
1Scientific Reports |         (2019) 9:12850  | https://doi.org/10.1038/s41598-019-49387-4

www.nature.com/scientificreports

Pollination ecology of the ghost 
orchid (Dendrophylax lindenii): 
A first description with new 
hypotheses for Darwin’s orchids
Peter R. Houlihan   1,2,3, Mac Stone3, Shawn E. Clem4, Mike Owen5 & Thomas C. Emmel1,2,6

The structural variation of orchids enables myriad fascinating symbiotic relationships with organisms 
across kingdoms. Orchids are frequently known for having elaborate arms races with their pollinators 
that result in intricate morphologies in both parties, and flowers with long corollas hypothesized 
to be pollinated only by individual species of long tongued hawkmoths are of particular concern for 
conservation. Florida’s endangered ghost orchid, Dendrophylax lindenii, has long been confidently 
assumed to be pollinated by one species (Cocytius antaeus), despite the presence of a resident 
community of multiple suitable long-tongued candidates. Here we present the first description of ghost 
orchid pollination, and describe novel remote camera trapping methods. Pollination of D. lindenii by 
Pachylia ficus disproves long-standing hypotheses concerning the pollination ecology of long-spurred 
orchids, and new multiple pollinator hypotheses are proposed. We discuss the broader implications 
for the conservation of an endangered species, orchids globally, and the importance of Everglades 
restoration.

Charles Darwin first discussed the evolutionary relationships between insect pollinators and plants in the Origin 
of Species1. Elaborating on this concept of coevolution in “The Fertilisation of Orchids”, Darwin presented the 
case of a long-spurred orchid in Madagascar, Angraecum sesquipedale (Vandeae: Angraecinae), which he pre-
dicted was pollinated by a long-tongued hawkmoth2,3. The structural variation of orchids enables myriad fascinat-
ing symbiotic relationships with organisms across the fungi, plant, and animal kingdoms4. Orchids are frequently 
known for having elaborate arms races with their pollinators that result in intricate morphologies in both par-
ties5,6. Due to their specialized habitat preferences and occasionally low abundance in the wild, orchids are of par-
ticular interest in climate change research and of conservation concern7–9. Yet considering the immense diversity 
of species, detailed species-level understandings of orchid natural history remain limited, and oftentimes pollina-
tion syndromes are the only hypotheses available from which to predict candidate species or guilds of potential 
pollinators. Tragically, the majority of the world’s orchids are threatened by habitat degradation and poaching9. As 
a result of their complex interactions with pollinators, orchid declines are likely to seriously impact populations of 
insects8, most notably including moths specialized for orchid pollination10,11. Thus, orchids with long corollas that 
are hypothesized to be pollinated by individual species of long-tongued hawkmoths are of particular concern12,13.

Within the predominantly African Angraecinae subtribe, two genera radiated into the Americas, 
Dendrophylax and Campylocentrum14,15. The ghost orchids (Dendrophylax spp.) range from south Florida 
throughout the Caribbean and many species are restricted to single islands14,16. These endemic species exhibit 
morphological adaptations to island-specific ecological conditions17, while numerous species maintain a long 
nectar spur throughout the genus. Of the fifteen described species, zero have definitively described pollinators, 
and many are threatened with extinction.
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Found in south Florida and Cuba, Dendrophlax lindenii is one of the most well-known orchids in the world, 
in part due to popular media such as the novel, The Orchid Thief18, and film, Adaptation, which showcased the 
poaching of this endangered species. Despite widespread attention, many factors have hindered scientific research 
to understand the natural history of D. lindenii, confounding the quest to understand the species’ pollination ecol-
ogy; some factors include: the species’ rarity, restricted access to areas where it occurs, the remarkably strenuous 
conditions posed for field researchers in these habitats, historical political relations between the United States and 
Cuba, the temporally nocturnal emission of volatile compounds19, and the need for advanced camera technology.

Due to the parallel nature to Darwin’s orchid-hawkmoth system in Madagascar2, it has long been hypothesized 
that long-spurred Caribbean angraecoids like D. lindenii are pollinated by long-tongued hawkmoths13,20. Creamy 
white in color, vespertine, and possessing a long nectary that can vary from 12–16 cm, D. lindenii is sphingophil-
ous as defined in Haber & Frankie21. Although a single hawkmoth (Lepidoptera: Sphingidae) has long been 
hypothesized as the sole pollinator of D. lindenii, the pollination ecology and phylogeography of the entire genus 
remain poorly understood (pers. comm. Mark Whitten & Norris Williams). Without definitive confirmation, 
widespread conjecture within the orchid community has long stated with confidence that only one hawkmoth 
species in Florida, Cocytius antaeus (giant sphinx moth), fits the morphological description of having a proboscis 
of comparable length to the corolla of D. lindenii, and thus must be the only pollinator22. However, contrary to the 
assumption of this long proliferated “just so story”23, numerous species of Sphingidae, and other Lepidopterans, 
possess a proboscis length that would be sufficient to reach the nectar reward of D. lindenii in south Florida, 
and no reports have acknowledged the presence of closely related hawkmoths possessing comparable proboscis 
lengths, notably the Amphonyx and Manduca genera, other species of Cocytius in Cuba, or even longer still, one 
species occurring in Cuba with a proboscis length more than twice that of C. antaeus, Neococytius cleutenius24.

Ghost orchid (Dendrophylax lindenii) studies thus far have investigated mycorrhizal relationships22,25, host 
tree affinities26,27, micropropagation28 d, and volatile compound composition19. Despite much allure to the pollina-
tion story of this charismatic species, little is actually known about the ecological interactions between insects and 
ghost orchids29. These gaps are problematic for efforts surrounding the future conservation of orchids, which face 
a global decline30. With ongoing alterations to natural habitats, and climatic shifts, ecological data describing the 
pollination of endangered species are critical for establishing more effective conservation measures, particularly 
considering the sensitivity of south Florida’s plant communities to perturbations in hydrology and fire regimes 
with changes in land use and management31 and in light of predictions of increased frequency of extreme weather 
events32. Here we present novel camera trapping methods developed to document the pollination of D. lindenii, 
we report on successful findings, and urge for these approaches to be utilized more widely for similarly threatened 
and data deficient species.

Materials and Methods
Fieldwork.  Individuals of D. lindenii were located, observed, and monitored from June 2014 through July 
2017 in the Fakahatchee Strand. During this time, 14 visits were made to this study site, totaling 47 days in the 
field and amounting to 423 hours searching for and observing the orchids. A total of 29 nights was spent light 
trapping to attract insect pollinators and inspect hawkmoth proboscides for orchid pollinia. The final camera 
trapping season of 2018, from which the results here were recorded, utilized novel methods developed and cus-
tom-built by MS, was carried out by MS & PRH in Corkscrew Swamp Sanctuary, informed by the culmination of 
natural history information amassed in previous years. These efforts were concentrated on the “super ghost” at 
Corkscrew Swamp Sanctuary, a cluster of root masses from at least three separate individuals stacked on top of 
one another, situated approximately 15 m up on a cypress tree that can be viewed by visitors through a spotting 
scope or binoculars at a distance of approximately 75 m from a boardwalk.

Study sites.  Corkscrew Swamp Sanctuary: Corkscrew Swamp Sanctuary (centered ca. 26°23′60″N, 
81°36′37″W) was established by National Audubon Society in 1954 to protect a 5,600 acre tract of old-growth 
Taxodium distichum (bald cypress) forest and its associated plants and wildlife from logging. Currently 
13,400 acres, the sanctuary’s central bald cypress swamp contains trees exceeding 500 years old33,34 and is sur-
rounded by a mosaic of freshwater marsh, wet prairie, pine flatwoods and hardwood forest. A recent floristic 
inventory of the Sanctuary documented 773 infrageneric taxa of vascular plants, including 29 listed as endan-
gered or threatened in Florida35.

Fakahatchee Strand Preserve State Park: The Fakahatchee Strand (centered c. 26°00′00″N 81°25′01″W) is a 
unique sub-tropical forest, characterized by seasonally flooded sloughs, beneath a canopy of T. distichum, that 
are dominated by Fraxinus caroliniana and Annona glabra, the primary hosts in Florida for the epiphytic D. lin-
denii. Old growth cypress in the Fakahatchee Strand was heavily logged in the early 20th Century. The presence 
of Roystonea regia (royal palm) in cypress forest adds to their distinctiveness, as this sympatry is not found 
anywhere else in the world. Fakahatchee contains the highest diversity of orchids (49) and bromeliads (14) in the 
United States (MO, unpubl. data).

Preliminary studies.  Multiple methods were employed, tested, and adapted over five flowering seasons in 
order to attempt recording visitations to D. lindenii. During the course of this study, camera trapping technology 
progressed immensely, enabling remarkable precision of smaller subjects, including moths. This progression and 
implementation is noted here, with the primary focus on novel methods that yielded results during the 2018 field 
season.

In 2014, one HD Infrared Night Vision Camcorder was deployed on a new bloom of D. lindenii in Fakahatchee 
to record HD video from sunset to sunrise nightly for two weeks. Two Bushnell Trail Cameras were also deployed 
on orchids within the same slough. In 2016 and 2017, a Canon XF205 HD infrared camera was deployed on a 
tripod to film one individual with two flowers for ten hours overnight on 20 separate nights, totaling 200 hours of 
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camera monitoring. A Trail Master TM 1550 BAT Active infrared trigger for a Canon 7D Mark II SLR was also 
deployed in for 5 nights in July 2017. From 2014–2017, PRH spent a total 23 full nights, from sunset to sunrise, 
seated atop a 2.5 m ladder in flooded sloughs to trigger a Canon 7D Mark II SLR mounted on a tripod using a 
Canon Remote Controller TC-80N3 and Remote Shutter Extension cable to position 4 m from the camera. All 
described methods proving unsuccessful, custom remote technologies were engineered as follows.

Novel camera trapping development & deployment.  In June 2018, efforts were concentrated at 
Corkscrew Swamp Sanctuary on a cluster of root masses from at least three separate individuals stacked on top 
of one another, discovered in July 2007 and locally termed the “super ghost”. As multi-flower orchids have been 
shown to yield higher fruit set36, this concentration of flowers provided the highest perceived probability of cap-
turing pollinators. For this reason, it was selected to deploy a camera trap.

Situated at 15 m above the flooded forest, the highest of any known D. lindenii35, the site was accessed by tree 
climbing. A 0.34 kg throw weight attached to a 50 m throw line was launched, using a Notch Big Shot weight 
launcher, over a branch at 20 m height. A 50 m long tachyon 11.5 mm static climbing rope was then hoisted with a 
cambium saver. This rope was climbed on the right side of the orchid to then install a second rope that would be 
utilized to access the orchid from the left side and install the camera trap (Fig. 1).

A Canon 1200D DSLR camera with a 10–20 mm Sigma lens and two Nikon SB-28 flashes was first deployed 
on June 27, 2018. In recording only one image of the first visitation, the Canon 1200D (3 frames per second) was 
replaced with a faster Canon 7D Mark II (10 fps) on July 17, 2018. Installed at a height of 15 m on T. distichum, 
MS designed a custom steel arm, built to hold over 23 kg, mounting all elements of the entire camera trap system 
(camera, flashes, and passive infrared trigger). This prototype, named the “TreePod”, consisted of a square steel 
tube 66 cm long welded to a 6.4 mm steel plate with support brackets, forming a T-shape at one end. Two steel 
U-bolts were affixed on each side of the support brackets. The steel arm was positioned perpendicular to the tree 
and held in place by load-bearing ratchet straps that could be threaded through the U-bolts to hold the arm in 
place and secured to the tree.

A Camtraptions PIR sensor, a passive infrared triggering system, was deployed to monitor the three dimen-
sional multi-flower zone. Passive infrared works to detect subtle changes in infrared light, through movement 
or heat from a body passing in front of the sensor. The wide cone of detection on the Camtraptions PIR sensor 
allowed monitoring to encompass all flowers as potential locations for visiting moths, without having to guess or 
choose a single focal point.

Regular maintenance visits to the trap were conducted to adjust the angle of the camera and the PIR sensor, 
depending on the location of new blooms, and to replace batteries. The last frame the camera recorded during 
the season was September 9, 2018. The camera battery died that afternoon and no further images were recorded.

Figure 1.  Authors MS (left) and PRH (right) climb an old growth bald cypress at Audubon’s Corkscrew Swamp 
Sanctuary to install a custom remote camera trap for recording visitors to D. lindenii, situated on the central 
trunk. Drone photo courtesy of Grizzly Creek Films.
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Light trapping.  To attract hawkmoths for pollinia inspection, a combination of mercury vapor lamps, metal 
halide bulbs, and black lights were utilized at eight sites on 40 nights from 2014 to 2017 along Janes Scenic Drive 
between the Fakahatchee Strand Preserve State Park Headquarters and the Picayune Strand State Forest, and for 
two nights in Corkscrew Swamp Sanctuary in August 2018. Moths were also searched for opportunistically at 
night, detected by their eye shine with headlamps or captured in flight by hand nets.

Proboscis measurements.  To demonstrate the presence of a diverse community of long-tongued hawk-
moths that occur within the distribution of D. lindenii, specimens were measured in the collections at the 
McGuire Center for Lepidoptera & Biodiversity at the Florida Museum of Natural History. Due to the difficultly 
of relaxing the proboscis on dried, prepared specimens, individuals were selected where the proboscis was already 
partially or fully exposed (as opposed to hidden between the mouthparts). Representative specimens were meas-
ured for eleven species. Specimens were selected from Florida or the southeastern US for regional relevance and 
because intraspecies proboscis length can increase where distribution extends further into the tropics29, which 
is evident for many species here that also occur in Central and South America37; thus these are conservative 
records for these species as the objective was to demonstrate that additional sphingid species exist that fit various 
tongue length hypotheses, which have not been given consideration previously. A paintbrush was utilized to coat 
probosces with heated potassium hydroxide (KOH), without detaching the proboscis, rendering them flexible 
enough to manipulate and uncoil.

Results
In 2018, the camera trap was active for 75 days, triggering a total of 7,938 images, recording 23 images capturing 
visitations by two species of hawkmoths, Cocytius anteaus and Pachylia ficus. Due to the wide cone monitored by 
the PIR sensor, there were many instances of false triggers from wind moving the ghost orchids.

Cocytius antaeus individuals were recorded (Fig. 2) on three separate dates: July 15, 2018, August 23, 2018, 
and September 8, 2018. On the first date in July, two images were captured (22:16:39 hr), and on the last date 
in September, one image was recorded (02:31:09 hr). On August 23rd, an individual of C. antaeus was recorded 
over the course of two minutes, with images captured at 23:15:15 hr (3), 23:15:46 hr (3), and 11:17:15 hr (3). On 
this occasion, a gecko was present on the trunk amongst the root mass (Fig. 3), which the moth approached and 
made contact using its proboscis. All individuals were males, and images of the visitation spanning 120 seconds 
appear to be of the same individual. Pollinia was not affixed to the moth on any of these three visitations, however, 
pollen from Ipomoea alba was visibly covering the head of the final two individuals. Pollinia did not appear to be 
extracted from D. lindenii after visiting either.

Pachylia ficus individuals were recorded on three images during two occasions on July 20, 2018 at 00:00:28 hr 
(2) and 06:23:50 hr (1). On the first visit, D. lindenii pollinia was affixed to the base of the moth’s proboscis near its 
head (Fig. 4). The second visitation appears to be of a separate individual based on the substantial wing wear that 
is unlikely to have occurred over a period of six hours. A seed pod was developing when the camera was serviced 
the final time on October 2, 2018 (Fig. 5).

Across this sampling period in Fakahatchee (2014–2017), zero individuals of Cocytius antaeus were attracted 
to light traps. A total 12 individuals were located either with the use of a flashlight to search for eye shine of the 
moths resting on vegetation, or by capturing with a hand net when observed flying along the park road. Light 

Figure 2.  Cocytius antaeus feeds from a ghost orchid at a distance from the flower. Pollen from Ipomoea alba is 
present on the moth’s head. Photo by Mac Stone.
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trapping was conducted on two evenings in Corkscrew Swamp, for a shorter period of time (2 hrs), first at the 
edge of a meadow with a mercury vapor lamp, which attracted a male C. antaeus and a subsequent night with a 
blacklight at 30 m on T. distichum where a male C. antaeus was spotted previously at 20 m while tree climbing.

Proboscis lengths were measured for a total of eleven hawkmoth species (Fig. 6) possessing lengths compara-
ble to P. ficus (40 mm) and longer (Fig. 6), including Eumorpha satellita (39 mm), E. pandorus (39 mm), Manduca 
brontes (46 mm), M. sexta (81 mm), M. rustica (81 mm), Agrius cingulata (87 mm) Amphonyx duponchel (76 mm). 
Notably, specimens of M. quinquemaculata (108 mm) and Neococytius cleutenius (232 mm) possessed longer 
probocides than C. antaeus (101 mm). Several additional species of interest (e.g. Amphonyx vitrinus, Adhemarius 
daphne, Cocytius haxairei, Dolba hyloeus) were either not located in the collections, or were not prepared due to 
the fragility of the specimen.

Figure 3.  Cocytius antaeus visits the “super ghost” cluster at Corkscrew Swamp Sanctuary, where a gecko awaits 
on the bald cypress trunk amongst the root mass of D. lindenii. Photo by Mac Stone.

Figure 4.  Pachylia ficus visits a cluster of ghost orchids with pollinia from D. lindenii affixed to the base of its 
proboscis near its head. Photo by Mac Stone.
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Discussion
Pollination syndromes have been utilized to hypothesize guilds of pollinators since Darwin2. While direct obser-
vation of nocturnal pollination can be difficult for a multitude of reasons, floral morphology and resident pol-
linator communities inform our understanding of likely interaction scenarios. These hypotheses are especially 
beneficial for rare and/or endangered flowers, and their conservation; in these cases, any information regarding 
interactions between insects and plants is uniquely valuable. However, until data exist to confirm pollination they 
should be treated as hypotheses rather than fact.

Previous tongue length hypotheses for D. lindenii were misleading due to the placement of pollinia on the 
orchid. A proboscis of equal or greater length to that of the nectar spur would allow a visitor to extract all of 
the nectar, but may be capable of doing so without coming into contact with the flower. Curvature of a flower’s 

Figure 5.  A seed pod produced during the end of the flowering season, on October 2, 2018. Photo by Mac 
Stone.

Figure 6.  Proboscis length (mm) of species of long-tongued hawkmoths in south Florida and Cuba, 
measured in the collections at the McGuire Center for Lepidoptera & Biodiversity at the Florida Museum of 
Natural History, demonstrate that multiple species occur in the distribution of D. lindenii that possess longer 
proboscides than the long hypothesized sole pollinator of C. antaeus, and given the confirmed pollination 
by P. ficus, new hypotheses should consider a much larger community of hawkmoths with equal or greater 
proboscides.
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7Scientific Reports |         (2019) 9:12850  | https://doi.org/10.1038/s41598-019-49387-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

corolla has been shown to improve nectar discovery in Manduca sexta38, which may guide Lepidopterans toward 
the pollinia of D. lindenii. It appears that hawkmoths with probocides of a length slightly shorter than that of the 
nectar spur are encouraged to dive toward the flower to fully penetrate its proboscis to maximize nectar retrieval, 
increasing the probability of pollinia affixing to the moth and being deposited on a subsequent flower. Nectar vol-
ume and height within the corolla is an additional factor that may influence the minimum proboscis length nec-
essary, and could also further distance moths with long probocides from the pollinia. Therefore, any hawkmoth 
containing a proboscis long enough to surpass the curvature of D. lindenii’s corolla may obtain the minimum 
volume of nectar necessary to entice it further into the flower, leading to the extraction and deposition of pollinia.

Lepidopterans with substantial proboscis lengths capable of maximum nectar extraction without contacting 
pollinia function as nectar robbers. This tactic may be employed by C. antaeus, which was recorded visiting D. 
lindenii on three separate occasions throughout the flowering season, without extracting pollinia. In one instance 
(Fig. 2), an individual C. antaeus is seen feeding on D. lindenii from a distance while covered in pollen from 
Ipomoea alba. This could also occur by other long-tongued hawkmoths in D. lindenii’s distribution, including 
Manduca quinquemaculata, and the extremely long-tongued Neococytius cleutenius. Visitors benefit from this 
behavior by avoiding close contact with the flower, allowing them to forage at a distance from ambush predators 
that frequently sit and wait at sphingophilous flowers39, including geckos (Fig. 4; unpubl. data, Borneo), frogs, 
toads (PRH, pers. observ., Borneo, Madagascar, French Guiana), and spiders29,40.

It is widely speculated that long-spurred orchids have lengthy corollas to eliminate loss of pollinia to generalist 
species that are unlikely to visit another individual of the same species, wasting the intensive energetic investment 
of flower production11. The volatile compounds emitted from hawkmoth-pollinated flowers are attractive to many 
nocturnal Lepidoptera, possibly from great distances, with visual cues employed to hone in on flowers at closer 
proximity41. Unlike Darwin’s extreme hawkmoth system concerning Angraecum sesquipedale and Xanthopan 
morganii in Madagascar, the nectar spur of D. lindenii is far shorter, and falls within a spectrum of proboscis 
lengths possessed by resident pollinators in Florida and Cuba. Results here demonstrate that hawkmoths with a 
proboscis length much shorter than C. antaeus are capable of pollinating D. lindenii which provides support for a 
multiple pollinator community hypothesis consisting of a diverse guild of moderate to long tongued hawkmoths; 
such communities have been shown to partition resources temporally42, and timestamped camera trap images 
can be utilized to investigate these behavioral patterns. The potential of other Lepidopterans should be considered 
now as well. Pollination here by P. ficus indicates that C. antaeus, the long suspected pollinator, is not the only can-
didate, possibly not even a primary one, and actually may be robbing nectar at the orchid’s detriment. With the 
low population number of D. lindenii today, combined with a high extinction rate for relatively recently colonized 
and diversified orchids43, a multiple pollinator community may provide the best survival strategy for the species. 
Given the proboscis length of P. ficus, far shorter than the hypothesized pollinator, many more hawkmoth species 
with equal or greater proboscis lengths (Fig. 6) should be considered as potential candidates.

Lepidoptera species richness and abundance tend to be relatively low in swamp forests44–46, which holds true 
for the Everglades Basin of south Florida. Accordingly, any interactions within a Lepidoptera depauperate com-
munity on rare and endangered flower species are of importance to the understanding of their natural history. 
With more than 49 species of orchids in Fakahatchee alone, the highest diversity in the United States47, only 
three species of Angiosperms altogether are thought to be pollinated here at night by hawkmoths: D. lindenii 
(Orchidaceae), Crinum americanum (Amaryllidaceae), and Ipomoea alba (Convolvulaceae). Given the extreme 
scarcity of D. lindenii and relatively great abundance of I. alba, shown pollinated by C. antaeus here, and C. amer-
icanum pollinated by Dolba hyloeus in Houlihan29, it is plausible that these latter two non-orchid sphingophilous 
flowers may be important nectar sources in sustaining hawkmoth communities, in order to remain resident to 
pollinate D. lindenii. While historical abundance was higher throughout the species’ Florida distribution, today 
D. lindenii may be dependent the presence of other sphingophilous flowers to increase its own pollination success, 
indicating a reality in which coevolutionary single species relationships between one hawkmoth and one orchid, 
ideal for maximizing fidelity, would no longer be advantageous.

Florida and Cuba populations of D. lindenii share numerous species within their hawkmoth communities, 
with 50 species of Sphingidae found in Florida’s Everglades Basin48, and 60 in Cuba49, and occasional vagrants to 
both. Despite the likelihood of Caribbean hawkmoth migrations (pers. comm. Dan Janzen & Winnie Hallwachs), 
and the feasibility of flight between Florida and Cuba, the disjunction of flowering times between these popula-
tions of D. lindenii22,50 indicates that pollinia transfer between these populations, separated spatially and tempo-
rally, is unlikely. Consequently, the biological relevance of these two D. lindenii populations being considered one 
in the same is questioned, and morphometric and genetic analyses should be conducted.

Seasonality and climatic fluctuations influence the phenology of tropical flooded forests51, and in turn the 
abundance and composition of Lepidoptera communities45. A few studies have correlated hawkmoth abundance 
with phenology of the flowering species on which they forage21,52,53, and fruit set in orchids has been shown to be 
higher in correlation with increased flower production36. In the wild, D. lindenii can produce single or multiple 
flowers annually until the production of inflorescences depletes its nutrient stores (MO, unpubl. data), after which 
it is common for an individual to undergo dormancy until these nutrients have been replenished28. Collectively, 
Corkscrew’s “super ghost” is unique in that it ranks among the largest ghost orchid root masses known and it 
flowers more prolifically than others in south Florida, having produced more than 40 inflorescences in 2014 (SEC, 
unpubl. data). Long term monitoring of D. lindenii by MO in the Fakahatchee Strand revealed that after germina-
tion in 1992, two individuals produced first flowers in July 2008 and July 2009, placing the age at first flower for 
these two wild D. lindenii at 16 and 17 years, respectively (MO, unpubl. data), while in controlled laboratory set-
tings, time from germination to inflorescence can be expedited28. Additionally, in the 25-year dataset monitoring 
~450 ghost orchids at Fakahatchee Strand, the largest population of D. lindenii in Florida, seed pod production by 
D. lindenii was found to increase in the year following intense hurricanes (MO, unpubl. data), defined as Category 
3 or higher, compared to an annual seed pod production in other years between zero and two; after Hurricane 
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Wilma made landfall over Fakahatchee Strand in October 2005, seven seed pods were produced during summer 
2006, and six seed pods were produced during summer 2018 after Hurricane Irma directly impacted Fakahatchee 
Strand in September 2017 (MO, unpubl. data). While hurricanes have immediate destructive impacts on natural 
environments, including Hurricane Ivan’s devastation on the population of D. lindenii in western Cuba54, and 
the loss of one of Corkscrew Swamp’s individuals to Irma in 2017, replenished aquifer conditions imposed in the 
aftermath of intense hurricanes briefly resemble that of an era prior to the drainage of the Everglades. Further 
investigation is necessary to understand the correlations between these abiotic factors on D. lindenii flower pro-
duction in the wild.

The Fakahatchee Strand was heavily logged for T. distichum (bald cypress) in the first half of the 20th Century, 
effectively removing an entire upper strata from the Fakahatchee, and lowering the canopy. Today, the epiphytic 
orchids in Fakahatchee occur predominantly on pond apple (Annona glabra) and pop ash (Fraxinus caroliniana), 
which may be attributed solely to mycorrhizal relationships and host plant affinities22. However, it is difficult 
to assess what former role T. distichum served as a host tree due to its widespread selective logging. Corkscrew 
Swamp Sanctuary is home to the largest remaining old growth cypress stand in the world, where the only known 
D. lindenii are found within the virgin cypress stand, attached to T. distichum. Prior to cypress logging and orchid 
poaching, T. distichum may have hosted a higher proportion of the D. lindenii population than present day. 
Corkscrew Swamp sheds light on the ghost orchid’s historical natural habitat in which T. distichum expands the 
vertical stratification where D. lindenii can occur and also provides more surface area suited to sustain older, 
larger, and more fruitful epiphytic orchids. Lepidoptera community composition fluctuates greatly with respect 
to vertical stratification within tropical forests44; expanding the species’ height distribution exposes D. lindenii to 
a more diverse pollinator community, and attracts pollinators from greater distances due to the wider dispersal 
of volatile compounds in and above the upper canopy, increased reflectance of ambient light on floral color, and 
closer proximity to far ranging hawkmoths that exhibit above-canopy cruising altitudes. The epiphytic presence 
of D. lindenii in the cypress canopy also aides wind dispersal of seeds. Ghost orchid recruitment in the understory 
tends to occur within the immediate vicinity, often on the same tree or within the same slough as the parent plant 
(pers. observ., PRH & MO), with population dynamics functioning as epiphytic metapopulations as in Winkler 
et al.55. At lower heights in flooded forests, seeds are often dispersed into the water rather than on a potential host 
tree. Increasing the distance above the forest floor enables more surface area for seeds to colonize throughout the 
forest on their descent, and also a higher likelihood for windward travel through the upper canopy, increasing 
seed dispersal and genetic diversity.

The bald cypress canopy also serves as a microclimate buffer, stabilizing abiotic conditions within the forest 
critical to the life cycle of D. lindenii28. While widespread hydrologic disruption has been well-documented with 
the channelization and compartmentalization of the Florida Everglades, regional impacts of land use changes 
and increased groundwater extraction, concurrent with increased population growth, are becoming evident. 
Corkscrew Swamp Sanctuary’s 55-year hydrologic record indicates a 27% decrease in the hydroperiod of the sanc-
tuary’s bald cypress swamp, with most change taking place 1990 to 201556. While the exact cause of these changes 
are unknown, a combination of upstream and downstream development, increased groundwater extraction, and 
increased evapotranspiration are likely culprits. For species sensitive to temperature and/or humidity, particu-
larly epiphytic orchids, these changes translate to an absence of standing water below the bald cypress canopy for 
nearly three additional months during the dry season, significantly increasing their vulnerability to microclimate 
extremes. Notably, ghost orchids were more abundant at Corkscrew Swamp Sanctuary35 and Fakahatchee (MO, 
unpubl. data) prior to abnormal freezes that decimated populations in recent years. Over-drainage of the western 
Everglades also places cypress swamps at risk of increasingly severe wildfires57. Small and large scale wetland 
restoration projects within the Greater Everglades can help maintain and restore climatic stability for both ghost 
orchids and their hawkmoth pollinators.

Today, the majority of world's orchids are threatened30, and many species of orchids remain data deficient, 
particularly with respect to pollination ecology. Understanding in-situ ghost orchid reproduction is imperative 
for enacting effective conservation, especially for ex-situ propagation and reintroduction efforts. Remote camera 
trapping methods described here provide new insight into approaches that can be implemented for identifying 
pollinators of orchids that do not have any documented. Interdisciplinary collaborations between researchers 
(entomologists and botanists), in coordination with photographers and tree climbers, are critical in addressing 
these complex conservation issues. Plagued with poaching, historical logging, sprawling development and habitat 
degradation, and climate change, ghost orchids have a fragile existence, and elevated protection status, from state 
to Federal, is strongly recommended.

Perhaps Darwin’s most important orchid prediction of all was what he foreshadowed of the conservation 
of these intricate hawkmoth-orchid systems, in which more than a century and a half ago, he predicted of the 
Madagascan star orchid, “If such great moths were to become extinct in Madagascar, assuredly the Angraecum 
would become extinct. On the other hand…the extinction of the Angraecum would…be a serious loss to these 
moths”2. So too is the precarious fate, and need for conservation, of D. lindenii.

Data Availability
Images supporting the results are archived with National Geographic and the Audubon Society.
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