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ABSTRACT
Purpose Signal detection methods have been used extensively in postmarket surveillance to identify elevated risks of adverse events
associated with medical products (drugs, vaccines, and devices). However, current popular disproportionality methods ignore useful infor-
mation such as trends when the data are aggregated over time for signal detection.
Methods In this paper, we applied change point analysis (CPA) to trend analysis of medical products in a spontaneous adverse event
reporting system. CPA was used to detect the time point at which statistical properties of a sequence of observations change over time.
Two CPA approaches, change in mean and change in variance, were demonstrated by an example using neurostimulator adverse event dataset.
Results Two significant change points associated with upward trends were detected in June 2008 (n= 20, p< 0.001) and May 2011
(n= 51, p= 0.003). Further investigation confirmed battery issues and expansion of the indication for use could be possible causes for
the occurrence of these change points. Two time points showed extremely low number of loss of therapy events, two cases in October
2009 and three in November 2009, which could be the result of reporting issues such as underreporting.
Conclusion As a complimentary tool to current signal detection efforts at FDA, CPA can be used to detect changes in the association be-
tween medical products and adverse events over time. Detecting these changes could be critical for public health regulation, adverse events
surveillance, product recalls, and regulators’ understanding of the connection between adverse events and other events regarding regulated
products. © 2015 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd.
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INTRODUCTION

Americans rely on the Food and Drug Administration
(FDA) to keep their food and medical products safe
and effective. During the approval process for a medical
product, such as a vaccine, drug, or medical device,
manufacturers conduct rigorous analytical studies or
clinical trials, and FDA carries out a thorough pre-
market review to evaluate the product’s efficacy and
safety performance. However, in their submissions to
the FDA, sponsors have only tested their products on a
limited number of patients from the population in which
the product will ultimately be used. Therefore, it is pos-
sible that some rare adverse events from patients in the

product’s intended population may not be detected
before the product goes to the market. In addition, in
some cases, the product may change over time as newer
iterations of the device are introduced, the product is
used off label, or the indication for use is modified.
Therefore, it is important to monitor medical products
during the post-approval phase to detect emergent ad-
verse events. To this end, FDA maintains several spon-
taneous adverse events reporting systems, such as FDA
Adverse Event Reporting System (FAERS) for drug and
biological products and Manufacturer and User Device
Experience (MAUDE) for medical devices.
The spontaneous adverse event reporting systems

continuously generate large volumes of data. For
example, FAERS contains approximately nine million
reports and currently receives approximately half a
million reports per year.1 As a result, it is not practical
to manually review all reports to identify adverse event
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safety “signals”—real changes and differences in
underlying event rates. Neither is it realistic to detect
subtle signals through manual review. Furthermore,
there is additional difficulty in identifying signals
when the total number of patients using a certain prod-
uct is unknown, making the estimation of adverse
event rate impossible. Thus, various data mining tech-
niques have been implemented at FDA to detect possi-
ble safety signals, which could reveal the association
between approved medical products and adverse
events caused by these products. The most commonly
used data mining techniques at FDA include propor-
tional reporting ratio (PRR) and Multi-item Gamma
Poisson Shrinker (MGPS). For a specific adverse
event j and drug/device i, PRR is defined as the ratio
of conditional probability of adverse event j given
drug/device i and conditional probability of adverse
event j given all other drugs/devices except drug/
device i.2 The purpose of PRR is to demonstrate the
extent to which a specific adverse event is associated with
that drug/device as compared with other drugs/devices.
DuMouchel3 developed the MGPS method by assuming
that counts of reports containing drug i and adverse event
j follow a Poisson distribution with unknown parameter
λij. A mixture of two Gamma distributions is used as
the prior distribution for λij. Five parameters are estimated
from the entire data matrix, and the posterior distribution
of each λij is used to create “shrinkage” estimates, the
empirical Bayes geometric mean (EBGM), which is used
to rank all cell counts to determine which cells have
unusually large observed counts compared with the
expected counts. The lower and upper limits of a 90%
confidence interval of the EBGM are denoted as EB05
and EB95, respectively. In general, safety signals will
be generated if EB05>2, which means the observed
count for drug/devices i and adverse event j is at least
twice the expected ratio relative to all other drugs/
devices and events in the database. A signal can be
further refined and investigated to see if the EB05 is
larger than the expected ratio of specific drugs/devices
or a similar class of drugs/devices in the database.
Various commercially available software programs can
generate PRR and/or EBGM scores (e.g., Empirica
Signal™, PVAnalyser™, SAS™, and MASE™).
Most disproportionality methods such as PRR and

MGPS look at the aggregated data over time. Such
methods are designed to detect a proportional increase
in events for a particular drug or device as compared
with a comparator set of drugs or devices. However,
useful information across the timeline is lost when data
are aggregated over time. Specifically, identification of
trends or changes over time for a particular product
may be difficult to detect.4,5 Also, it is not always clear

what constitutes the appropriate set of comparator
drugs or devices. If the drug or device is the only avail-
able treatment in its class, there may not be a meaning-
ful comparator. In other cases, there may be a wide
range of similar or not-so-similar products that could
be chosen to be included in a comparator set.
In this paper, we applied a time-series method, change

point analysis (CPA), to trend analysis using data from
the spontaneous adverse event reporting system. CPA
is a powerful statistical method in determining whether
a change has taken place in time series or sequences. It
has been demonstrated to be an effective tool in
detecting changes in different application areas such as
economics, medicine, agriculture, and machine intelli-
gence.6–8 Recently, CPA has been introduced to public
health surveillance. Kass-Hout et al.9,10 applied CPA
to the active syndromic surveillance data to detect
changes in the incidence of emergency department visits
due to daily influenza like illness during the H1N1 pan-
demic. To the best of our knowledge, CPA has not been
used in signal detection efforts at FDA. In this study, we
intended to explore CPA method as a complimentary
tool in detecting safety signals from MAUDE by evalu-
ating benefits of using CPA in detecting adverse event
change points in postmarket safety surveillance. Two
different CPA approaches—change in mean and change
in variance—were used to investigate trends of adverse
events related to a neurostimulator.

METHOD

Data source

Using the FDA MAUDE database, we retrieved
adverse events from one specific neurostimulator and
aggregated monthly counts for adverse events related
to loss of therapy. Loss of therapy could include sev-
eral types of events, including battery problems, infec-
tion, overstimulation, and so on. The data spanned
from 2000 to 2012. Figure 1 illustrates monthly counts
of loss of therapy during the study period.

CPA methods

The outcome measure was the monthly count of
adverse event reports classified as loss of therapy.
The detection of a single change point can be posed
as a hypothesis test. The null hypothesis, H0, corre-
sponds to no change point, and the alternative hypoth-
esis, Ha, corresponds to a single change point. The
current CPA research focused on developing robust al-
gorithms to detect multiple change points on the mean
of a sequence of observation data, including binary
segmentation,11 segment neighborhoods,12,13 and the
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Pruned Exact Linear Time.14 Likelihood ratio and
cumulative sum (CUSUM) are two widely used test sta-
tistics in detecting changes in mean.15 In this paper, we
employed Taylor’s nonparametric CPA method, which
uses iterative application of CUSUM and bootstrapping
methods to detect changes in time-series data.16 This
approach is based on the mean-shift model and assumes
that residuals are independent and identically distrib-
uted with a mean of zero. For time-series data Yi with
i=1, …, N, the mean-shift model is written as

Yi ¼ μþ εi

where μ is the sample average μ ¼ ∑iYi=N and εi is
the residual term εi=Yi�μ for the ith observation.
To carry out the nonparametric CPA method, we de-
fined the CUSUMs of residuals as Si for i=1, …, N,
where the first set S0=0 and the remaining sets were
calculated as Si=Si� 1+ εi for i=1, …, N. Note that
by construction, because we were subtracting the
overall mean, SN=0 as well. If there was no change point,
the time series is stationary, and thus a permuted sample
of the residuals can be used to construct an instance of the
CUSUMs under the null. Repeated permutation sam-
ples can be used to provide a null distribution for a test
statistic constructed from the CUSUMs.
A potential change point in an interval was

identified at location m by searching for the maxi-
mum absolute CUSUM of residuals, where Smj j ¼
maxi¼0;…;N Sij j. As a statistic, we used the maximum
absolute CUSUM difference within a given interval
Sdiff =Smax�Smin, where Smax ¼ maxi Si and Smin ¼
mini Si . On the other hand, when the CUSUM of
residuals were plotted, a sudden change in direction
of the CUSUM indicated a sudden shift or change in
the average, and the place where sudden change oc-
curred was defined as change point. The distribution
of 1000 Sdiff was used to determine the p-value for

the change point as the percentage of Sdiff values,
which were greater than S0diff from original time-series
data.16

In addition to the changes in mean approach, we
used another CPA method for detecting changes in
variability. This method was motivated by potential
non-stationarity of variability of the data where vari-
ance was smaller in some sections but larger in other
sections.15 Similar to the changes in mean CUSUM ap-
proach, change in variance can be implemented using
the sum square error (SSE) approach, which was mean-
ingful in operation, simple in calculation, and useful for
testing significance. Let SSE(m) be defined as

SSE mð Þ ¼ SSE1 þ SSE2 ¼
Xm

i¼1

Xi � X1
� �2

þ
Xn

i¼mþ1

Xi � X2
� �2

where
X1 ¼

Xm

i¼1

Xi

m
; X2 ¼

Xn

i¼mþ1

Xi

n� m

From the analysis of variance, it was known that the
sum of the squared distances of points on a line from
their mean can be partitioned, when the points were
classified into two groups, 1 to m and m+1 to N, into
two within-group sums of squares SSE1 and SSE2 and
a between-groups sum of squares SSE.11 The change
point was defined at the value of m that minimizes
SSE(m), the sum of the two within-group sums of
squares. This can be thought of as a modified applica-
tion of the k-means clustering algorithm, which was
used to partition n observations into k clusters with
each observation belonging to the cluster with the
nearest mean. In this application, the clusters were
restricted to retain the time-series nature of the data.

Figure 1. The time series of number of loss of therapy for neurostimulator and their detected change points. AE, adverse event
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The open-source software R has a package called
changepoint, which provides a choice of different
CPA algorithms in detecting changes in mean and vari-
ances. We used cpt.var function in the R package
changepoint to implement the change in variance ap-
proach. For the change in mean CUSUM CPA method,
we have developed publically available codes in R, SAS,
and STATA format. Those codes can be downloaded
from our open-access collaboration website for CPA at
https://sites.google.com/site/changepointanalysis.

RESULTS

The CUSUM plot for the sample neurostimulator data
is shown in Figure 2. Figure 2(a) shows the CUSUM
direction for entire time-series data, while Figure 2(b)

and (c) displays the CUSUM trend prior and post the
first detected change point on June 2008.
Change points detected using CUSUM for the sam-

ple neurostimulator data along with their significance
levels are listed in Table 1. A p-value of 0.05 was used
as the cutoff to screen significant change points. The
first candidate change point occurred in June 2008,
with a permutation test p-value of <0.001.
Figure 1 shows how the data series were split based

on the change points. The June 2008 change point is
displayed as symbol “1” in Figure 1. Then the data were
split into two segments in June 2008, and CPA was
implemented independently on each of the resulting
segments. The second significant change point occurred
in May 2011, which is displayed as symbol “2” in
Figure 1. This segment was further split in May 2011
change point, and CPA was applied, but no further sig-
nificant change point was detected. For the left segment
(prior to June 2008), CPA picked up three additional
significant change points in 2006 and 2007.
Because the variability of the data showed two dif-

ferent patterns before and after June 2008, we applied
a change in variance CPA approach to detect any
significant change points caused by the variability of
the data (Table 2). The change in variance CPA
method detected two change points, June 2008, which
was also detected by change in mean method, and
April 2011, which is 1month before the change point
detected by change in mean method.

DISCUSSION

Change point analysis is a very useful tool for
detecting significant changes in the means or variances
of a sequence of observed data. For medical products,

Figure 2. (a) Cumulative sum (CUSUM) plot for the sample
neurostimulator data; (b) CUSUM plot for the sample neurostimulator data
prior to first change point at June 2008; and (c) CUSUM plot for the sample
neurostimulator data after first change point at June 2008

Table 1. Change points using cumulative sum method based on changes
in mean

Detection order Change point
Count in change
point month p-value

1 June 2008 20 <0.001
2 May 2011 51 0.003
3 December 2006 2 <0.001
4 November 2007 2 0.005
5 February 2007 1 <0.001

Table 2. Change points using change point analysis method based on
changes in variance

Change point Count in change point month

June 2008 20
April 2011 25
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the detected change points may provide valuable
information for postmarket surveillance. In the
neurostimulator example we used in this paper, two
significant change points were detected—June 2008
and May 2011. A report based on retrospective analy-
sis shows battery, and other device failure issues also
occurred during June 2008. In May 2011, an extended
indication for use for this device was approved. As a
larger population used this device, more adverse events
were reported. It is less intuitive as to observe signifi-
cant change points before 2008 because the number
of reports was relatively small and, for most months,
there was no report. One of the limitations of the
CUSUM approach is that it is based on the identifica-
tion of change in mean, and thus, its performance could
be affected by the actual numerical value of data. The
counts of two losses of therapy could be significant
change points if there are no events nearby (i.e., n=2
for December 2006 and November 2007). However, al-
though statistically significant, a count of two may not
be sufficient in providing meaningful clinical implica-
tion to call for further investigation. Considering there
are millions of adverse event reports in FAERS and
MAUDE, it would be ideal to reduce the number of
change points, which require further action.
We also observed several low numbers of reports

from October 2009 to January 2010, for example,
two for October 2009 and three for November 2009.
Because they existed in the elevated reporting period,
the unusual pattern may be due to reporting issues
such as underreporting.
Underreporting of events is a significant problem in

the spontaneous adverse event reporting system.
Reporting of adverse events and medication errors by
healthcare professionals and consumers is voluntary
in the USA. As a result, a significant underreporting
of adverse events occurs.17 FDA receives some ad-
verse event, and medication error reports directly from
healthcare professionals (e.g., physicians, pharmacists,
and nurses) and consumers (e.g., patients, family
members, and lawyers). Healthcare professionals and
consumers may also report adverse events and/or med-
ication errors to product manufacturers. If a manufac-
turer receives an adverse event report, it is required
to send the report to FDA as specified by regulations.
Reports received directly by FDA and reports from
manufacturers are entered into FAERS or MAUDE.
Underreporting may vary according to the type of
product, the seriousness of an event, the population
using the product, the product’s time on the market,
and other factors. It has been estimated that 94% of ad-
verse drug reactions go undetected by spontaneous
reporting systems.17

In addition to underreporting, overreporting of events
could also be problematic. A relative increase of
reporting for a particular event or syndrome of events
may be stimulated by publicity or litigation.18 However,
such inflated reporting could lead to a biased estimate of
safety signals. Factors that can cause bias include newly
published safety alerts and recalls, new regulations,
reporting incentives, or deterrents. Furthermore, when
the report is from patients who are using multiple med-
ical products, it is hard to correctly identify which med-
ical products caused the adverse event.
Both change in mean and change in variance CPA

approaches showed similar change points in the
neurostimulator adverse event dataset. April 2011
can be considered the last time point before counts of
loss of therapy went up in May 2011. The CUSUM
method treated the beginning of new segment as the
change point, while the change in variance CPA
approach used the last time point before the change
occurred. We would argue that both change points
(April and May 2011) represent the same change that
occurred in the data. One difference between the two
approaches is that change in mean detected multiple
significant change points in 2006 and 2007 while
change in variance did not. Compared with change in
mean, change in variance is less sensitive to the actual
numerical value of the data and could be more robust
to outliers.
The approaches presented in this paper provide com-

plimentary analyses to findings from disproportionality-
based methods. Instead of aggregating data to detect
differences in relative reporting rates between products,
CPAmethods focus on detecting changes within a prod-
uct over time. Both types of analysis can provide signals
that would prompt further investigation of potential
problems. CPA should be used as the starting point,
not the end point to investigate these changes. In some
situations, the actual events may start even before the
detected change points. In order to determine the under-
lying cause of those changes, multiple data sources may
be used for the investigation. As the volume of time-
series data increases, there is a growing need to maintain
situational awareness and be able to efficiently and
accurately estimate the location of multiple change
points. As a complimentary tool to current signal detec-
tion efforts at FDA, CPA can be applied to detect
changes in the association between medical products
(drugs, vaccines, and devices) and adverse events over
time. Detecting these changes could be critical for
public health regulation, adverse events surveillance,
product recalls, and regulators’ understanding of the
connection between adverse events and other events
regarding regulated products.
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KEY POINTS

• Signal detection using disproportionality methods
may ignore useful information when the data are
aggregated over time for signal detection.

• Change point analysis (CPA), a time-series anal-
ysis tool, allows the estimation of the point at
which statistical properties of a sequence of ob-
servations change.

• CPA can be used to detect changes in mean or in
variance.

• CPA can be applied to detect changes in the
association between medical products (drugs, vac-
cines, and devices) and adverse events over time.

• CPA can be a complimentary tool to current
signal detection efforts at FDA.
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