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Skin is highly accessible and valuable organ, which holds promise to accelerate the understanding of future medical innovation in
association with skin transplantation, engineering, and wound healing. In skin transplantation biology, multistage and multifocal
damages occur in both grafted donor and perilesional host skin and need to be repaired properly for the engraftment and
maintenance of characteristic skin architecture. These local events are more unlikely to be regulated by the host immunity, because
human skin transplantation has accomplished the donor skin engraftment onto the immunocompromised or immunosuppressive
animals. Recent studies have emerged the importance of a-smooth muscle actin- (SMA-) positive myofibroblasts, via stage- and
cell-specific contribution of TGFf, PDGE, ET-1, CCN-2 signalling pathways, and mastocyte-derived mediators (e.g., histamine
and tryptase), for the functional reorganisation of the grafted skin. Moreover, particular cell lineages from bone marrow (BM)
cells have been shown to harbour the diferentiation capacity into multiple skin cell phenotypes, including epidermal keratinocytes
and dermal endothelial cells and pericytes, undercontrolled by chemokines or cytokines. From a dermatological viewpoint, we
review the recent update of cell-type- and molecular-specific action associated with reconstitution of the grafted skin and also
focus on the novel application of BM transplantation medicine in genetic skin diseases.

1. Introduction standardised practically. Skin transplantation strategy and its

relevant technology may thus remain highly safely and bene-

Skin represents a substantial part of mammalian ectoderm,
which is normally exposed by various exogenous stimuli, for
example, UV irradiation, infection, temperature, moisture,
and mechanical aspects [1]. Because skin is highly accessible
to any of diagnostic and treatment procedures, studies for
skin transplantation, as well as skin engineering and wound
healing, hold great promise to accelerate the understanding
of underlying pathophysiology for future medical innovation
utilizing self-made or more feasible skin equivalents. Over a
thousand gene-mutant loci for inherited human disorders
have been reported thus far [2], and approximately one-
third of these have been known to exhibit the relevant skin
abnormalities, in which gene targeting therapy has yet to be

fitly, in such skin conditions, as well as skin plastic surgery.
Pathologically, the predominant cell populations in
mammalian skin comprise dermal fibroblasts and epidermal
keratinocytes, both of which show different morphology and
function. Ours and other studies have utilized two-/three-
dimensional coculture or complex “organotopic” systems,
allowing to evaluate the importance of paracrine interaction
between the two different cell types [3, 4]. Upon these in
vitro skin equivalent assays, our potential interests persist to
know how these two cell types are reorganised properly in the
grafted skin. At the site of the skin graft, multistage and mul-
tifocal damages of the donor/host skin, microhaemorrhage,
and later excess fibrosis in the dermis might have eventually
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occurred, and the grafted skin, therefore, needs to be repaired
and reconstituted through these inevitable events. More
specifically, little is known about how the biological archi-
tecture characteristic for the skin (e.g., stratified squamoid
epithelia and dermis intermixed with extracellular matrices)
can be maintained after the skin transplantation. One may
consider that a sort of particular cell phenotypes plays a
central role in the orchestration of the skin reconstitution,
and, if so, under what particular circumstances for this
process? The chain of these biological events is more unlikely
to be regulated by cellular and humoral immunity in
the host, because vast majority of in vivo researches for
human skin transplantation has accomplished the donor
skin engraftment onto the immunocompromised animals,
such as nude and athymic mice, or those treated with
immunosuppressive agents or the particular subset (CD4*
CD25%) of T cells [5, 6]. Thus, a somewhat study limitation
may often enable us to access to the insight associated with
the skin transplantation immunobiology.

For understanding the cell-specific action in the skin
transplantation, evidences from bone marrow (BM) trans-
plantation study may in part bring the clue. Native BM cells
comprise the substantial proportion of cell sources that have
roles in tissue homeostasis, repair, and regeneration. These
cell populations are originated from either haematopoietic or
mesenchymal stem cells and subpopulations that are capable
of differentiating into multiple cell lineages [7, 8]. A series
of recent research progress have emerged that BM cells can
provide not only fibroblastic cells but also epithelial cells
in the lung and intestinal epithelium and skin [9]. Partic-
ularly in skin, a transplantation of sex (XY) chromosome-
mismatched BM cells or intrinsically labelled BM cells has
demonstrated that keratinocyte-specific marker-positive BM
cells appeared in the epidermis, hair follicles and sebaceous
glands [10-15]. Moreover, in patients who underwent
a BM transplantation, donor BM cells displaying wide-
ranged keratinocyte markers (pan-keratin) were detectable
in the epidermis and maintained for over 3 years after
the transplantation [16]. These data series suggest that the
transdifferentiated keratinocytes from BM cells not only aid
the impairment of the residual epidermal function after
transplantation but also participate in the compensation
of the epidermal circumstances at the affected skin sites.
On this basis, the BM-derived keratinocyte populations are
secured functionally and structurally as a baseline stable
supply. However, it remains unclear (i) how the BM cells are
recruited strictly into the grafted skin, and, if once they failed
this process, how it can be corrected properly, (ii) how the
recruited BM cells contribute functionally to the local skin
regeneration, and, more interestingly, (iii) whether the newly
established epithelial-mesenchymal interaction can maintain
the local skin homeostasis analogous to the host skin. From
a dermatological view point, this paper focuses mainly on
these attractive points in association with the cell-type-
specific reorganization in the skin transplantation, as well
as the relevant molecular profiles. These advanced evidences
will help to ask how we can establish the better medical
approaches for persistent skin wound condition, particularly
in genetic skin diseases.
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2. Myofibroblasts in Skin Transplantation: What
It Is, How It Acts, and Where It Comes from?

After skin transplantation, the grafted skin sites need to
repair some inevitable minor trauma, for example, occa-
sional haemorrhage caused by microvascular damage, later
excess microfibrosis, or even focal necrotic changes, in order
to adapt to the host skin circumstance. These minor tissue
damages in the grafted donor skin and/or perilesional host
skin may primarily drive the recruitment of the particular
subset of fibroblastic cells, termed “myofibroblasts” that
specifically express the intracellular structural protein a-
smooth muscle actin (a-SMA) [17]. Myofibroblasts can
migrate into the grafted skin and subsequently produce
collagens, fibronectin, and proteoglycans to reconstitute the
local extracellular matrix (ECM) network in the dermis
[18, 19]. During this process, a-SMA is reorganised into
the complexes of stress fibre for biological connecting to
the surrounding ECM molecules and participates in the
exert contraction and mechanical tension, as well as recon-
stitution of primary intra-/intercellular skeleton, for the
establishment of the functional remodelling of connective
tissue. In contrast, persistence and/or aberrant increase of
myofibroblast action may be responsible for fibrosclerotic
skin diseases, such as scleroderma or morphea [20]. Another
in vitro observation with human embryonic stem (hES) cells
utilizing a three-dimensional skin model has shown that hES
cell-derived mesenchymal cells that constitutively express a-
SMA can promote multilayered epithelium and the resultant
wound healing, with increased production of hepatocyte
growth factor HGE, an essential factor for skin development
and repair [21, 22]. This characteristic cell phenotype might
also be analogous to myofibroblastic cell lineage, with
possible implication of epidermal-mesenchymal crosstalk in
a HGF-dependent manner.

The local myofibroblasts—without regard to the newly
recruited into the donor grafted skin or locally residential
cells—are considered to be originated from multiple cell
sources in vivo. Current concept favours at least 3 distinct cell
sources of skin myofibroblasts (Figure 1): (i) pericytes that
composed of skin microvasculature, (ii) resident fibroblasts
in the donor grafted skin and/or in the perilesional host
skin, or (iii) BM-derived mesenchymal stem cells [17]. These
myofibroblast sources may be selective and changeable
appropriately in a skin-damage-dependent manner [23, 24].
However, there have been no convincing data for what per-
centage of the particular cell-lineage-derived myofibroblasts
is involved in the reconstitution of the skin graft. Also, little
is known about whether any biological thresholds of the
myofibroblast recruitment exist in this event.

3. Molecular Contribution for
Myofibroblast Differentiation

Extensive reviews on TGFf, PDGE, ET-1, CCN-2 signalling,
and several mediators from mastocytes and the potential
contribution of this pathway in the myofibroblast biology
have been reported elsewhere [20, 25, 26] (Figure 1). Each
of these supports a variety of biological action in skin
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FIGURE 1: Schematic model of myofibroblast differentiation in the
skin. The local myofibroblasts characteristic for a-SMA expression
are originated from multiple cell sources in the skin and nominated
from at least 3 distinct cell sources: BM-derived mesenchymal
stem cells, microvascular pericytes, and resident fibroblasts in
the donor skin graft and/or in the perilesional host skin. Some
molecules can organise the cell-type-specific differentiation into
dermal myofibroblasts.

fibroblasts and is most likely to make a complex interrela-
tionship to promote the skin wound repair, remodelling, and
reorganization after the skin transplantation.

Five TGFp isoforms, TGFf1-5, exist in mammals and are
generated initially as biologically latent precursors, enabling
them to bind to a heteromeric receptor complex (a type I and
II receptor complex). The former receptor phosphorylates
Smad2 and 3, which subsequently binds to Smad4, and
finally activates gene transcription in fibroblasts. Activation
of the TGFp signalling causes increased production of colla-
gen I and ECM molecules [27, 28], as well as myofibroblast
differentiation and a-SMA expression, in parallel with CCN
expression and a-SMA-dependent stress fibre formation
[29-32].

There are 3 isoforms of endothelin, ET-1, 2, and 3 [33].
ET-1 is the major isoform in human and is produced by
various cell types, including endothelial cells, BM cells,
haematopoietic cells, cardiomyocytes, and fibroblasts. ET-1
is secreted as a 212-amino acid precursor (prepro-ET-1)
and enzymatically cleaved to a biologically active 21-amino
acid peptide, which can bind to the two distinct receptors
(ET-A and ET-B). ET-1 induces—in cooperation with
TGF-f pathway—myofibroblast formation and migration
and ECM contraction via binding to ET-A/B receptors and
the resultant activation of downstream signalling molecules,
Akt/rac [34, 35].

CCN2, a member of the CCN family of matricellular
proteins, is induced by TGFfS and ET-1 system, vice versa,
and is, therefore, considered an essential cofactor required
for the particular subsets of TGFf cascade, FAK/Akt/PIP3K
[33, 36]. CCN2 can activate the fibrotic phenotype of cells
and also support a variety of biological TGEJ action, such as
type I collagen synthesis, a-SMA expression, and promotion
of cell-ECM interaction [37, 38].

Platelet-derived growth factor (PDGF) family members
include PDGEF-AA, -AB, -BB, -CC, and -DD, and bind to two
different PDGF receptors « and f3 [39]. PDGF can enhance
multiple cell types, including neutrophils, macrophages,
fibroblasts, and smooth muscle cells, to proliferate and
migrate them into the skin wound, and also stimulate the
differentiation into myofibroblasts, thus contributing to the
local skin remodelling and contracture [40]. Mice treated
with imatinib mesylate, a PDGFp receptor-specific tyrosine
kinase inhibitor, exhibited delayed skin wound healing with
decreased levels of the local myofibroblast number, collagen
type I expression [41], and noncanonical TGFf signal
network [42, 43], suggesting the direct biological action
of PDGF in skin regeneration. Also, a recent study has
suggested the potential contribution of a subset of PDGFRa-
positive BM cell population in the epidermal keratinocyte
differentiation and reorganization in mice skin [23].

Mastocytes have pleiotropic action for fibroblast biology
by secreting a variety of chemical mediators and cytokines.
In cell co-culture and skin-equivalent culture systems, for
example, human mastocyte line HMC-1 cells can induce the
expression of a-SMA in fibroblasts, via paracrine action of
histamine and a serine protease tryptase, thereby contribut-
ing to the fibroblast-dependent skin contraction [44].

4. Mesenchymal Stem Cells in Skin
Transplantation

4.1. Keratinocyte Differentiation. Accumulating evidence has
gained the possibility that mesenchymal stem cells (MSCs)
can contribute to the skin wound repair and development.
For example, infusion of genetically engineered green fluo-
rescent protein (GFP-) expressing BM cells into mice utero
results in accumulation of a certain subpopulation of GFP-
positive cells in nonwounded skin dermis, particularly in
high association with hair follicles [45]. More precisely, in
vivo transplantation of sex (XY) chromosome-mismatched
human BM cells or GFP-expressing murine BM cells has
demonstrated that, at least by 4 weeks after the transplanta-
tion, keratinocyte-marker-positive BM cells appeared in the
epidermis, hair follicles, and sebaceous glands [10-15], sites
that harbour skin stem cell niches [46] (Figure 2). Thereafter,
the locally recruited BM cells into the grafted skin in mice
can be maintained at least for 5 months [23]. Considering
the short turnover time of mice skin (2-3 weeks), the long-
residing BM-derived epithelial cells are most likely to contain
subpopulation(s) of epithelial progenitor/stem cells. This
characteristic cell population constitutively expresses PDGF
receptor- (PDGFR-) a, but neither c-kit nor Sca-1 [23], and
the differentiation activity is accelerated by a paracrine action
of heparin-binding molecules from the skin graft, especially
high-mobility group box 1 (HMGB 1) [47] (Figure 2).
However, mice and human BM transplantation studies
have revealed that BM-derived keratinocytes account for
an extremely rare population in both wounded and non-
wounded skin epidermis, for example, almost undetectable
levels or only less than 0.0003% of all keratinocytes in
the mice epidermis [24] and 0.14% of those in human
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F1Gurek 2: Transdifferentiation of bone-marrow-derived mesenchy-
mal stem cells (MSCs) into the multiple skin component cells.
The particular subset(s) of allogenically transferred MSCs, a
PDGFRa*/c-kit™/Sca-1" lineage, can differentiate into the keratin-
marker-positive epidermal keratinocytes via a paracrine action of
HMGBI. In another cascade, the transdifferentiation activity of the
MSCs into other skin components such as vasculature (endothelial
cells and pericytes) and dermal fibroblasts—albeit much lesser with
monocytes, macrophages, and adipocytes—is accelerated by certain
cytokine/chemokine signalling, especially CCR7-SLC/CCL21 path-
way. These BM-derived multiple cell lineages can be a potential
source for supplying skin structural molecules, such as type VII
collagen (COLVII) and type XVII collagen (BPAGII; BP180),
both of which are essential anchoring molecules in the basement
membrane zone (BMZ).

epidermis [15]. These poor cell numbers are in agreement
with the baseline observation of recent reports, and, in
parallel, they never aggregate in the epidermis but mostly
present therein as a single cell [15, 23]. Conceptionally,
the relatively scarcity of such cells may, therefore, raise
questions about their biological significance in the skin
engraftment. Besides, the recruited BM cells can be a
potential source for supplying skin structural molecules,
such as type VII (COL7) and type XVII collagens (BP180),
both of which are essential anchoring molecules in dermal-
epidermal junction (Figure 2). Loss-of-function mutations
of these genes cause subtypes of genetic skin fragility
and scarring diseases, recessive dystrophic (RDEB, OMIM
no. 226600), and junctional epidermolysis bullosa (non-
Herlitz JEB, OMIM no. 226650), respectively. Embryonic
and postnatal transplantation of BM cells into mice lacking
type VII or XVII collagens can successfully ameliorate the
persisted skin wound and fragility by newly generation of
the defected skin molecules [45]. Most convincing evidence
from a clinical trial of allogeneic whole BM transplantation
in a patient with RDEB has successfully shown that BM
cells can repair the skin wound and restore the defected
COL7 expression in the skin basement membrane zone [16].
Opverall, these data suggest that minimally transdifferentiated
BM cells are indeed sufficient for the generation of deficient
skin protein(s) and restore the fragile skin condition.
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4.2. Differentiation of BM Cells into Multiple Skin Cells.
Along with a streamline for the functional epidermal
differentiation of BM cells, a most recent investigation
has explored that BM-derived MSCs intravenously injected
can differentiate into multiple skin cell lineages, including
epidermal keratinocytes, and dermal endothelial cells and
pericytes, finally contributing to skin wound repair in mice,
suggesting upregulation of angiogenic properties in the
host skin [15] (Figure 2). This MSC phenotype harbours
several chemokine receptors, especially CCR7, a receptor of
SLC/CCL21 that enables MSCs to migrate into the local tis-
sues [48, 49]. Perilesional skin injection of SLC/CCL21, but
not thymus and activation-regulated chemokine (TARC),
can increase the baseline differentiation of MSCs into the
wound skin and close the wound. In this study, the trans-
differentiation activity of bulk MSCs into multiple skin cell
phenotypes seems higher comparative with previous reports:
~0.14% of GFP-positive MSCs into epidermal keratinocytes,
~13.2% into endothelial cells, and ~33.0% into pericytes in
the dermis, albeit much lesser with monocyte/macrophage
and adipocyte lineages [23]. Interestingly, the recruitment of
BM-derived cells is significant in the grafted skin and long-
standing damaged skin, including RDEB [45, 50], whereas
it is much lesser or almost negligible level in most of
transiently established skin wound healing models [23, 24].
The proportion of the recruited and/or transdifferentiated
BM cells seems considerably variable by the skin damage and
its period.

5. Future Perspective

Despite the recent dramatic progress in the skin trans-
plantation and wound healing studies, we now face some
inconclusive debates that need to be addressed in future;
how much of the trans-differentiation activity of BM-derived
MSCs is indeed influenced by differences in individuals, for
example, age, medical history and ongoing treatments, and
affected skin sites. Are there any biological thresholds to
recruit MSCs or to induce a-SMA* myofibroblasts for the
proper skin engraftment and wound healing; if any, how
can we analyse them quantitatively? Which soluble molecules
or combination of these (e.g., SLC/CCL21, HMGBI, and
PDGF; Figure 2)—if we add exogenously—are more efficient
to ensure the favourable outcome of the transplantation
events? Particularly in allogenic BM transfer, do these
supplemental additives affect the baseline incidence of life-
threatening complications, such as GYHD? These parameters
should be estimated precisely, but instead the study limita-
tion may include the restricted category of the targeted skin
diseases, like lack-of-functional protein genodermatoses,
and, therefore, the difficulty that most of advanced results
comes from researches associated with skin wound healing.

6. Summary

Skin transplantation researches have gradually been sat-
urated by multiangle evidence and interpretation from
the relevant organ transplantation and provide multiple
therapeutic implications. BM-derived cells with pluripotent
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differentiation capacity into multiple skin components may
serve as target and/or vector cells for innovative gene
therapy and proper reconstitution of various wounded skin,
particularly in genetic skin diseases.
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