
Research Article
Action Recognition Using Action Sequences Optimization and
Two-Stream 3D Dilated Neural Network

Xin Xiong ,1,2,3 Weidong Min ,2,3,4 Qing Han ,4 Qi Wang ,5 and Cheng Zha 4

1Information Department, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
2Institute of Metaverse, Nanchang University, Nanchang 330031, China
3Jiangxi Key Laboratory of Smart City, Nanchang 330047, China
4School of Mathematics and Computer Science, Nanchang University, Nanchang 330031, China
5School of Software, Nanchang University, Nanchang 330047, China

Correspondence should be addressed to Weidong Min; minweidong@ncu.edu.cn

Received 18 January 2022; Revised 28 April 2022; Accepted 24 May 2022; Published 13 June 2022

Academic Editor: Hubert Cecotti

Copyright © 2022 Xin Xiong et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Effective extraction and representation of action information are critical in action recognition. (e majority of existing methods
fail to recognize actions accurately because of interference of background changes when the proportion of high-activity action
areas is not reinforced and by using RGB flow alone or combined with optical flow. A novel recognition method using action
sequences optimization and two-stream fusion network with different modalities is proposed to solve these problems.(emethod
is based on shot segmentation and dynamic weighted sampling, and it reconstructs the video by reinforcing the proportion of
high-activity action areas, eliminating redundant intervals, and extracting long-range temporal information. A two-stream 3D
dilated neural network that integrates features of RGB and human skeleton information is also proposed. (e human skeleton
information strengthens the deep representation of humans for robust processing, alleviating the interference of background
changes, and the dilated CNN enlarges the receptive field of feature extraction. Compared with existing approaches, the proposed
method achieves superior or comparable classification accuracies on benchmark datasets UCF101 and HMDB51.

1. Introduction

Action recognition [1–3] has received wide attention from
academic communities due to its wide applications in areas,
such as behaviour analysis and public safety in smart city.
Internet of (ings devices collect surveillance videos in the
city and analyze the data by using an artificial intelligence
system with the fusion of edge and cloud computing. Action
recognition is an important application in a smart city. As a
result of the interference of complex background in in-
dustrial scenarios, the recognition accuracy of this method is
low, which is why it is rarely effectively used in practice. (e
proposedmethod is committed to improving and solving the
problem of the poor effect of action recognition by reducing
interferences and extracting discriminative action feature in
practical application. An action has two crucial and com-
plementary feature cues, namely, appearances and temporal

information [4, 5]. (e appearances contain spatial infor-
mation of action and scene information. (e temporal in-
formation connects action spatial information from video
frames to construct an action line. Assessing the effective-
ness of an action recognition system or algorithm can be
measured by how well spatial and temporal features are
extracted to some extent. (ese spatial and temporal in-
formation provide discriminative action features. References
[1–5] focused on spatial and temporal feature extraction and
representation. However, extracting feature information is
difficult due to many challenges, such as scene changes,
different viewpoints, and camera movements. Hence, de-
signing an effective and robust action recognition algorithm
and system is crucial. In recent years, deep learning [6] has
progressed considerably in image-based object and scene
classification [7–10] and recognition [11–14]. It has also
been successfully used in human action recognition.
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However, deep learning in video has failed to achieve the
same level of progress as deep learning in image and many
problems have yet to be solved.

(e action recognition problem is primarily a classifi-
cation issue. Existing methods have two outstanding prob-
lems. First, most existing methods cannot accurately
recognize actions because of the interference of background
changes caused by not reinforcing the proportion of high-
activity action areas and by using the RGB flow only or in
combination with the optical flow. Second, the accuracy of
some methods that extract action features from RGB video
only is influenced by changes in background, angle, illumi-
nation, and other factors. Other methods use optical flow as
the supplementary modality and not only extract the action
feature but also mix the change information of background.
(e optical flow fails to extract and represent the structure
feature of the human body. (e skeleton flow is introduced,
which can fully represent the feature information of human
motion without the interference of scene changes, to focus on
action recognition.(e RGB flow contains more interference.
Our approach does not simply discard RGB information but
also fuses the features of twomodalities.(emotivation of the
proposed method is to strengthen high-activity action por-
tions by optimized sampling and by combining the skeleton
and RGB information for discriminative feature extraction.
Existing works do not focus on improvement of these two
parts. (us, a method using action sequences optimization
and two-stream 3D dilated neural network with different
modalities for action recognition is proposed in this paper.
(is method reconstructs the video by reinforcing the pro-
portion of high-activity action areas. A two-stream 3D dilated
neural network is then constructed to integrate the features of
RGB and skeleton modalities. (e academic contributions of
this study are as follows:

(1) (e action sequences optimization method based on
shot segmentation and dynamic weighted sampling
reconstructs the video by reinforcing the proportion
of high-activity action areas, eliminating redundant
interval, and extracting long-range temporal
information.

(2) A two-stream 3D dilated convolution neural net-
work integrates features of RGB and human skeleton
information is also proposed. (e human skeleton
information strengthens the deep representation of
humans for robust processing and alleviates the
interference of background changes, and the dilated
convolution neural network (CNN) enlarges the
receptive field of feature extraction.

(e rest of this paper is organized as follows. A review of
existing studies is presented in Section 2. (e proposed
method is described in Sections 3 to 5. Experimental and
evolution results are discussed in Section 6. (e conclusion
is drawn in Section 7.

2. Related Works

Many studies on action recognition have focused on datasets
[15, 16] and action classification [17–20] in recent years.

Action recognition is difficult to achieve due to large
intraclass otherness, nondeterminacy of different actions,
and difficult-to-annotate large-scale datasets. Many re-
searchers have focused on action recognition using con-
volution networks [21–24] and applications [7–9]. Action
recognition and object detection have similar notions in
technology. Object recognition and action representation
are achieved using statistical models of local video de-
scriptors. Unlike object detection, actions are characterized
using spatiotemporal evolution of motion with appearance.
Descriptors, such as histograms of optical flow and histo-
grams of oriented gradient [25], have been successfully used
for action recognition in practice.(esemethods can only be
effective for feature analysis and recognition of a few actions
under many constraints. Visual representations learned
from CNNs [26] have demonstrated more advantages than
hand-crafted features from static images [27–29]. Consistent
with previous results of studies that use hand-crafted fea-
tures, motion-based CNNs perform better than single RGB
inputs [30]. Several recent works have proposed CNN
extensions for action recognition in video. Some methods
utilize deep architectures with 2D-CNN to extract invari-
ance features from some video sequences and achieve sat-
isfactory results even when modality fusion and temporal
modelling with sparse sampling for eliminating redundant
information are ignored [8–10]. However, these methods are
insufficient for big datasets with many classifications. (e
3D-CNN provides a simple and effective strategy for
extending 2D convolutions to process videos, address the
problem, and encode spatial and temporal features simul-
taneously. Although 3D-CNNs [24, 31] can demonstrate
satisfactory performance, these approaches learn video
representations for RGB input only and extract temporal
features from some continuous frames. Finite video frames
can only aggregate short-term temporal features, lacking
long-range temporal extraction ability. Moreover, the large
number of parameters from each 3D convolution filter
increases the computational burden. Reference [1] incor-
porated two CNNs to fuse motion and appearance features,
as well as learning appearance and temporal feature from
raw RGB flow frames and optical flow, respectively. Ref-
erence [32] adaptedmethods for action recognition in videos
with simple average pooling and multiscale temporal win-
dow integration. (ese methods experiment with multiple
modalities that complement lacking features as input. (e
methods that use optical flow as the supplementary modality
not only extract the action feature but also mix the back-
ground change information, resulting in low accuracy.

(e long short-term memory- (LSTM-) based approach
[33] uses a spatial-temporal dual-attention network to ex-
tract the high-level semantics features from fully connected
layers and spatial features from middle-level convolution
layers. In [34], a structured adaptive video summarization
method was proposed, which integrates shot segmentation
and video summarization into a hierarchical structure-
adaptive recurrent neural network. To reward the summary
generator under the assistance of the video reconstructor,
Zhao et al. [35] proposed a dual learning framework to
capture both the spatial and temporal information of the
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summary and provide more guidance for the summary
generator. Although these methods have a strong ability to
extract temporal features, they have a weak ability to extract
action spatial features. (e attention-based method [36]
proposed a spatiotemporal attention network to learn the
discriminative feature representation for actions by re-
spectively characterizing the beneficial information at the
frame level and the channel level. Zhao et al. [37] proposed a
coattention model-based recurrent neural network (CAM-
RNN) for video processing, where the CAM is utilized to
encode the visual and text features and the RNNworks as the
decoder to generate the video caption.(ese methods do not
perform well enough for long temporal feature extraction.

Some methods based on a multistream structure have
made new achievements. References [38–40] constructed
multistream networks to extract action features, thus
greatly improving the recognition accuracy and providing
inspiration for related work. Reference [38] proposed a
novel human-related region-based multistream convolu-
tion neural network for action recognition. (e improved
block-sparse robust principle component analysis is pro-
posed to avoid noise. Reference [39] proposed an ActionS-
ST-VLAD approach to aggregate video spatiotemporal
features for action recognition with the consideration of
encoding deep features both in subactions spatially and in
action stages temporally. Reference [40] first proposed a
spatiotemporal saliency-based video object segmentation
model to extract an actor and its most motion salient body
part. (en, a two-stream network (TS-Net) is designed to
extract semantics features. (ese three heuristic methods
use optical flow as recognition modality, which contains
more interferential background information, thus reducing
the accuracy. Garcia et al. [41] proposed a distilled mul-
tistream method and designed an interstream connection
mechanism to improve the learning process of the hallu-
cination work. Reference [42] proposed a two-stream
method by introducing LSTM in spatial flow and DenseNet
in temporal flow to extract spatial and temporal action
features. (ese two methods ignore the noise interference
and extract long-range features by enlarging the receptive
field and eliminating redundant frames.

In the graph-based method [43], a two-stream graph
convolution network (GCN) was proposed to adaptively
extract features from the coordinates of joints. A multi-
stream GCN based on hidden conditional random field
model is proposed in [44] to boost the performance by
retaining the spatial structure of human joints from be-
ginning to end. Only when the structural modelling of
human body is accurate can these methods achieve good
accuracy. However, the oversmoothing issue constrains the
accuracy. (ese methods do not focus on increasing the
proportion of high-activity action areas, eliminating re-
dundant intervals, and extracting long-range temporal
information.

Most existing methods cannot accurately recognize
actions because of the interference of background changes
caused by not reinforcing the proportion of high-activity
action areas and by using the RGB flow only or in
combination with the optical flow. (e interference of

background in RGB flow or optical flow changes influ-
ences the accuracy. To alleviate these problems, an action
recognition method that uses action sequences optimi-
zation and two-stream fusion network with different
modalities is proposed.(e action sequences optimization
method is based on shot segmentation and dynamic
weighted sampling. It reconstructs the video by rein-
forcing the proportion of high-activity action areas,
eliminating redundant intervals, and extracting long-
range temporal information. A two-stream 3D dilated
CNN that integrates the features of RGB and human
skeleton information is proposed as well. (e human
skeleton information strengthens the deep representation
of humans for robust processing and alleviates the in-
terference of background changes, and the dilated CNN
enlarges the receptive field of feature extraction.

3. Overview of the Proposed Method

Accurate extraction of action features is important. (e
proposed two-stream 3D dilated neural network for action
recognition is illustrated in this section. Figure 1 shows the
two components of the proposed method for action rec-
ognition. (e first component is the action sequences
optimization module. (e input video is divided into
several video cubes in accordance with the shot segmen-
tation algorithm [45].(e video is then reconstructed using
the proposed dynamic weighted algorithm to optimize and
recreate action sequences. (e optimized action sequences
module refines the video to increase the ratio of action
features. (en, the reconstructed video flows to the second
component, the two-stream 3D dilated neural network
module. A two-stream CNN is constructed to extract
features of two supplementary modalities, namely, RGB
and human skeleton, to strengthen the deep representation
of humans for robust processing and enlarge the receptive
field of feature extraction. (e network fuses the advan-
tages of two modalities. Class score fusion then yields the
final prediction.

4. Action Sequences Optimization Method

(e majority of existing methods process video sequences
averagely to extract action features without reinforcing the
proportion of high-activity action areas. Even though some
methods are aware of it, they do not process the relationship
between the high-activity and low-activity action areas
properly. Redundant frame parts typically found in video
datasets are a challenge in action recognition. (e noise
interference from redundant frame parts in a video nega-
tively influences the computational cost and performance of
the method and reduces the ability and efficiency of the
algorithm to focus on the action. We attempt to solve these
issues in this section. (e action sequences optimization
method is based on shot segmentation and dynamic
weighted sampling. It reconstructs the video by reinforcing
the proportion of high-activity action areas, eliminating
redundant intervals, and extracting long-range temporal
information.
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4.1. Shot Segmentation. Videos generally have many scenes
or shot cuts and redundant sequence parts, which are a
challenge in action recognition. (e noise interference from
redundant parts in the video has an unpredictable influence
on action recognition and reduces the ability and efficiency
of the algorithm to focus on the action. Videos are a se-
quence of frames. (e change of scene or shot cut causes
interference in action feature extraction. A reasonable video
segmentation method for shot cut is crucial. Our research
dataset HMDB51 contains many videos with two or three
shot cuts. Effective action information is typically found in
only one shot. Hence, shot segmentation in video is an
important research topic.

An existing method such as that presented in [32]
segments the video sequences into fixed three parts on
average and not according to the shot changes, which may
destroy the underlying hierarchical structure of the video.
It is a process of video sequence segmentation, not shot
segmentation. (erefore, the action feature is averagely
processed in the network. (e method we used for seg-
menting the video is according to the shot cut changes to
detect the video shot boundary and preserve the underlying
hierarchical structure of the video, as referred to in a
previous study [45]. (e method based on key frames or
semantic information does not consider the problem of
shot boundary switching, thus causing the video sequence
to contain more interference information. (e proposed
method extracts more features by processing the sequences
that contain more action information. (e proposed
method applies a structural analysis process to detect shot
boundaries; this process consists of two steps: (1) candidate

shot segment selection and (2) cut transition detection.
Each frame in the video should be represented mathe-
matically. To reduce the computational overhead and make
execution faster, only the blue plane, which is most sen-
sitive plane and contains maximum information, is used
instead of the three RGB planes for extracting features. (e
visual feature is extracted using pixel-wise distance [46]
between frames and then it is used to extract potential
candidate segments. Segments are then optimized and
detected using the cut transition detection algorithm based
on discrete cosine transform or horizontal and vertical
coefficients [45]. A vector is formed by systematically
choosing 10 values from the cosine transform of each
frame, and the cosine distance between these vectors is used
for cut transition detection.

(en, we utilize the dynamic weighted sampling algo-
rithm, which reinforces the proportion of high-activity
action areas and allows the sequence to contain more action
features for recognition.

4.2. Dynamic Weighted Sampling Algorithm. After video
shot segmentation, a dynamic weighted sampling algorithm
is used to reconstruct the optimized action video. (e re-
dundant parts are filtered by focusing on dynamic weighted
sampling. A single video is typically divided into one to three
shot parts given the characteristics of datasets. We then
reference the method in [47] to compare the entropy of
different shot parts. (e video shot with maximum entropy
contains nearly complete action information. (us, we
design an algorithm for dynamic sampling of different shots
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Figure 1: Overview of the proposed method. (e optimized action sequences module reconstructs the input video to increase the ratio of
action features. (e network fuses the advantages of two modalities and enlarges the receptive field of action feature.
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with varying entropy weights, average sampling, or random
sampling, as shown in Figure 2.

One frame is sampled in a shot of every T frame in
average sampling. We set Taverage � 2 in this study. One shot
is divided uniformly as a part for every T frame, and one
frame is randomly sampled from each part in random
sampling. If one shot is excessively short, then the algorithm
pads the shot with the last frame to the length of T or nT
frames. In this study, we set Trandom � 4.(e sampling rate is
1/T. Finally, segments are reconstructed to an optimized
video after sampling.

(e single video in datasets can be divided into a
maximum of three shot parts by using the shot segmentation
algorithm. (is condition presents the following situations:
Situation1 � Seg1􏼈 􏼉, Situation2 � Seg1, Seg2􏼈 􏼉, and
Situation3 � Seg1, Seg2, Seg3􏼈 􏼉, where Seg is the segment.
In Situation1, we set the average sampling rate to 1/2 to
obtain optimum results. Table 1 shows the performance
comparison of different sampling rates in various datasets.
(e accuracy of Situation1 and the original video is nearly
the same but the workload and computation are reduced by
half.

In Situation2, the algorithm compares the entropy of
Seg1 and Seg2, and the frequency of segment with larger
entropy is set to 1/2 in average sampling. Random sampling
is also performed in another set. As shown in Table 2,
Seg1 < Seg2. Four possibilities are experimented and, with
the factor that reduces the computational burden taken into
account, the proposed setup is the best choice.

In Situation3, the algorithm compares the entropy of
Seg1, Seg2, and Seg3, with the assumption that Seg2 has the
largest entropy segment. (e sampling rate of the segment
with the largest entropy is set to 1/2 and others are set to 1/4
with random sampling. Four sampling rate possibilities are
tested, and their accuracies are compared in Table 3.

Algorithm 1 describes the proposed action sequences
optimization algorithm. (e input is RGB video sequences,
and the output is reconstructed video sequences. First, the

input video is divided into three segments by using the shot
cut method. Second, the video segments are ranked
according to entropy information. (ird, sampling weights
are assigned dynamically, and the videos are reconstructed
into an optimized video. (e average sampling rate is 1/2,
and the random sampling rate is 1/4. (e action sequences
optimizationmethod processes the time dimension of videos
without additional labels. After one video is sampled into a
relatively short length, 3D-CNN is used to optimize the
video sequence after the reconstruction.

Average Sampling

Random Sampling

Figure 2: Dynamic weighted sampling. In one shot, the different sampling strategy can obtain different reconstructed videos of reconstruct.

Table 1: Accuracy comparison of different sampling rates of Sit-
uation1 (%).

Sampling rate UCF101 HMDB51
1/8 69.65 51.13
1/4 89.29 66.88
1/2 93.93 72.05
1 69.65 51.13

Table 2: Accuracy comparison of different sampling rates of Sit-
uation2 (%).

Sampling rate (Seg1, Seg2) UCF101 HMDB51

1/8, 1/2 92.13 70.79
1/4, 1/2 95.17 75.36
1/2, 1/2 89.45 68.52
1, 1/2 92.99 72.86

Table 3: Accuracy comparison of different sampling rates of Sit-
uation3 (%).

Sampling rate (Seg1, Seg2, Seg3) UCF101 HMDB51

1/4, 1/2, 1/8 93.84 73.88
1/4, 1/2, 1/4 95.85 75.93
1/4, 1/2, 1/2 92.60 69.27
1/4, 1/2, 1 92.38 68.57
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5. Two-Stream 3D Dilated Neural Network

(e extraction of action features of several existing methods
from RGB videos alone influences the accuracy via changes
in background, angle, illumination, and other factors. Other
methods use the optical flow as the supplementary modality
and not only extract the action feature but also mix the
change information of the background. How to strengthen
and extract the action feature from original RGB data is a
challenge. Figure 3 shows the RGB, optical flow, and skel-
eton flow frames of an action. (e proposed neural network
uses multiple modalities, skeleton frame sequences, and
RGB sequences, which is used to deal with these issues and
strengthens the deep representation of humans for robust
processing. Different networks and modalities have varying
specialties for extracting and representing various features.
Appropriate modalities can be used to extract useful features
accurately. (e RGB flow contains both useful information
and useless information. Given the unexplainable nature of
CNNs, identifying an action from the scene is possible. For
example, the horse area in video frames may be the key point
to action recognition in the ride-horse subset in HMDB51
and the green land space dominates most of the video frames
of the soccer penalty subset in UCF101. Extracting back-
ground features has both advantages and disadvantages. (e
neural network may have difficulty generalizing effective
action characteristics of the same action in different scenes
when the extracted scene feature information is greater than
the action feature information. (is scenario is equivalent to
sacrificing the ability of the network to focus on the motion
itself while constantly trying to fit the characteristic infor-
mation of scenes. (e skeleton flow is introduced, which can
fully represent the feature information of human motion
without the interference of scene changes, to focus on action
recognition. However, skeleton information alone is in-
sufficient in classifying similar actions, such as eating and
drinking, talking and chewing, and flic-flac and handstand.
Only actions with small intraclass and large interclass
differences can easily be recognized accurately when skel-
eton feature information is extracted. (e advantage of
action recognition in skeleton features is the absence of
background information interference that allows the neural
network to focus on the action itself. Intuitively discarding
information, especially contextual information, can degrade

the performance. However, the proposed method only
removes background information in skeleton flow and still
retains complete video information in RGB flow. Our ap-
proach does not simply discard information but fuses the
features of two modalities.

(us, a two-stream CNN that integrates features of RGB
and human skeleton information is also proposed in this
study. (e human skeleton information strengthens the
deep representation of humans for robust processing and
alleviates the interference of background changes, and the
dilated CNN enlarges the receptive field of feature extraction
to achieve superior or comparable performance.(e original
RGB data combined with processed skeleton data make the
feature extractionmore accurate. Unlike 2D convolution, 3D
convolution extracts both temporal and spatial features from
multiple sequences simultaneously. Temporal information is
ignored in the 2D convolution, which extracts features from
the local neighborhood on feature maps with an applied bias.
(e result is then subjected to activation. A unit value at
position (a, b) in the feature map is expressed in formula (1):

Valueab
� relu t 􏽘

H−1

h�0
􏽘

W−1

w�0
xy

(a+h)(b+w)
+ z⎛⎝ ⎞⎠, (1)

where relu(∗ ) represents the rectified linear activation
function; t and x are iterable parameters in the feature map;
H and W are the height and width parameters, respectively;
and z is the bias. (e 2D-CNN is applied to extract spatial
features only. (e video data issue must capture the action
feature in consecutive frames. (e 3D convolutions extract
both spatial and temporal features. At each feature map of
any single layer, the value at position (a, b, c) in the feature
map is expressed in formula (2):

Valueabc
� relu t 􏽘

H−1

h�0
􏽘

W−1

w�0
􏽘

D−1

d�0
xy

(a+h)(b+w)(c+d)
+ z⎛⎝ ⎞⎠, (2)

where d is the 3D kernel size of the temporal dimension;
relu(∗ ) is the rectified linear activation function; t and x are
iterable parameters; H and W are the height and width pa-
rameters, respectively; and z is the bias. Hence, the 3D con-
volution kernel with a size of 3× 3× 3 is utilized to construct
our two-stream 3D dilated neural network. Satisfactory results
are obtained from modelling the temporal information using

Input: Video frames F � fi|i � 1, . . . , n􏼈 􏼉

Output: Reconstructed action video FS � fsj|j � 1, . . . , m􏽮 􏽯

for i� 1 to n
shotcut(F)→ (Seg1, Seg2, Seg3)

end for
if (entropy(Seg2)> entropy(Seg1)> entropy(Seg3))
then

random(Seg1, Seg3)
average(Seg2)

end if
FS� random(Seg1) + average(Seg2) + random(Seg3)

ALGORITHM 1: Proposed action sequences optimization algorithm.
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3D convolution and pooling layers. On the basis of 3D-CNN,
we introduce dilated processing into the proposed network.
Figure 4 illustrates the 3D dilated convolution operation.

On the basis of the original convolution kernel, the
dilated convolution enlarges the receptive field by inserting
rows and columns with weight of 0 between features. In this
paper, the parameter of dilation rate r is used to represent
the number of inserted rows and columns. (erefore, for-
mula (3) is transformed into the following formula (3):

Valueabc
� relu t 􏽘

H−r

h�0
􏽘

W−r

w�0
􏽘

D−r

d�0
xy

(a+h)(b+w)(c+d)
+ z⎛⎝ ⎞⎠. (3)

r � 2 means that the 3D kernel size increased from
3× 3× 3 to 5× 5× 5. (e architecture of the two-stream 3D
dilated convolution network is constructed for both flows
with 7 convolution layers, 5 max-pooling layers, and 1 fully
connected and softmax layer with a stride of 1. (e sizes of
the first two and the last three pooling kernels are 1× 2× 2
and 2× 2× 2, respectively, as shown in Figure 5.(e input of
skeleton flow is obtained from the pose estimation algorithm
[48]. A deep or stacked network is unnecessary for extracting
action features because of the absence of interference in the
background and the action sequences optimization method.
Finally, each flow obtains the corresponding class scores
before the classification we referred to in [53] to fuse the
scores of the two networks. Scores of the two streams are
fused to predict the action label.

6. Experiments

6.1. Implementation Setup and Datasets. Experiments are
implemented on a workstation equipped with 3.3 GHz
Intel(R) Xeon(R) E-2 CPU, 24 GB RAM, NVIDIA RTX
A5000 GPU, and Linux Ubuntu 18.04. (e preprocessing
procedure consists of two steps. First, the input video is
optimized to reconstruct the video sequences. Second, the
pose estimation algorithm processes the video into
skeleton data. (e proposed deep learning method is
applied via PyTorch. (e shot cut method is referenced in
[45] and the pose estimation algorithm is referenced in
literature [48]. (e proposed algorithm is implemented in
MATLAB 2019a using OpenCV3.2.0 with CUDA. (e
two-stream 3D dilated network with RGB and skeleton

modalities has the following network parameters for
training: batch size and momentum of 32 and 0.9, re-
spectively; 60,000 maximum iterations; and initial
learning rate of 0.001, which decreases to 1/10 every
15,000 iterations. In the validation procedure, the batch
size is set to 32, and the mirror is set to false.

(e experiments are conducted on two challenging
action datasets, namely, UCF101 and HMDB51. (ese two
datasets contain trimmed video data, so the videos
reconstructed by action sequences optimization are la-
beled according to the classification of the original dataset.
(e action sequences optimization method processes the
time dimension of videos without additional labels. (e
UCF101 [15] dataset, a widely used benchmark for action
recognition, contains approximately 13,000 clips from
YouTube. Each video lasts an average of 7 seconds. A total
of 2.4 million frames are distributed among 101 different
action categories, including five kinds of movements,
namely, human and object interaction, body movement,
interpersonal interaction, playing musical equipment, and
various kinds of sports. Specific examples are applying eye
makeup, baby crawling, handstand walk, soccer penalty
kick, and volleyball spiking. Videos have a resolution and
frame rate of 320 × 320 pixels and 25 fps, respectively. (e
HMDB51 dataset [16] consists of nearly 7,000 videos with
51 kinds of actions. (e majority of videos are from
movies, with some from public databases and online video
libraries, such as Google and YouTube. Each category
contains at least 101 samples, such as laughing, kissing,
firing a gun, waving, and riding a bike. (e resolution and
frame rate of these videos are 320 × 240 pixels and 30 fps,
respectively.

Figure 4: 3D dilated convolution operation.

Figure 3: Comparisons of different modalities. (e RGB and optical flow mix the change information of the background and the action
information. (e skeleton flow contains the human action information only, which strengthens the deep representation of humans for
robust processing.

Computational Intelligence and Neuroscience 7



6.2.AblationStudy. A novel action recognitionmethod that
uses action sequences optimization and two-stream 3D
dilated network with different modalities is proposed. (e
action sequences optimization method based on shot
segmentation and dynamic weighted sampling reconstructs
the video by reinforcing the proportion of high-activity
action areas, eliminating redundant intervals, and
extracting long-range temporal information. A two-stream
3D dilated CNN that integrates the features of RGB and
human skeleton information is also proposed. (e human
skeleton information strengthens the human information,
thus alleviating the interference of background changes,
and the dilated CNN enlarges the receptive field of feature
extraction.

6.2.1. Evaluation of Action Sequences Optimization Method.
(e use of action sequences optimization is an important
innovation in action recognition. Most existing methods
cannot accurately recognize actions because of the inter-
ference of background changes caused by not reinforcing the
proportion of high-activity action areas. (e action se-
quences optimization method is based on shot segmentation
and dynamic weighted sampling. It reconstructs the video by
reinforcing the proportion of high-activity action areas,
eliminating redundant intervals, and extracting long-range
temporal information. We compare the accuracy of the
original and reconstructed action video using the action
sequences optimization method. (e results prove the su-
periority of the proposed method. Experiment results on the
two datasets are presented in Table 4. We also analyze the
computational cost. (e running time for training of the
proposed method is presented in Table 5.

6.2.2. Evaluation of Two-Stream 3D Dilated Neural Network.
Some methods extract action features from RGB videos only,
where the accuracy is influenced by changes in background,

angle, illumination, and other factors. Other methods use
optical flow as the supplementary modality. (ey not only
extract the action feature but also mix the change information
of the background, thereby causing weak attention to the
target and missing important features from different mo-
dalities. (e proposed two-stream CNN that integrates the
features of RGB and human skeleton information overcomes
the challenges of inaccurate extraction of action features in
RGB. (e human skeleton information strengthens the deep
representation of human action, thus alleviating the inter-
ference of background changes, and the dilated CNN enlarges
the receptive field of feature extraction. Experiments are
conducted on UCF101 and HMDB51 datasets to prove the
effectiveness and superiority of the proposed method. Ex-
perimental data in Table 6 indicate that the single RGB flow or
skeleton flow performs worse than the fusion network. (e
accuracy of RGB flow is interfered by the background, and the
skeleton flow is influenced by the feature representation of
large intraclass gaps and small interclass gap, thus achieving
relatively low accuracy. (e proposed method fuses these two
complementary modalities, and the experiment demonstrates
the effectiveness of the two-stream 3D dilated neural network
with two modalities.
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Figure 5: Structure of the two-stream 3D dilated network.

Table 4: Accuracy evaluation of the action sequences optimization
method (%).

UCF101 HMDB51
(e original video 91.13 66.48
Reconstructed action video 95.56 75.26

Table 5: Comparison of the running time for training of the
proposed method (hours).

UCF101 HMDB51
(e original video 20.5 18
Reconstructed action video 17.5 16
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6.3. Comparison with State-of-the-Art Methods. In this
section, the proposed method is compared with state-of-
the-art action recognition approaches. (e performance
of the method based on feature engineering to extract
action features and classification is far inferior to that of
the proposed method, which lacks action semantic fea-
tures [49, 50]. As a result of the interference of back-
ground, the method based on traditional TS-Net does not
accurately extract the action features and ignores the
extraction of skeleton features, which causes the method
to be less robust and accurate [31, 42, 51–57]. (e methods
in [38, 40, 46, 54, 58–78] are interfered by redundant parts
and ignore the attention of action features. (us, the extra
part will negatively affect the accuracy of action feature
extraction. (e proposed method is compared with state-
of-the-art methods, and the results are shown in Table 7.
(e training time taken to learn the model for UCF101
and HMDB51 is 4.5 and 3.5 hours, respectively. Bench-
mark datasets are used to validate the robustness of the
proposed method, which achieves superior or comparable
classification accuracies. (e trends and merits of the
model are given as follows:

(1) (e action sequences optimization method recon-
structs the video. It reinforces the proportion of
high-activity action areas, eliminates redundant in-
tervals, and extracts long-range temporal
information.

(2) (e two-stream 3D dilated neural network integrates
features of RGB and human skeleton information. It
strengthens feature representation with robustness
and alleviates the interference of background
changes.(e dilated CNN enlarges the receptive field
of feature extraction.

In general, our proposed method recognizes actions
successfully in most cases. In some cases, the skeleton
information is insufficient in classifying similar actions,
such as eating and drinking, as well as talking and
chewing, thus decreasing the accuracy of using RGB only.
To classify similar actions, we plan to fuse the GCN to
further extract coordinate features in the future. To verify
the performance of the proposed method on the large-
scale action recognition dataset, experiments on the Ki-
netics dataset [80] were conducted. As shown in Table 8,
the proposed method achieves comparable classification
accuracy. Compared with these approaches, the proposed
method eliminates redundant intervals and enlarges the
receptive field by introducing dilated convolution with
different modality to extract long-range and discrimina-
tive feature.

Experiments were conducted on different networks to
test the flexibility of the proposed method. Table 9 shows
the proposed method compared with the traditional
single-stream 3D network that fuses RGB and skeleton
modalities. (e method with modality fusion performs
better, and the results show the effectiveness of the
proposed method.

Table 6: Evaluation of performance of different modalities (%).

UCF101 HMDB51
RGB flow+ 3D dilated only 89.15 66.09
Skeleton flow+ 3D dilated only 68.84 43.62
Two-stream fusion network 95.56 75.26

Table 7: Accuracy comparison of different methods (%).

UCF101 HMDB51
Peng et al. [49] 87.9 61.1
Zhao et al. [35] 89.1 65.1
Tran et al. [31] 85.3 62.3
Tu et al. [38] 94.5 69.8
Tu et al. [40] 94.8 70.4
Zhao et al. [42] 92.5 —
Wang et al. [79] 92.4 62.0
Feichtenhofer et al. [51] 92.5 65.4
Qiu et al. [52] 93.7 66.3
Wang et al. [53] 92.4 70.5
Lu et al. [54] 90.4 65.0
Hara et al. [55] 90.7 63.8
Cong et al. [56] 91.8 68.8
Wang et al. [58] 84.0 55.1
Sun et al. [59] 91.9 70.0
Huang et al. [60] 92.6 69.1
Yao et al. [60] 92.1 65.9
Liu et al. [62] 92.5 62.4
Hao et al. [63] 93.7 66.7
Tong et al. [64] 94.6 69.4
Li et al. [65] 91.5 63.0
Peng et al. [66] 94.0 68.7
Long et al. [67] 94.6 69.2
Wang et al. [68] 94.9 70.2
Wu et al. [69] 94.3 70.9
Li et al. [70] 94.5 70.2
Cai and Hu [71] 91.0 64.7
Cai and Hu [71] 92.5 66.5
Li et al. [73] 86.7 —
Xu et al. [74] 96.3 76.3
Jiang et al. [75] 94.6 70.7
Yang and Zou [76] 92.7 —
Chang et al. [77] 93.8 —
Deng et al. [78] 95.3 71.3
Wang et al. [57] 94.5 74.1
Proposed method 95.6 75.3

Table 8:(e accuracy comparison of different methods on Kinetics
dataset (%).

Top-1 Top-5
Tran et al. [31] 56.1 79.5
Feichtenhofer et al. [51] 56.0 77.3
Donahue et al. [80] 57.0 79.0
Wang et al. [32] 69.1 83.7
Zolfaghari et al. [81] 68.0 80.9
Jiang et al. [82] 73.1 90.6
Proposed method 69.6 87.1
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7. Conclusion

A novel action recognition method using action sequences
optimization and two-stream 3D dilated neural network
with different modalities is proposed in this study. (e
action sequences optimization method based on shot seg-
mentation and dynamic weighted sampling reconstructs the
video by reinforcing the proportion of high-activity action
areas, eliminating redundant intervals, and extracting long-
range temporal information. A two-stream 3D dilated neural
network that integrates features of RGB and human skeleton
information is proposed. (e human skeleton information
strengthens the human deep representation for robust
processing and alleviates the interference of background
changes, and the dilated CNN enlarges the receptive field of
feature extraction. (e proposed method achieves superior
or comparable classification accuracies on two challenging
datasets. (e application of the proposed method could
enhance the intelligence ability of video surveillance systems
in smart cities and improve the accuracy of existing action
recognition methods. Further research will improve hier-
archical action feature extraction on large datasets through
the attention mechanism and aggregate more features
through transformer encoding longer sequences.
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