5q° 43
4-BrCgHg H E O 5 55
4NOyCgHs H Et O  5s° 47
Et H Et S 5t 82
Pr H Et S 5u 68
PhCH; H Et S 5v 81

aGeneral conditions: 1 (0.3 mmol), 2 (0.4 mmol), 3 (0.3 mmol), piper-
azine (0.15 mmol), TMSCI (0.6 mmol), p-TSA (0.15 mmol) in 4 mL
DMF, stirred at 90 °C for 12 h. PYield of isolated product. °Reactions in
refluxing THF, piperazine (0.15 mmol), TMSCI (0.9 mmol) and p-TSA
(0.3 mmol).

electron donating group (EDG) (Table 2, products Sa—Se,
5i—5Kk). A similar tendency occurred in the experiments using
N-methyl thiourea (Table 2, products 5f~Sh). Attempts on
employing EDG-substituted aldehydes such as p-tolylaldehyde
to react with N-substituted thiourea and alkyne were not
successful. On the other hand, benzaldehydes with ortho- and
meta-substitution could also react with thioureas and propio-
lates to give the corresponding DHPMs 51-5p. However,
compared with thiourea, urea has been found to undergo a
similar transformation more toughly, and DHPMs 5q—5s from
urea reactions have been obtained with only moderate yields
under the conditions of refluxing THF (Table 2, products
5q—5s). Notably, this synthetic methodology displayed also
good tolerance to aliphatic aldehydes to provide 4-alkyl
DHPMs 5t-5v with good to excellent yield (Table 2).
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Following these obtained results, especially the key function of
the secondary amine to activate electron deficient alkynes [34]
we conducted the control experiments on both the synthesis of
the possible enamino ester and its transformation to the corres-
ponding DHPM product. The results proved that enamino ester
6a could be easily generated and efficiently transformed to
target product Sa under standard conditions (without using sec-

ondary amine, Scheme 2).

Based on the results from the control experiments, we postulate
the reaction mechanism: At first, the addition of the secondary
amine to the propiolate gives enamino ester intermediate 6. On
the other hand, ureas/thioureas were known to be readily acti-
vated by TMSCI to give intermediate 10 [38,39]. Intermediate
10 consequently condenses with the aldehyde which was
activated by p-TSA to generate imine 7. The combination of 6
and 7 allows the production of iminium ion 8. Finally, an
intramolecular cyclization of 8 leads to the formation of 9
which subsequently undergoes deaminative elimination to result

Beilstein J. Org. Chem. 2014, 10, 287-292.

product 5 by releasing the amine catalyst for further recycling
(Scheme 3).

Conclusion

In conclusion, we have established an unprecedented amine-
initiated three-component protocol for the synthesis of new
DHPMs wherein readily available alkynes served as C5-C6
building blocks. This methodology displayed general applic-
ability for aryl- and alkylaldehydes, urea, thiourea, N-substi-
tuted thiourea and different alkyl propiolates. The method is
useful for the synthesis of diverse new DHPMs which were
hardly accessible through known methods such as the Biginelli
reaction.

Experimental

General information

All reagents were obtained from commercial sources and used
directly without further purification, solvents have been treated
following standard processes prior to use. 'H and '3C NMR

/—\ _/—COOEt

COOEt -
E ] EtOOC—/_ i A
6a, 95 %
S TMSCI/DMF 5a
OHCOCI + J o+ 68— 2)
HoN™ “NH, pTSA90°C 40,

Scheme 2: Synthesis of enamino ester intermediate and its transformation to DHPM.

R1
H-
k\O’ OTs X
R1V/N X TMSHNJ\NHRz
COOR3 a 7
!/
\\/N\/ OR3 TMSOX
I /\‘ X=Hor TMS x
3 6 1 ez
O R +
H R30 NH  TMSCI
N N\
IS /HN/&X
N l\ B | Il?z
0 R 8

Scheme 3: Proposed reaction mechanism.
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spectra were recorded on a 400 MHz or 600 MHz apparatus.
The frequencies for 'H NMR and '3C NMR experiments are
400 MHz/600 MHz and 100 MHz/150 MHz, respectively. The
chemical shifts were reported in ppm employing TMS as
internal standard. Melting points were measured with an X-4A
instrument without correcting the temperature, IR spectra were
measured in KBr on a Spectrum One apparatus and the HRMS
were obtained under ESI mode in a Bruker 7-tesla FT-ICR MS

instrument.

General procedure for the three-component

synthesis of DHPMs 5

Aldehyde 1 (0.3 mmol), urea/thiourea 2 (0.4 mmol) and alkyl
propionate 3 (0.3 mmol) piperazine (0.15 mmol), and p-tolyl-
sulfonic acid (0.15 mmol, 0.3 mmol for the reaction of urea)
were charged in a 25 mL round bottom flask equipped with a
stirring bar. DMF (THF for the reaction of urea) (4 mL) and
TMSCI (0.6 mmol, 0.9 mmol for the reaction of urea) were
added and the mixture was stirred at 90 °C for 12 h (TLC).
After cooling down to room temperature, 5 mL water was
added, and the resulting mixture was extracted with ethyl
acetate (3 X 8 mL). The organic layers were combined and dried
overnight with anhydrous MgSOy. After filtration and removing
of the solvent under reduced pressure, the residue was subjected
to flash column chromatography to provide pure products.

Synthesis of intermediate 6a. Into a 25 mL round bottom flask
was added ethyl propiolate (0.6 mmol) and piperazine
(0.3 mmol). 1.5 mL DMF was added and the mixture was
stirred at rt for 8 h (TLC). Upon completion, 10 mL water was
added and the resulting mixture was extracted with EtOAc
(3 x 10 mL). The combined organic layer was dried with anhy-
drous Na,;SO4 After removing of the solid by filtration and
evaporation of the solvent the product 6a was isolated as white
solid.

Supporting Information

Supporting Information File 1

Experimental details on the synthesis of all DHPMs 5 and
intermediate 6a, full characterization data as well as 'H and
13C NMR spectra of all products 5 and 6a.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-25-S1.pdf]
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