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Background: The tumor microenvironment (TME), which involves infiltration of multiple
immune cells into the tumor tissues, plays an essential role in clinical benefit to therapy.
The chemokines and their receptors influence migration and functions of both tumor and
immune cells. Also, molecular characteristics are associated with the efficacy of
melanoma therapy. However, there lacked exploration of immune characteristics and
the association with molecular characteristics.

Methods: We collected the currently available 569 melanoma samples that had both the
genomic and transcriptional data from TCGA and SRA databases. We first identified TME
subtypes based on the developed immune signatures, and then divided the samples into
two immune cohorts based on the immune score. Next, we estimated the compositions of
the immune cells of the two cohorts, and performed differential expression genes (DEGs)
and functional enrichments. In addition, we investigated the interactions of chemokines
and their receptors under immune cells. Finally, we explored the genomic characteristics
under different immune subtypes.

Results: TME type D had a better prognosis among the four subtypes. The high-immunity
cohort had significantly high 16 immune cells. The 63 upregulated and 384
downregulated genes in the high-immunity cohort were enriched in immune-related
biological processes, and keratin, pigmentation and epithelial cells, respectively. The
correlations of chemokines and their receptors with immune cell infiltration, such as
CCR5-CCL4/CCL5 and CXCR3-CXCL9/CXCL10/CXCL11/CXCL13 axis, showed that
the recruitments of 11 immune cells, such as CD4T cells and CD8T cells, were modulated
by chemokines and their receptors. The proportions of the four TME subtypes in each
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molecular subtype were comparable. The two driver genes, CDKN2A and PRB2, had
significantly different MAFs between the high-immunity and low-immunity.

Conclusion: We dissected the characteristics of immune infiltration, the interactions of
chemokines and their receptors under immune cells, and the correlation of molecular and
immune characteristics. Our work will enable the reasonable selection of anti-melanoma
treatments and accelerate the development of new therapeutic strategies for melanoma.
Keywords: melanoma, tumor microenvironment, molecular characteristics, survival outcome, chemokines and
their receptors
INTRODUCTION

Melanoma is the most deadly kind of skin cancer in which cancer
cells form in melanocytes (1). It is also a highly heterogeneous
cancer, which has been putting a heavy burden on human health
with a higher risk of metastasis and a high death rate (2). The
number of cases of melanoma has been increasing over the past
30 years. It was reported that there were more than 324,600
diagnosed cases and 57,000 deaths worldwide in 2020 (2).

The tumor microenvironment (TME), which involves
infiltration of multiple immune cells into the tumor tissues, plays
an essential role in prognosis and clinical benefit to therapy. Some
studies have reported the infiltration of immune cells in the
melanoma microenvironment (3, 4). Immune cells play a
dualistic role, including promoting tumor development or anti-
tumor development, and they create different microenvironments
depending on their types and interactions (5). The chemokines and
their receptors influencemigrationand functionsofboth tumorand
immune cells, which significantly impacts tumor fate and is critical
inmelanoma control and progression (6). Therefore, it is important
to understand the characteristics of immune infiltration and the
interactions of chemokines and their receptors under immune cells.

A study reported a widely suitable immune subtyping method,
which identified six immune subtypes among more than 10,000
tumors comprising 33 diverse cancer types, based on the five
representative signatures including IFN-r, TGF-b, Macrophage,
Lymphocyte and Wound healing based on 160 immune expression
signatures (7). Then, a pan-cancer study extended to 29 functional
gene expression signatures (Fges) for immune subtyping (8). It
selected Fges representing the major functional components and
immune, stromal, and other cellular populations of the tumor by
integratingknowledge frommultiplepublications.Then, the ‘29Fges’
werechosenbyusing tSNEprojections andMann-Whitney tests, and
were divided into four groups according to their functions, processes
or cell types. Finally, the tumor samples were classified into four
subtypes using unsupervised clustering based on the ssGSEA scores
of the expression patterns of 29 Fges. The two studies focused on the
pan-cancer, but lacked exploration of immune characteristics for
melanoma. A recent study revealed three immune cell infiltration
(ICI) clusters associated with different immune subtypes, and
assessed the predictive values of the ICI scores for the immune
therapy benefit in melanoma (4). The ICI clusters were identified
using limited features, and this study provided little information for
the association of TME andmolecular characteristics for melanoma.
2

The Cancer Genome Atlas (TCGA) developed a molecular
subtyping method based on the mutations for melanoma (9). The
resulting fourmolecular subtypeswereBRAFsubtype characterized
by BRAF hot-spot mutations, RAS subtype defined by the presence
of RAS hot-spot mutations in all three RAS family members (N/K/
HRAS), NF1 subtype featured by NF1 loss-of-function mutations,
and Triple-Wild-Type defined by the absence of hot-spots BRAF,
N/H/K/-RAS orNF1mutations. A study showed thewhole genome
mutation landscape of 183 samples of threemelanoma (cutaneous,
acral and mucosal), and revealed diverse carcinogenic processes
across the three subtypes (10). These two studies depictedmolecular
characteristics only.

To fill in the gaps of these previous studies, we employed the
currently available 569melanoma samples that had both the genomic
and transcriptional data, and we took the advantages of the developed
immune and molecular subtyping methods to dissect the
characteristics of immune infiltration, the chemokine-receptor pairs
under immune cells, and the correlation of molecular and immune
characteristics.We identified candidate biomarkers that can be used to
predict clinical benefits for melanoma, which enables the reasonable
selection of anti-melanoma treatments. Our work contributes to the
understanding of melanoma immune microenvironment and the
association with molecular characteristics, which will facilitate the
development of new therapeutic strategies for melanoma.
MATERIALS AND METHODS

Melanoma Data Resources
We collected 569 melanoma samples from four datasets from the
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and
SRA databases, of which 567 samples had both transcriptional and
genomic data and 2 samples had the transcriptional data only
(Supplementary Table S1). Accessions for these 569 samples are
the TCGA skin cutaneous melanoma project (TCGA-SKCM),
phs001036 (11), phs000452 (12) and SRP070710 (13).
RNA-Seq Processing
99 of the 569 samples hadnonormalized counts, sowe aligned their
RNA-seq reads to the human reference genome GRCh37 using
STAR (14) v2.7.5b with default parameters, and quantified the
resulting gene expression count matrix with RSEM (15) v1.3.1.
Then we integrated with the count matrix of the 470 samples, and
April 2022 | Volume 12 | Article 821578
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did quantile normalization. The batch effect was eliminated by
Combat_seq (16).

Detection of CNV
The CNVs of the 469 samples were predicted by GISTIC (17)
with 0.95 GISTIC significance threshold. The CNV levels were
extracted from the output files for all genes using a cutoff of ±2.
The CNVs of the 98 samples were downloaded from cBioportal
(https://www.cbioportal.org/datasets).

TME Subtyping
29Fges representing four immune signaturemodules, includinganti-
tumor microenvironment, pro-tumor microenvironment,
angiogenesis fibrosis and malignant cell properties, were selected to
identify TME subtypes. The detailed information about the 29 Fges
was showed in Supplementary Table S2. 29 Fges signature scores
were calculated using Single-sample gene set enrichment analysis
(ssGSEA) inpython3 andmedian-scaled for all the samples. Thenwe
classified the samples using louvain community detection algorithm
to identify immune subtypes based on the signature scores. The
immune and stromal cell scores were estimated by the ESTIMATE
method (18). According to the immune scores, we divided the
patients into two cohorts, high-immunity and low-immunity for
the following analysis.

Evaluation of Overall Survival
To evaluate the impact of immune features on patients’ outcome,
the R package survival and survminer were used to analyze the
Overall Survival (OS) using the Kaplan-Meier method. P-value
of less than 0.05 was considered to be statistically significant.

Depiction of Immune Cell Population and
the Relationship With Chemokines and
Their Receptors
To identify the differences of the fractions of immune cell types
between the high-immunity and low-immunity cohorts, we used
ImmuneCellAI (19) to estimate the compositions of the immune
cells. For each immune cell, the statistical difference in the
compositions between the high-immunity and low-immunity
cohorts was evaluated by Mann-Whitney U test. The relationships
of immune cells and the interaction between chemokines and their
receptors were evaluated by Spearman’s correlation. Abs(r) > 0.5 and
p < 0.05 were considered to be related and statistically significant,
respectively. The interaction network of Chemokines and their
receptors for immune infiltration in melanoma was constructed by
Gephi v0.9.2.

Detection of Significantly Mutated Genes
and Their CNVs
To identify driver genes, MutSigCV (20) was used based on 568
samples. Genes with q < 0.1 were deemed significant, and the genes
whose MAFs were less than 1% were removed. The statistical
differences of the identified driver genes between the high-
immunity and low-immunity cohorts were performed by
Fisher’s exact test. The distributions of the driver genes in the
high-immunity and low-immunity cohorts were performed by R
Frontiers in Oncology | www.frontiersin.org 3
package Maftools (21) and ComplexHeatmap (22). For the CNVs
of these significantly mutated genes, the statistical differences
between the high-immunity and low-immunity cohorts were
evaluated by Fisher’s exact test.

Identification of Differentially Expressed
Genes and Functional Enrichment Analysis
The differential gene expression analyses between the high-
immunity and the low-immunity cohorts were performed by
DESeq2 (23), and the estimated significance level (P-value) for
the differential expression analysis was adjusted by Benjamini
and Hochberg False Discovery Rate (FDR) correction. The Gene
Ontology (GO) enrichment analyses of differential expression
genes were performed by the R package clusterProfiler (24, 25).

Molecular Subtyping
We classified the samples into four molecular subtypes: BRAF
subtype characterized by BRAF hot-spot mutations, RAS subtype
defined by the presence of RAS hot-spot mutations in the three
RAS families (N-, K-, and H-RAS), NF1 subtype characterized by
the NF1 loss-of-function mutations, and Triple-Wild-Type
defined by the absence of hot-spots BRAF, N/H/K/-RAS, or
NF1mutations. Hot-spot mutations with p-values less than 1e-8
for the genes were chosen from HotSpotsAnnotations.
RESULTS

Different Survival Outcomes of the TME
Subtypes in Melanoma
To understand how the interaction of the tumor cells and immune
and stromal cells influences the prognosis, we did the TME
subtyping and the prognostic analysis of the 569 melanoma
samples. The 29 Fges constitute four groups, including anti-
tumor, pro-tumor microenvironment, angiogenesis fibrosis and
malignant cell properties (8). The expression patterns of these 29
Fges were used to identify the immune subtype. The 569 samples
were classified into four immune subtypes (Figure 1A). Compared
with the other immune subtypes, TME type D had higher
expressions in genes involved in anti-tumor immune and tumor-
promoting processes. TME typesA andChadhigher expressions in
genes involved in angiogenesis fibrosis. Furthermore, TME type B
displayed higher gene expression levels in B_cells Fges than types A
and C, and TME type A had the highest gene expression levels in
neutrophil_signature and granulocyte_traffic.

To assess the prognostic values of TME subtypes, the Kaplan-
Meier method was used to analyze the overall survival (the log-
rank test, A: B: C: D, p < 0.0001, Figure 1B). The overall survival
analysis showed that TME subtype D was characterized by a
better overall survival, whereas TME subtypes A and C had the
worse prognosis. TME subtype B had an intermediate survival
outcome. Then, the stromal score and immune score of these
four TME subtypes were calculated by ESTIMATE algorithm to
measure the presence of tumor-associated stroma and the
immune score. As shown in Figure 1C, the immune score of
TME subtype D was significantly higher than that of the other
April 2022 | Volume 12 | Article 821578
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subtypes, indicating subtype D had an immune-hot phenotype
with a better prognosis (Mann–Whitney U test, p < 0.05). In
terms of the stromal score, subtype C represented a higher score,
while the subtype B had the lowest score (Mann–Whitney U test,
p < 0.05, Figure 1D).

Differences of the Immune Cells
Population Between Immune Subtypes
Tumor-infiltrating immune cells are able to deeply influence tumor
progression and patient outcome. So based on the immune score,
we divided the samples into two cohorts, a high-immunity cohort
including 175 samples from TME subtype D, and a low-immunity
cohort including 393 samples from TME subtypes A, B and C
(Figures 2A, B). The overall survival analysis showed that the high-
immunitycohorthadabetterprognosis,whereas the low-immunity
had a worse outcome (Figure 2B). Furthermore, ImmuneCellAI
method was employed to measure the immune cell compositions.
As shown in Figures 2C, D, the compositions of the immune cells
varied between the two cohorts. The high-immunity cohort had
significantly higher cytotoxic T cells, exhausted T cells, T regulatory
type 1 (Tr1) cells, natural regulatory T (nTreg) cells and induced
regulatory T (iTreg) cells, T helper type 2 (Th2) cells, T follicular
helper (Tfh) cells, central memory T (TCM) cells, as well as
dendritic cells (DC), gamma delta T cells and T lymphocytes
(both CD4 T cell and CD8 T cell) (Mann-Whitney U test, p <
0.001,Figure 2C), while the low-immunity had significantly higher
naive CD8 T cells, helper 17 (Th17) cells, B cells and neutrophil
(Mann-Whitney U test, p < 0.001, Figure 2D). On the contrary,
macrophage, mucosal associated invariant T (MAIT) cells, natural
Frontiers in Oncology | www.frontiersin.org 4
killer (NK) cells showed decreased differences between the two
cohorts (Mann-WhitneyU test, 0.001< p < 0.05), and there were no
statistically significantdifferences innaiveCD4Tcells, Thelper type
1 (Th1) cells, effectormemoryT (TEM) cells, natural killer T (NKT)
cells and monocyte cells between the two cohorts (Supplementary
Figure S1).

Differential Expression Analysis
and Functional Enrichments
Between Immune Subtypes
The differential expression analysis between the high-immunity
and low-immunity cohorts was performed based on the expression
profiles of the 569 melanoma samples. The genes with the FDR <
0.05 and abs (log2 FoldChange) > 2 were selected as differentially
expressed between the two cohorts. As a result, there were 63
upregulated and 384 downregulated genes in the high-immunity
cohort (Figure 2E). PLA2G2D, IFNG, CD8B and NKG7 were
found to be significantly upregulated, which are associated with
tumor immunity (Supplementary Table S3). LAG3 is also
significantly upregulated, which has primarily been shown to
inhibit activity of T-cells (26). However, it was reported that
LAG3 expression was associated with an improved overall
survival (OS) compared to patients without LAG3 expression in
oesophageal adenocarcinoma (27). LAG3may serve as a biomarker
for a strong immune response, and the two opposite immune
functions (positively or negatively) of LAG3 can be attributed to
the complexity of tumor immune microenvironment and tumor
heterogeneity (28). The function of LAG3 in melanoma needs
further experiments to verify. The downregulated genes were
A B

C D

FIGURE 1 | Four TME subtypes identified in melanoma. (A) Four TME subtypes showed differences in expression patterns of these 29 Fges. (B) Kaplan-meier
curves of overall survival for four TME sbutypes. Log rank test p <0.0001. The mouths were calculated by years*365/12 or days/365*12. (C) The immune score of
four TME subtypes. *** p<0.001; ns, no significance. (D) The stromal score of four TME subtypes. * p<0.05; *** p<0.001; ns, no significance.
April 2022 | Volume 12 | Article 821578
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mainly keratin, pigmentation, and epithelial genes such as KLK7
and IVL (Supplementary Table S3).

Furthermore, functional enrichments by clusterProfiler found
that the upregulated genes in high-immunity cohort were
enriched in immune-related biological processes, such as T cell
activation, cell killing and leukocyte cell−cell adhesion
(Figure 2F), indicating a favorable lymphocyte activation
related to the immune system. Some upregulated genes, such
as ADORA2A (29) and SLAMF6 (30), have been experimentally
verified to be associated with tumor infiltration and T cell
activation. In addition, TIGIT, which is a T-cell immune
receptor with Ig and ITIM domains (31) and was upregulated
in the high-immunity, has been recently identified as an attractive
cancer immunotherapy target, because of its key role in interactions
between the cells within the tumor microenvironment. The down-
regulated genes were enriched in cornification, epidermis
development, and keratin-related process (Figure 2G), all of
which are associated with forming the outermost skin barrier
(32). For example, human tissue kallikreins 7 (hKLK7) takes part
Frontiers in Oncology | www.frontiersin.org 5
in skin desquamation, which has been involved in keratinocyte cell
shedding to catalyze the degradation of intercellular cohesive
structures at the skin surface (33).

Different Chemokine–Receptor Pairs
in Immune Cells
Patient prognosis is related to the variety of immune cells.
Particular chemokine and their receptors that are expressed on
tumor and immune cells are strongly associated with patient
prognosis as well. The immune cells are recruited from the
circulation to the tumor microenvironment through the
chemokine–receptor pairs, all of which play the essential roles
in cell migration, proliferation and survival (34). We examined
the differences in gene expressions of the chemokines and their
receptors between the high-immunity and low-immunity cohort.
The chemokines, XCL1, XCL2, CCL4, CCL5, CXCL13, CXCL11,
CXCL10 and CXCL9 were found to be upregulated in the high-
immunity cohort, which recruit different subsets of immune cells
into the tumor microenvironment. Most of the chemokine
A C

E F

D

G

B

FIGURE 2 | Differences of the immune cells population, expression analysis and functional enrichments between the high-immunity and the low-immunity cohort.
(A) The immune score and stromal score of the high-immunity and the low-immunity cohort. (B) Kaplan-meier curves of overall survival for the two immunity cohorts.
Log rank test, p <0.0001. (C) 16 significantly higher immune cells in the high-immunity cohort. (D) 4 significantly higher immune cells in the low-immunity cohort.
(E) Volcano Plot of the DEGs for the high-immunity cohort. (F, G) GO function enrichments analysis of up-regulated and down-regulated genes for the high-immunity cohort.
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receptors were overexpressed in the high-immunity cohort as
well (Figure 3A).

The chemokine–receptor pairs with immune cell infiltration
showed that the recruitmentsofCD4Tcells, cytotoxicT cells, iTreg,
Tfh, Th2, Tr1 cells, DC cells, gamma delta T cells, CD8 T cells,
exhausted T cells and nTreg cells were modulated by chemokines
and their receptors (Supplementary Figures 2A, B). The latter 5
cells had less significantly related chemokine receptors (Spearman’s
correlation, abs(r) > 0.5, p < 0.05, Figure 3B). The chemokine–
receptor pairs in all of the above immune cells were displayed in
Supplementary Table S4. CCR5-CCL4/CCL5 and CXCR3-
CXCL9/CXCL10/CXCL11/CXCL13 axis were significantly
correlated with CD 4 T and CD 8 T cells, indicating that these
chemokine–receptor pairs may recruit the T lymphocytes into
tumor (Figures 3C, D). The role for CCR5 has been documented
in T-cell recruitment to the tumor site, and local production of
CCL5 or CCL3 induces selective recruitment of CD8 T cells and
CTL-dependent tumor suppression in mouse models (35). It
showed that high levels of CXCL9 were associated with strong
infiltration of malignant melanoma by CD8 T cells and
Frontiers in Oncology | www.frontiersin.org 6
improvement in patient survival (36). In addition, CD 4 T cell
was significantly associated with other chemokine–receptor pairs,
including XCR1-XCL1/XCL2, CCR7-CCL19/CCL21, CCR3/
CCR1-CCL5, CCR2-CCL2, CXCR4-CXCL12 and CCR4-CCL22
(Figure 3C). Overexpressed chemokines and their receptors were
likely to be involved in the anti-tumor immune response by
promoting the migration of immune cells.

The Genomic Characteristics Under
Different Immune Subtypes
The differences of somatic mutations, including single nucleotide
polymorphism (SNP), insertion (INS), deletion (DEL), missense
mutations and nonsense mutations, between the high-immunity
and low-immunity cohort were investigated. The high-immunity
cohort held a significantly larger number of SNP, missense and
nonsense mutations than that in the low-immunity (Mann-
Whitney U test, p < 0.05, Figure 4A). Then, we identified the
significantly mutated genes, which were CDKN2A, NRAS, PPP6C,
BRAFandTP53,PTEN,NBPF1,NF1, aswell as PRB2,RAC1,B2M,
PARM1, FLT3. Considering that HRAS and KRAS belong to the
A B C

D

FIGURE 3 | Different expressions of chemokines and their receptors between two immunity cohorts, and the chemokine–receptor pairs in immune cells. (A) The
differences in gene expressions of the chemokines and their receptors between the high-immunity and low-immunity cohort. (B) The correlations of chemokines and
their receptors with immune cell infiltration. (C, D) Chemokine/receptor networks for immune infiltration of CD 4 T cells and CD 8 T cells. For a pair of interacting
chemokine and receptor genes, if both were significantly correlated with immune cell infiltration, a star was placed on the edge connecting the chemokine and
receptor. Statistical significance was calculated using Spearman’s correlation.
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RAS family, the two genes were thought to be significantlymutated
genes (9). We observed that two genes (CDKN2A and PRB2) had
different MAFs between the high-immunity and low-immunity
cohort (Fisher’s exact test, p < 0.05, Supplementary Table S5). The
CDKN2A and PTEN genes were significantly deleted in the low-
immunity cohort, whereas RAC1 was significantly amplified in the
low-immunity cohort (Fisher’s exact test, p < 0.05, Supplementary
Table S5).

Furthermore, to explore the relationship of the immune
subtypes and the molecular subtypes, we did molecular subtyping
based on the mutations (9). As shown in Figure 4B, the alluvial
diagram displayed the distribution of the TME subtypes under
different molecular subtypes and immune-cohorts. The
proportions of the four TME subtypes in each molecular subtype
were different. BRAF subtype showed the largest representations in
all the fourTME subtypes, while NF1mutant subtype displayed the
smallest representations (Supplementary Figures S3A, B). The
proportion of RAS subtype in TME subtype A was lower than that
inTriplewild type (20.33% forRAS-subtype, 26.83% for Triplewild
type), while the proportions of RAS subtype in the other three TME
Frontiers in Oncology | www.frontiersin.org 7
subtypes were higher than that in Triplewild type (29.91%, 25.77%,
32.57% for RAS-subtype in TME B, C and D, and 28.04%, 22.09%,
21.71% for Triple wild type in TME B, C and D).

The MAFs of the 15 significantly mutated genes, of which 5
genes were used to do molecular subtyping, in the high-
immunity and low-immunity cohorts were illustrated in
Figure 4C. The BRAF subtype represented the largest
molecular classification, which constituted 47.4% and 48.9% of
the high-immunity cohort and the low-immunity cohort,
respectively. The most frequent BRAF mutation targeted the
V600 amino acid residue. The second largest subtype was RAS
family members (NRAS, 27.4% of the high-immunity cohort and
24.9% of the low-immunity; KRAS, 3.4% and 1.8% of the high-
immunity cohort and the low-immunity cohort; HRAS, 4% and
1.5% of the high-immunity cohort and the low-immunity
cohort). The RAS subtype included G12, G13 and Q61 hot-
spots mutations without the BRAF V600 and K601 mutations.
The NF1 subtype contributed to 13.7% and 13.2% of the high-
immunity and low-immunity cohort, respectively. NF1 is a
significantly mutated gene in the MAPK pathway, which
A B

C

FIGURE 4 | The genomic characteristics under different immune subtypes. (A) The differences in the number of somatic mutations between the two immunity
cohorts. (B) Alluvial diagram of molecular subtypes distribution under TME subtypes and two immunity cohorts. (C) Waterfall plot of the frequency distributions of the
significantly mutated genes. The numbers of the mutations of each sample were showed in upper panel.
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downregulates RAS activity as a negative regulator of the RAS
signal transduction pathway (37). The Triple-WT subtype was
defined by a lack of hot-spot BRAF, N/H/K-RAS or
NF1 mutations.
DISCUSSION

Due to its high mutational load, melanoma represents one of the
most immunogenic tumors with the potential to immune
responses. To understand the immune microenvironment and
molecular characteristics, we analyzed the transcriptional and
genomic data of 569 melanoma samples from public databases.
We identified four immune microenvironment subtypes. TME
subtype D represented the overexpression of anti-tumor
microenvironment, indicating that there were more immune
features in this subtype. The TME subtypes A and C had the
higher expressions of angiogenesis fibrosis comprising major
stromal components. When it came to the prognostic benefit,
TME subtype D had a better outcome, while TME subtype A
represented a worse overall survival. Furthermore, TME subtype D
had a significantly higher immune score than the other subtypes.
The samples were divided into a high-immunity cohort and a low-
immunity cohort based on their immune scores.

The high-immunity cohort had significantly higher T
lymphocytes (CD 4 T and CD 8 T cells) and others immune
cells such as Tr1, Th2, nTreg and iTreg, which explained the
better overall survival of the high-immunity cohort. The
differential expression analysis between the high-immunity and
low-immunity cohorts showed that the high-immunity cohort
had 63 upregulated and 384 downregulated genes. The 63
upregulated genes, including PLA2G2D, IFNG, LAG3, CD8B
and NKG7, were associated with tumor immunity. The
downregulated genes, such as KLK7 and IVL, were mainly
associated with keratin, pigmentation, and epithelial genes. IVL
may play an important role in the progression of melanoma (38).
The upregulated genes were enriched in canonical immune
biological processes, such as T cell activation and cell killing.
As expected, the downregulated genes were enriched in
cornification, epidermis development, and keratin-related
process, all of which are likely able to modulate the tumor-
development-related pathways (33).

Chemokines are a kind of chemotactic cytokines, which recruit
lymphocytes through specific binding with their receptors in a
specific way, and play an important role in the process of human
inflammatory response and immune regulation (39). Chemokine
receptors take part in the tumor proliferation, differentiation,
invasion, and metastasis biological processes (34, 39). We found
that the chemokines and their receptors, including XCL1, XCL2,
CCL4, CCL5, CXCL13, CXCL11, CXCL10, CXCL9 and CCR5,
CXCR3, CXCR6, significantly upregulated in the high-immunity
cohort. Furthermore, CCR5-CCL4/CCL5 and CXCR3- CXCL9/
CXCL10/CXCL11/CXCL13 axis were significantly correlated with
CD 4 T and CD 8 T cells, indicating that these interactions may be
essential for the recruitmentof theT lymphocytes into tumor.These
findings may provide a new clue for biomarkers in melanoma.
Frontiers in Oncology | www.frontiersin.org 8
A recent study reported four molecular subtypes for melanoma
that were proven to be beneficial for highlighting key potential
subtype-specific drug targets (9). The proportions of the four TME
subtypes in each molecular subtype were comparable. Next, we
combined the genes used for molecular subtyping with the
identified significantly mutated genes, and investigated their
distributions in the immune subtypes. The two driver genes,
CDKN2A and PRB2, had significantly different MAFs between the
high-immunity and low-immunity. In terms of theCNVs,CDKN2A
and PTEN were significantly deleted in the low-immunity cohort,
whereas RAC1 was significantly amplified in the low-immunity
cohort. These observations suggested that these mutations may be
thepotential biomarkers topredict clinical benefits inmelanoma, and
enable the reasonable selection of anti-melanoma treatments. Our
study will provide a deep understanding of melanoma immune
microenvironment and molecular characteristics, and facilitate the
development of new therapeutic strategies for melanoma patients.
There are some limitations of our study. The candidate biomarkers
wereachievedbycomputationalmethods. Experiments areneeded to
verify their roles in the clinical therapy of melanoma. Also, the
biomarkers were identified based on the limited melanoma samples,
and a larger cohort is needed to reveal biological signatures to
improve the anti-melanoma strategies.
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