
Received: 12 October 2021 | Accepted: 7 December 2021

DOI: 10.1002/gepi.22440

RE S EARCH ART I C L E

Genome‐wide pleiotropy analysis identifies novel blood
pressure variants and improves its polygenic risk scores

Xiaofeng Zhu1 | Luke Zhu2 | Heming Wang3 | Richard S. Cooper4 |

Aravinda Chakravarti2

1Department of Population and
Quantitative Health Sciences, Case
Western Reserve University, Cleveland,
Ohio, USA
2Department of Medicine, Center for
Human Genetics & Genomics, New York
University Langone Health, New York,
New York, USA
3Division of Sleep and Circadian
Disorders, Brigham and Women's
Hospital, Boston, Massachusetts, USA
4Department of Public Health Sciences,
Stritch School of Medicine, Loyola
University Chicago, Maywood,
Illinois, USA

Correspondence
Xiaofeng Zhu, Department of Population
and Quantitative Health Sciences, Case
Western Reserve University, Cleveland,
OH 44106, USA.
Email: xxz10@Case.Edu

Funding information

National Institute of Heart, Lung and
Blood, Grant/Award Number: HL086694;
National Human Genome Research
Institute, Grant/Award Number:
HG011052

Abstract

Systolic and diastolic blood pressure (S/DBP) are highly correlated modifiable

risk factors for cardiovascular disease (CVD). We report here a bidirectional

Mendelian Randomization (MR) and horizontal pleiotropy analysis of S/DBP

summary statistics from the UK Biobank (UKB)‐International Consortium for

Blood Pressure (ICBP) (UKB‐ICBP) BP genome‐wide association study and

construct a composite genetic risk score (GRS) by including pleiotropic var-

iants. The composite GRS captures greater (1.11–3.26 fold) heritability for BP

traits and increases (1.09‐ and 2.01‐fold) Nagelkerke's R2 for hypertension and

CVD. We replicated 118 novel BP horizontal pleiotropic variants including 18

novel BP loci using summary statistics from the Million Veteran Program

(MVP) study. An additional 219 novel BP signals and 40 novel loci were

identified after a meta‐analysis of the UKB‐ICBP and MVP summary statistics

but without further independent replication. Our study provides further in-

sight into BP regulation and provides a novel way to construct a GRS by

including pleiotropic variants for other complex diseases.
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1 | INTRODUCTION

Poorly controlled blood pressure (BP) accounts for a large
portion of the risk for cardiovascular disease (CVD), stroke,
and heart failure (Rapsomaniki et al., 2014). Understanding
biological mechanisms for BP regulation could thus poten-
tially help improve BP control and lead to a reduction in the
burden of CVD. BP, characterized by systolic and diastolic

blood pressure (SBP/DBP), are long‐standing risk predictors
for CVD. To date, genome‐wide association studies (GWAS)
have been performed on BP traits by focusing on main ef-
fects and in studies that included subjects of diverse ancestry
over 1000 BP‐associated loci have been identified (Ehret
et al., 2016; Evangelou et al., 2018; Franceschini et al., 2013;
Giri et al., 2019; Hoffmann et al., 2018; International Con-
sortium for Blood Pressure Genome‐Wide Association
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et al., 2011; Liang et al., 2017; C. Liu et al., 2016; Sung
et al., 2018, 2019; Surendran et al., 2016; Warren et al., 2017;
Zhu et al., 2015). Genome‐wide search of gene–environment
interactions on BP traits have also been recently conducted,
however, only a few new gene–environment interactions
have been identified, in part owing to low statistical power
(Sung et al., 2018, 2019). Although many GWAS variants are
shared between SBP and DBP, both of which are correlated,
some seem associated with SBP or DBP differently or even in
opposite directions, suggesting evidence of different biological
mechanisms. It has been reported that joint analysis of SBP
and DBP leads to the identification of BP variants missed by
analyzing SBP or DBP separately (Zhu et al., 2015). However
prior studies have not addressed the mechanisms underlying
the SBP–DBP relationship, reflecting arterial stiffness or ar-
terial compliance (Schillaci & Pucci, 2010). Dissecting the
causal relationships of SBP and DBP variants, in particular,
whether they affect SBP and DBP through the same (med-
iation) or different (horizontal pleiotropic) paths, and how
many horizontal pleiotropic variants contribute jointly to
these highly correlated traits, is thus important for under-
standing the biology of BP regulation.

Genetic risk scores (GRS) are constructed as weighted
linear combinations of individual variant effects esti-
mated from GWAS to predict the individual‐level risk of a
common disease. An overall GRS is the average of SBP‐
and DBP‐specific GRS (Evangelou et al., 2018; Interna-
tional Consortium for Blood Pressure Genome‐Wide As-
sociation et al., 2011). However, published BP GRS's have
explained ~6% of the heritability of SBP and DBP, and
have limited predictive power for hypertension (HTN)
and cardiovascular disease (CVD). GWAS of gene–age
interaction analysis has also identified genetic variants
with age‐dependent effect sizes, including for BP (Shi
et al., 2009; Simino et al., 2014), lipid levels (Dumitrescu
et al., 2011), and body mass index (BMI) (Lasky‐Su
et al., 2008). A recent study based on a proportional ha-
zards model reported age‐varying risk profiles in nine
diseases, including HTN (Jiang et al., 2021). However,
these studies were underpowered because the interactive
contribution by variant and age is often weak.

In this study, we address the mechanistic relationship
between SBP and DBP by performing a bidirectional Men-
delian Randomization (MR) (Smith & Ebrahim, 2003) and
GWAS horizontal pleiotropy analysis using summary sta-
tistics from >750,000 subjects of European ancestry from
the UK Biobank (UKB) and International Consortium for
Blood Pressure (ICBP) consortium (Evangelou et al., 2018),
followed by summary statistics of 318,891 multiethnic
subjects from the Million Veteran Program (MVP)
(Giri et al., 2019). We searched for novel BP variants with
horizontal pleiotropic effects and constructed a composite
GRS using variants with and without horizontal pleiotropic
effects and studied the age‐varying effects of GRS for

prediction of BP, HTN, and CVD in European, African, and
Asian descent individuals.

2 | MATERIAL AND METHODS

2.1 | Summary statistics of UKB
and ICBP

UKB and the ICBP consist of data on 458,577 UK and
299,024 European descent subjects. GWAS of SBP and
DBP were conducted in UKB and ICBP separately and the
results were meta‐analyzed (Evangelou et al., 2018;
International Consortium for Blood Pressure Genome‐
Wide Association et al., 2011). Our analysis was based on
the summary results from the UKB and ICBP GWAS that
were calculated based on up to 757,601 participants and
~7.1M genotyped and imputed single‐nucleotide poly-
morphisms (SNPs) with MAF≥ 1% for variants present in
both the UKB data and ICBP meta‐analysis for SBP, DBP,
and pulse pressure (PP; defined as SBP−DBP).

2.2 | Summary statistics of MVP

The BP summary statistics of MVP consists of 318,891
predominantly male multiethnic participants from
Hispanic, non‐Hispanic Whites, Blacks, Asians, and
Native Americans (Giri et al., 2019). There were 18.2M
genotyped and imputed SNPs in the summary statistics.
The MVP data were used for replication analysis as well
as meta‐analysis with UKB‐ICBP.

2.3 | UKB individual‐level data

Participants in the UKB were genotyped using a custom
Affymetrix UK Biobank Axiom array (Bycroft et al., 2018).
Genotypes were imputed by the UKB using the Haplotype
Reference Consortium reference panel (McCarthy
et al., 2016); we retained variants with imputation Rsq> 0.3.
Related individuals with pairwise kinship coefficients
greater than 0.0884 (suggested by UKB) were removed from
the analysis, resulting in 451,174 individuals of European,
African, and Asian ancestries. The principal components
were calculated by UKB with genotype data within each
ancestry to account for population structure.

We analyzed three BP traits in UKB: SBP, DBP, and PP.
We calculated the mean SBP and DBP values from two
baseline BP measurements and added 15 and 10mmHg to
SBP and DBP, respectively, for individuals who took anti-
hypertensive medications. Hypertensive cases were defined
as either SBP≥ 140 or DBP≥ 90 or taking antihypertensive
medications. CVD cases in UKB were defined using
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self‐reported baseline information and the ICD9 and ICD10
diagnostic codes on hospital admissions. The CVD cases
includes ICD9 ("4109", "4119", "4129", "4139", "4140", "4141",
"4148", "4149") and ICD10 (I210, I211, I212, I213, I214, I219,
I21X, I220, I221, I228, I229, I230, I231, I232, I233, 234, I235,
I236, I238, I240, I241, I248, I249, I250, I251, I252, I253, I254,
I255, I256, I258, I259) codes. These data identified 35,968
CVD cases in subjects with European, African, and Asian
ancestries. The study was approved by the Case
Western Reserve University Institutional Review Board
(STUDY20180592).

2.4 | MR analysis

We performed a bidirectional MR analysis of SBP and
DBP by applying the software IMRP (Zhu et al., 2021)
and MRmix (Qi & Chatterjee, 2019), as well as estimated
the causal contributions of BP on coronary artery disease
(CAD), myocardial infarction (MI) and stroke. Con-
sidering SBP and DBP the following association model as
described in Figure 1 was used:

β γ G U ε

β γ G U ε

SBP = ′ × DBP + + + ,

DBP = × SBP + + + ,
1 1

2 2
(1)

whereG is a genetic instrumental variable (IV), γ1 and γ2 are
the direct contributions of G to SBP and DBP, β and β′ are
the mutual causal effects between SBP and DBP, U re-
presents confounding factors and ε1 and ε2 are error terms,
respectively. MR analysis estimates the causal effect β and β′
through the genetic IVG respective to SBP and DBP. A valid
genetic IV satisfies γ 01 ≠ and γ = 02 or vice visa, re-
presenting the genetic contribution to outcome through the
mediation of exposure, where SBP and DBP can either be
considered as exposure or outcome. We termed these var-
iants γ γ( = 0 or = 0)1 2 as mediation variants. We define a
horizontal pleiotropic variant as one with γ 01 ≠ and γ 02 ≠ ,
interpreted as the genetic contributions to SBP and DBP

through two independent paths (or a pleiotropic path)
(Figure 1). From now on, we will simply call horizontal
pleiotropic variants as pleiotropic variants. IMRP is an
iterative approach combining the pleiotropy test and the MR
analysis. The iteration starts by performing MR‐Egger ana-
lysis (Egger et al., 1997) to estimate the causal effect of an
exposure to outcome, followed by inverse variance‐weighted
(IVW) (Borenstein et al., 2009; Burgess et al., 2013) analysis
until the causal effect estimate converges. The causal effect is
estimated by IVW after excluding all identified pleiotropic
variants. At each iteration step, IMRP performs a pleiotropy
test to update which genetic instrument variants show
pleiotropy (p<0.05) using the test:

T
βγ

βγ
=

Γ̂ − ˆ

var(Γ̂ − ˆ )
,Pleio (2)

where Γ̂ and γ̂ are the estimated effect sizes of a genetic IV
on exposure and the outcome, respectively, and β is the
causal estimate which is updated at each iterative step. We
have previously shown that TPleio tests the null hypothesis
γ γ= 0( = 0)1 2 when DBP (SBP) is an exposure (Zhu
et al., 2021). In MR analysis, a valid IV satisfies γ 01 ≠ (or
γ 0)2 ≠ depending on which causal direction in Figure 1,
therefore, rejecting null hypothesis γ γ= 0( = 0)2 1 suggest-

ing a pleiotropic effect. IMRP takes advantage of MR‐Egger,
which is less biased, and IVW, which is more efficient.
IMRP can be applied to GWAS summary statistics of an
exposure and an outcome obtained with overlapping or
unique samples. To ensure the causal estimate is robust, we
also applied a substantially different MR approach MRmix
(Qi & Chatterjee, 2019), an estimating equation approach
that assumes βγΓ̂ − ˆ follows a normal mixture model.
MRmix usually shows a good trade‐off between bias and
variance even with more than 50% invalid IVs (Qi &
Chatterjee, 2019). MRmix requires standardized summary
statistics and IMRP does not. For a continuous trait, the
effect size is rescaled by z n/ , where z and n correspond to
the z‐score for an IV and the sample size, respectively, with
its standard error n1/ . For a binary trait, the effect size is
rescaled by / p 1 − pbeta ( ) , where beta and p correspond
to the effect size and minor allele frequency of an IV,
respectively. This standardizing procedure has been used in
MRmix (Qi & Chatterjee, 2019).

2.5 | GWAS of pleiotropy analysis for
SBP and DBP

After performing a bidirectional MR analysis of SBP and
DBP and estimating the causal effects of SBP on DBP and

FIGURE 1 Blood pressure (BP) path diagram in Mendelian
randomization and horizontal pleiotropic analysis, which
corresponds to the model (1). To declare horizontal pleiotropy, we
require both γ 01 ≠ and γ2≠ 0. β and β′ are the mutual direct causal
effects between γ1 and γ2. DBP, diastolic BP; G, genetic instrumental
variable; SBP, systolic BP; U, confounding factors
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DBP on SBP, we extended the pleiotropy test TPleio to all
7.1 Million SNPs by fixing the causal effects estimated
from IMRP analysis in the two causal paths, using UKB‐
ICBP summary statistics. This is equivalent to perform-
ing GWAS for two new traits: BPpleio1 = DBP β– ˆ × SBP

and BPpleio2 = SBP β− ˆ ′ × DBP, where β̂ and β̂ ′ are the
estimated causal effects of SBP on DBP and DBP on SBP,
respectively:

GBP = γ + ε.pleio1(2) 2(1) (3)

Equivalently, TPleio tests the null hypothesis γ = 02 .
Unlike MR analysis where the IVs are selected to be
associated with exposure, we required the pleiotropy test
TPleio for both BPpleio1 and BPpleio2 to be significant to
declare a horizontal pleiotropic variant. We performed
the same analysis for replication using MVP summary
statistics. Meta‐analysis of UKB‐ICBP and MVP was
further performed to increase statistical power and to
identify additional variants.

We applied the linkage disequilibrium (LD) score
regression (LDSR) method (Bulik‐Sullivan et al., 2015)
to test for genomic inflation in the GWAS pleiotropy
analysis. It is expected that BPpleio1(2) will have a large
genomic control inflation coefficient because of
large sample sizes, genetic variants in high LD, and a
large number of BP variants (Evangelou et al., 2018). We
examined the degree of inflation from the intercept
of LDSR.

2.6 | Novel locus definition

Novel loci were defined as genome‐wide significant
pleiotropy variants > 1Mb away from known BP variants
as well as LD r2 < 0.1 with any known BP variants. Novel
signals at a known locus were genome‐wide significant
pleiotropy variants within 1Mb of known BP variants as
well as not being in LD with any known BP variants
(r2 < 0.1) at the locus. The 1000 Genome European an-
cestry data was used as the reference genetic data for LD
calculation.

2.7 | Functional annotations

We evaluated all sentinel SNPs at novel loci for evidence
of mediation of expression quantitative trait loci (eQTL)
and splicing quantitative trait loci (sQTL) in all 44 tissues
using the Genotype‐Tissue Expression (GTEx) database.
Following the method in Evangelou et al. (2018), a locus
is annotated with a given eGene(sGene) only if the most
significant eQTL(sQTL) SNP for the given eGene(sGene)

is in high LD (r2≥ 0.8) with the sentinel SNP. We per-
formed overall enrichment tests using the mediation and
pleiotropic variants separately. We used DEPICT (Data‐
driven Expression Prioritized Integration for Complex
Traits) (Pers et al., 2015) to identify tissues and cells that
are highly expressed at genes within the BP mediation
and pleiotropic loci. We also used DEPICT to test for
enrichment in gene sets associated with GO ontologies,
mouse knockout phenotypes, and the protein–protein
interaction networks. We reported significant enrich-
ments with a false discovery rate of 0.05. Analysis was
done using the platform Complex‐Traits Genetics Virtual
Lab (Cuellar‐Partida et al., 2019).

2.8 | GRS and pleiotropic GRS (pGRS)

We constructed a traditional genetic risk score using
independent genome‐wide significant BP variants from
UKB‐ICBP. We first constructed SBP‐ and DBP‐weighted
GRSs and then derived a single BP core GRS (cGRS) as
the average of SBP and DBP GRSs. This approach has
been previously used (Evangelou et al., 2018) to estimate
the combined effect of BP variants on BP, HTN, and
CVD. Analogously, we constructed a pGRS using the
variants detected in pleiotropy analysis. We first con-
structed BPpleio1 and BPpleio2 weighted GRSs and next
derived the pGRS as the difference of BPpleio1 and BPpleio2
GRSs. Because the genetic variants associated with
BPpleio1 and BPpleio2 demonstrated horizontal pleiotropy
evidence, we termed this the pleiotropy genetic risk
score. Note that some SNPs contribute to both cGRS and
pGRS because these variants are significantly associated
with SBP or DBP, as well as BPpleio1 and BPpleio1. How-
ever, their weights represent their corresponding con-
tributions to BP through the mediation and pleiotropy
pathways. We performed linear regression analyses by
jointly modeling cGRS and pGRS with and without
adding the interaction of age–cGRS and age–pGRS on BP
in the UKB data. We included the covariates of sex, age,
BMI, geographical region, and 10 genetic principal
components in the linear regression analysis. The herit-
ability explained by the cGRS and pGRS was calculated
by the adjusted R2 in the linear regression adjusting out
the covariates. Similarly, we performed logistic regres-
sion of cGRS and pGRS with and without age–cGRS and
age–pGRS interactions on hypertension and cardiovas-
cular events at baseline in the UKB data. The same
covariates were included. We calculated Nagelkerke's R2

to quantify the goodness‐of‐fit of the prediction by the
cGRS and pGRS (Lee et al., 2012). We examined whether
pGRS is able to predict additional variations of BP, HTN,
and CVD after accounting for cGRS. We also examined
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the age‐varying effects of cGRS and pGRS by testing in-
teraction effects. Our analysis included 386,752 unrelated
individuals of European ancestry with phenotypes mea-
sured at baseline. For comparison, we further con-
structed the PP‐weighted GRS (ppGRS) and performed
the above analysis.

We assessed the association of cGRS, pGRS, and their
interactions with age on BP in unrelated Africans
(n= 7904) and South Asians (n= 8509) from the UKB to
see whether BP‐associated SNPs identified from GWAS
predominantly in Europeans are also associated with BP
in populations of non‐European ancestry. Analysis was
also performed for ppGRS. All analyses were performed
using residuals after adjusting for sex, age, BMI, geo-
graphical region, and 10 genetic principal components.

Cross‐trait lookups of novel loci: We supplied the
index SNPs at the novel loci observed in UKB‐ICBP
pleiotropic analyses to FUMA (Watanabe et al., 2017)
and GWAS catalog (MacArthur et al., 2017) to investigate
pleiotropy with non‐BP traits, extracting all associations
with p< 5 × 10−8 for all SNPs in high LD (r2≥ 0.8).

3 | RESULTS

We present a bidirectional MR analysis of SBP and DBP
using 1125 and 1183 independent genome‐wide sig-
nificant variants for SBP and DBP (p< 5 × 10−8) as
genetic IVs obtained from the UKB‐ICBP GWAS
(Evangelou et al., 2018). We standardized SBP and DBP
and obtained an identical causal effect of SBP on DBP
and DBP on SBP (0.864 ± 0.005 and 0.862 ± 0.005 by
IMRP, respectively, Table S1), which is significantly lar-
ger than the observed trait correlation 0.738 between SBP
and DBP in UKB European subjects, with an estimated
74.8% of the variation is the shared causal contribution
between SBP and DBP. The causal estimates by MRmix
were concordant (0.89 ± 0.012 and 0.90 ± 0.01, respec-
tively, Table S1). Among the genetic IVs, 43% of the
variants had pleiotropic effects on SBP and DBP.

We next extended the pleiotropic effect analysis to
search for variants by performing two GWAS of BPpleio1
and BPpleio2; the Manhattan and QQ plots are presented
in Figure 2. The GC lambda value was 1.533 and the

FIGURE 2 Manhattan and QQ plots for genome‐wide pleiotropy tests between SBP and DBP using UK Biobank‐ICBP summary
statistics. The GWAS of pleiotropy tests is equivalent to performing GWAS for two new traits: BPpleio1 = DBP β− × SBP and BPpleio2 = SBP
β− ′ ×DBP, where β and β′ are the estimated causal effects of SBP on DBPand DBP on SBP, respectively. (a, b) Manhattan and QQ plots for

BPpleio2. (c, d) Manhattan and QQ plots for BPpleio1. DBP, diastolic BP; GWAS; genome‐wide association studies; ICBP, International
Consortium for Blood Pressure; SBP, systolic BP; The horizontal line in Manhattans represents p= 5 × 10−8. The top and bottom Manhattan
plots are highly similar, indicating the consistency of the two‐directional Mendelian Randomization analysis
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LDSR intercept was 1.057 (0.013), with an inflation ratio
of 4.23%, suggesting little inflation in the BPpleio1; a si-
milar result was observed for BPpleio2. LDSR analysis
(Bulik‐Sullivan et al., 2015) estimated 8.7% of the herit-
ability arising from pleiotropic variants for BPpleio1. We
calculated genetic correlations of BPpleio1 and BPpleio2
with SBP, DBP, and PP using summary statistics
(Table S2). BPpleio1 and BPpleio2 are genetically highly
correlated (rg =−0.902 ± 0.006), also highly correlated
with PP (rg =−0.618 ± 0.016 and 0.897 ± 0.004) but less
so with SBP or DBP. BPpleio1 is negatively correlated with
SBP as is BPpleio2 with DBP; in contrast, PP is positively
correlated with both SBP and DBP.

We observed 906 independent variants (r2 < 0.1)
reaching genome‐wide significance in either BPpleio1 or
BPpleio2 (p< 5 × 10−8). To declare a variant as pleio-
tropic, we required one pleiotropy test p≤ 5 × 10−8 and
the other test p≤ 0.05/906 by adjusting for multiple
comparisons. We observed 815 independent pleiotropy
variants with 91 variants genome‐wide significant for
either SBP or DBP. Among them, 234 (or 29%) were not
detected by the univariate GWAS analysis of SBP, DBP,
or PP in the original UKB‐ICBP consortium (Evangelou
et al., 2018) (Table S3). Among the 234 variants, 201 (or
86%) variants were not reported in any previous BP
GWAS. In the set of associations, 163 variants in 124
loci were within a 1‐Mb region of previously reported
known BP loci but were not in LD with known BP
variants (r2 < 0.1); the remaining 38 variants were at
least 1 Mb away from the previous reported known BP
loci and resided at 35 loci; the corresponding locus
zoom plots are presented in Figure S1. We evaluated the
associations of our sentinel SNPs at the 35 novel loci
with other traits and diseases using the GWAS Catalog
(MacArthur et al., 2017) and FUMA (Watanabe
et al., 2017). The GWAS Catalog and FUMA search of
published GWAS showed that 29 of the 35 novel loci are
also significantly associated with other traits, including
lipid levels, cardiovascular‐related outcomes, anthro-
pometric traits, sleep traits, educational attainment,
smoking, blood protein level, and schizophrenia
(Table S4).

We defined the variants with p value of SBP < 5 ×
10−8 and p value of BPpleio1 > 0.05/906 or p value of
DBP < 5 × 10−8 and p value of BPpleio2 > 0.05/906 into
mediation variants, which resulted in 1415 independent
variants. We compared the SBP and DBP effect sizes for
these mediation variants and observed that the mediation
variants have the same effect directions for SBP and DBP
(Figure 3). In comparison, 71% of pleiotropic variants
show opposite effect directions for SBP and DBP, in-
dicating new discoveries.

3.1 | Replication of novel signals
in MVP

Because the BP summary statistics in MVP were obtained
from multiethnic populations of non‐Hispanic Whites,
non‐Hispanic Blacks, Hispanics, non‐Hispanic Asians, and
non‐Hispanic Native Americans, we performed MR ana-
lysis to estimate causal effect sizes between SBP and DBP
in MVP, instead of using the causal effects estimated from
UKB‐ICBP. With a fewer number of IVs in MVP, we ob-
tained relatively smaller but similar causal effect sizes
(0.692 and 0.724) between SBP and DBP as compared to
UKB‐ICBP results, possibly due to the multiethnic samples
in MVP (Table S1). We then performed the pleiotropy test
TPleio among the 201 novel variants (seven were not avail-
able in MVP). We examined how many novel variants
were significantly associated with BPpleio1(2) (p< 5× 10−8)
in UKB‐ICBP also showed replication with corresponding
BPpleio1(2) at significance level p< 0.05/201. We were able
to replicate 23 variants (Table S3), including two novel loci
(rs12470661 and rs73937040, Table 1). When we released
the replication significance level criterion at p=0.05, we
were able to replicate 118 variants including 19 variants at
18 novel loci (Table 1), with 84 variants having both
BPpleio1 and BPpleio2 (p< 0.05) (Table S3) and all the 118
variants having the same effect direction between UKB‐
ICBP and MVP; thus, our identified novel pleiotropic sig-
nals were replicable.

FIGURE 3 Comparison between the systolic blood pressure
(SBP) and Diastolic blood pressure (DBP) effect sizes for mediation
(black dots) and pleiotropic (red dots) variants in UK Biobank‐
International Consortium for Blood Pressure
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We further examined the BPpleio1(2) effect size
consistency of the 815 independent pleiotropic variants
between UKB‐ICBP and MVP. For comparison, we also
examined the SBP and DBP effect size consistency of
the independent 1415 mediation variants between
UKB‐ICBP and MVP. We observed that the BPpleio1(2)
effect sizes have higher correlations for the pleiotropic
variants than the mediation variants (Figure 4, corre-
lation 0.90 vs. 0.74), even after the exclusion of two
significant outliers (rs113081691 and rs17057329). We
observed that 96% of pleiotropic variants have con-
sistent effect directions between UKB‐ICBP and MVP.
We then performed an inverse‐variance weighted
meta‐analysis to combine the summary statistics of
BPpleio1(2) for UKB‐ICBP and MVP. The combined
horizontal pleiotropy evidence was further strength-
ened for the 118 novel variants (Tables 1 and S3).

3.2 | Functional annotations

We performed expression quantitative trait locus (eQTL)
analysis using GTEx data. Among the 35 novel loci listed
in Table S3, we identified 26 with expression quantitative
trait locus (eQTL) (Table S5) and 11 with Splicing
Quantitative Trait Loci (sQTLs) (Table S6). The eQTLs
were most often enriched in arterial tissues, followed by
adipose, heart, and nerve tibial tissues. SNP rs17713879 is
an eQTL affecting expression of the SH3YL1 and ACP1
genes in 34 tissues and is also a sQTL affecting splicing of
these two genes in 50 tissues. SNP rs112500920 is an
eQTL affecting expression of several genes, including
EFL1 and AB3B2, in multiple tissues, notably adipose
and arterial tissues. SNP rs12478520 is an eQTL affecting
expression of multiple genes, including C2orf72, HTR2B,
ARMC9, and PSMD1.

TABLE 1 The 17 novel blood pressure (BP) loci identified by pleiotropic analysis

SNP CHR BP
UKB‐ICBP UKB‐ICBP UKB‐ICBP UKB‐ICBP MVP

UKB‐ICBP–
MVP

GenesP_SBP P_DBP P_PP ppleio
a ppleio

a ppleio
a

rs11162906 1 80500074 3.19 × 10−2 1.75 × 10−2 1.78 × 10−6 2.41 × 10−9 1.53 × 10−3 3.54 × 10−11 AC098657.2

rs17713879 2 254215 5.19 × 10−2 2.66 × 10−2 2.05 × 10−5 3.75 × 10−8 8.92 × 10−4 1.35 × 10−10 SH3YL1

rs3136302 2 48021379 4.08 × 10−1 5.84 × 10−5 9.62 × 10−6 2.96E−11 4.48 × 10−2 8.30 × 10−12 MSH6

rs6735304 2 101617631 4.18 × 10−2 2.38 × 10−2 1.43 × 10−6 1.47 × 10−8 6.21 × 10−4 6.36 × 10−11 RPL31/TBC1D8

rs12470661 2 232060050 5.09 × 10−2 3.07 × 10−3 6.68 × 10−7 5.33 × 10−11 1.97 × 10−4 4.55 × 10−14 HTR2B/ARMC9

rs10947978 6 41471608 7.01 × 10−1 9.89 × 10−6 1.44 × 10−5 2.65 × 10−11 1.84 × 10−2 3.26 × 10−12 LINC01276

rs56098119 6 90296727 7.63 × 10−2 1.38 × 10−2 6.81 × 10−6 1.69 × 10−8 2.89 × 10−2 1.77 × 10−9 ANKRD6

rs150953973 6 120780033 2.98 × 10−1 9.7 × 10−4 4.01 × 10−6 3.54 × 10−9 1.64 × 10−2 1.85 × 10−10 RNU6‐214P

rs180271 7 93539479 6.11 × 10−1 1.72 × 10−4 2.63 × 10−5 3.69 × 10−9 2.05 × 10−3 2.92 × 10−11 GNGT1

rs11989271 8 122632611 1.51 × 10−1 8.47 × 10−4 7.80 × 10−7 1.14 × 10−10 9.37 × 10−3 1.38 × 10−11 HAS2

rs10868842 9 73119085 1.57 × 10−1 3.58 × 10−4 9.71 × 10−6 1.37 × 10−11 4.07 × 10−3 2.54 × 10−13 LINC00583

rs12768143 10 22808844 3.92 × 10−2 5.03 × 10−3 8.61 × 10−8 9.18 × 10−11 1.58 × 10−2 2.39 × 10−11 PIP4K2A

rs1343676 12 33537387 7.19 × 10−1 2.03 × 10−7 8.65 × 10−7 9.56 × 10−15 4.04;× 10−4 3.04 × 10−16 SYT10

rs7322054 13 38246708 6.71 × 10−1 1.99 × 10−7 7.76 × 10−4 1.04 × 10−11 1.01 × 10−2 5.86 × 10−13 TRPC4

rs61972411 13 100602630 2.8 2× 10−4 6.59 × 10−1 1.87 × 10−7 1.45 × 10−8 1.89 × 10−2 2.23 × 10−9 LOC101927437

rs62621400 15 101718239 2.25 × 10−1 1.70 × 10−3 1.94 × 10−5 3.76 × 10−9 1.64 × 10−3 2.34 × 10−11 CHSY1

rs116643984 15 101791212 1.64 × 10−1 7.73 × 10−5 5.14 × 10−8 4.04 × 10−13 6.86 × 10−3 1.60 × 10−14 CHSY1

rs73937040 18 3258733 7.08 × 10−2 2.07 × 10−2 7.77 × 10−6 4.67 × 10−8 2.06 × 10−6 1.17 × 10−12 MYL12A/MYL12B

rs146827176 20 35169916 6.48 × 10−1 3.10 × 10−6 1.01 × 10−3 2.13 × 10−9 5.08 × 10−3 3.82 × 10−11 LOC101926987|MYL9

Abbreviations: CHR, chromosome; DBP, diastolic blood pressure; ICBP, International Consortium for Blood Pressure; MVP, Million Veteran Program; PP,
pulse pressure; SBP, systolic blood pressure; SNP, single‐nucleotide polymorphism; UKB, UK Biobank.
aThe p values of pleiotropy test for BPpleio1 and BPpleio2 were consistent in general and we reported the lesser one here. The detailed summary statistics and
corresponding p values were listed in Table S3.
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In the UKB‐ICBP data, we identified 815 independent
pleiotropic variants. We also observed 1451 independent
mediation variants. We assessed tissue enrichment of BP
loci using DEPICT (Pers et al., 2015) at a false discovery
rate (FDR) < 5% but separated 1415 mediation from 815
pleiotropic variants in the analysis. DEPICT identified
enrichment across 43 and 51 tissues and cells using
mediation and pleiotropic variants, respectively
(Table S7). The enriched tissues are highly similar
(correlation = 0.78) but there are also notable differences
(Figure S2a). Enrichment was greatest for arteries in the
cardiovascular system for both mediation and pleiotropic

variants (p= 1.28 × 10−3 and 2.19 × 10−11, respectively).
In general, enrichment observed for mediation variants
was also observed for pleiotropic variants, but not vice
versa. For example, heart‐related tissues, aortic valves,
and atrial appendages were enriched for pleiotropic
variants (p< 1.38 × 10−4) but not for mediation variants
(Table S7). Pathway enrichments for mediation variants
and pleiotropic variants were less well correlated (cor-
relation = 0.51, Figure S2b). Pleiotropic variants were
enriched in many molecular pathways that were missed
by mediation variants, including response to hypoxia,
oxygen levels, basement membrane, and renal system

FIGURE 4 Comparison between the effect sizes between UKB‐ICBP and MVP. (a) SBP effect sizes of mediation variants. (b) DBP
effect sizes of mediation variants. (c) BPpleio1 effect sizes for pleiotropic variants. (d) BPpleio2 effect sizes for pleiotropic variants. The two
variants rs113081691 and rs17057329 in the red circles in (a) and (b) represent substantial different effect sizes of SBP and DBP
between UKB‐ICBP and MVP, likely driven by multi‐ethnic samples from MVP. DBP, diastolic blood pressure; ICBP, International
Consortium for Blood Pressure; MVP, Million Veteran Program; SBP, systolic blood pressure; UKB, UK Biobank.
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development (p< 8.66 × 10−7, Table S8). In contrast,
negative regulation of transcription from RNA poly-
merase II promoter, histone deacetylase binding, hor-
mone receptor binding, and Ras protein signal
transduction, among others, were only enriched by
mediation variants (p< 6.09 × 10−7, Table S8).

Evaluation of enriched mouse knockout phenotype
terms by both mediation and pleiotropic variants im-
plicated abnormal cardiovascular physiology, disorganized
myocardium, abnormal vascular branching morphogenesis,
and organogenesis, among others. However, pleiotropic
variant‐enriched mouse phenotypes include abnormal
kidney morphology, impaired wound healing, dilated heart
right ventricle, abnormal aorta morphology, increased sys-
temic arterial SBP, and increased body weight
(p<1.65 × 10−7). Mediation variants‐enriched mouse phe-
notypes include pericardial edema, wavy neural tube, and
decreased systemic arterial BP (p<1.83 × 10−4, Table S8).
Common protein–protein interaction subnetwork enrich-
ments for both mediation and pleiotropic variants include
LAMA1, ITGB1, WNT1, and many SMAD subnetworks.
Pleiotropic variant enriched top significant subnetworks
include the HSPG2, TGM2, MMP9, FBN1, and DDR1
subnetworks (p<1.76 × 10−7), as compared to mediation
variant enriched subnetworks, SRC, YWHAQ, and
RAPGEF1 (Table S9).

3.3 | Improved prediction of BP, HTN,
and CVD by including pleiotropic variants

Polygenic scores derived from multiple related traits can
improve the prediction of outcomes (Inouye et al., 2018;
Krapohl et al., 2018; Maier et al., 2018; Richardson
et al., 2019). Chasman et al. (2020) decomposed a GRS
into nearly independent components relative to biologi-
cal mechanisms inferred from pleiotropic relationships,
whereas Udler et al. (2018) factorized the genetic asso-
ciation matrix according to different classes of genetic
variants relative to traits. However, these approaches do
not use the discovered pleiotropic variants directly. Here,
we construct a traditional BP GRS using all independent
1615 BP variants from the UKB‐ICBP, which we term
cGRS (see Section 2). We further constructed a pGRS
using the 906 variants associated with BPpleio1 or BPpleio2,
which is a genetic risk score from pleiotropic variants.
We jointly modeled cGRS and pGRS adjusting for age,
gender, BMI, and 10 principal components, and observed
that pGRS significantly predicted BP traits, as well as the
risk of HTN and CVD, conditional on cGRS in all models
(Table 2a and Figure 5) in the UKB European ancestry
subjects. The cGRS captured 5.91%, 6.09%, and 2.23%
SBP, DBP, and PP heritability excluding pGRS and 7.13%,

6.75%, and 7.27% including pGRS, or a 1.11‐ to 3.26‐fold
increase. Similarly, Nagelkerke's R2 for HTN and CVD
was 4.71% and 0.47% excluding pGRS and 5.14% and
0.53% including pGRS, representing a 1.09‐ and 1.14‐fold
increase. We observed odds ratios (ORs) of 1.64 and 1.15
for individual cGRS and pGRS on the risk of HTN
(p< 1 × 10−300), respectively. The observed ORs of in-
dividual cGRS and pGRS for CVD were 1.21 and 1.06
(p= 1.71 × 10−231 and p= 2.74 × 10−25), respectively, and
increased to 1.66 and 1.19 (p= 9.83 × 10−97 and
p= 1.28 × 10−13) when comparing the upper versus lower
quantiles of the cGRS and pGRS, respectively. However,
the ORs were further increased to 6.78 and 2.44
(p< 1 × 10−300 and p= 1.15 × 10−39) for HTN and CAD,
respectively, when comparing the top decile and quintile
with bottom decile and quintile of cGRS and pGRS
(Figure 5). We observed a clear advantage of including
pGRS over cGRS only (Figure 5). It has been suggested
that there are gene and age interactions that contribute to
blood pressure and hypertension (Jiang et al., 2021; Shi
et al., 2009; Simino et al., 2014). However, the detected
interactions are limited because of low statistical power.
We, thus, examined the interaction effects between age
and cGRS and pGRS. After including the interactions of
age and cGRS and pGRS the main effects for cGRS and
pGRS on BP, HTN, and CVD were unchanged. However,
we observed a significant interaction effect of age and
cGRS for all BP traits and HTN but not CVD. The in-
teraction of age and pGRS significantly contributed to all
BP traits, HTN, and CVD (p value between 3.0 × 10−2 and
7.74 × 10−29, Table 2a).

3.4 | Extension to other ancestries

We examined associations with BP and CVD of the
above‐defined European cGRS and pGRS in unrelated
African (N= 7904) and South Asian (N= 8509) subjects
in the UKB (Table 2b,c). Although sample sizes were
much smaller than among UKB European subjects, the
cGRS is significantly associated with SBP, DBP, PP, HTN,
and CVD in both the UKB African and Asian ancestry
subjects. In the UKB African ancestry individuals, in-
cluding the pGRS results in a 1.10‐ to 2.44‐fold increase
of SBP, DBP, and PP heritability. Nagelkerke's R2 for
HTN and CVD has 1.23‐ and 1.22‐fold increases, re-
spectively. Similar increments in the UKB Asian cohort
are also observed (Table 2c). Significant interactions of
age and pGRS were again observed for BP traits and CVD
in UKB Asians (Table 2c).

Comparison between BPpleio1(BPpleio2) and PP:
We noted that PP is genetically positively correlated with
both SBP and DBP but BPpleio1 or BPpleio2 is negatively
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correlated with SBP and DBP (Table S2). Among the 815
pleiotropic variants, 274 were genome‐wide significant
with either SBP or DBP and 467 with PP. We then cal-
culated the GRS of PP (GRSPP) in UKB using the in-
dependent variants associated with PP by the effect sizes
estimated in the UBK‐ICBP data. We observed that the
GRSPP is positively correlated with both the GRSs of SBP
and DBP. In comparison, the pGRS is again oppositely
correlated with the GRSs of SBP and DBP (Table S2). We

next compared BP variances explained by the GRSPP and
pGRS in UKB. In general, GRSPP and pGRS can account
for similar amounts of BP, HTN, and CVD variation
(Table S9). However, when we included cGRS, pGRS and
GRSPP in a regression model, we observed that all three
genetic risk scores significantly predicted variation in BP,
HTN, and CVD in UKB European subjects (Table S9),
suggesting pGRS and GRSPP identify different aspects of
trait variations.

FIGURE 5 Relationship the core genetic risk score (cGRS) and pleiotropic genetic risk score (pGRS) with blood pressure (BP), risk of
hypertension (HTN), and cardiovascular disease (CVD) in UK Biobank. (a) Sex‐adjusted mean systolic BP (SBP); (b) sex‐adjusted mean
diastolic BP (DBP); (c) odds ratios of HTN; (d) odds ratios of CVD. cGRS was calculated in every decile and pGRS was calculated in every
quintile. Odds ratios were calculated by comparing each of the cGRS deciles and pGRS quintiles with the lowest decile and 20th. The curves
with pGRS = 0 represent the models without including pGRS
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3.5 | MR of BP on CAD, MI, and stroke

We downloaded published GWAS summary statistics for
CAD (Nikpay et al., 2015), MI (Webb et al., 2017), and
stroke (Malik et al., 2018) and performed MR analysis of
SBP, DBP, PP, BPpleio1, and BPpleio2 on CAD, MI, and stroke
(Table 3). For SBP and DBP, IVs were the genetic variants
genome‐wide significantly associated with SBP and DBP but
with no pleiotropic evidence. For BPpleio1 and BPpleio2, IVs
were the genetic variants associated with BPpleio1 and
BPpleio2. For PP, we selected all variants independently as-
sociated with PP as the IVs. The effect size and standard
error of an IV for BPpleio1 or BPpleio2 were the corresponding
numerator and denominator of the test statistic TPleio in
Equation (2). As expected, SBP, DBP, and PP causally
contributed to CAD, MI, and stroke. The derived trait—
BPpleio—also causally contributed to CAD, MI, and stroke,
suggesting a primary causal pleiotropy pathway that is not
associated with the BP mediation pathway directly con-
tributing to the outcomes (Table 3). The estimated ORs
ranged from 1.66 to 1.85 per SD unit increase in BP on the

three outcomes using mediation variants and ranged from
1.13 to 1.48 using pleiotropic variants. Our analysis identi-
fied 1%–22% IVs demonstrating pleiotropic effects for BP
and the three clinical outcomes (Table 3).

3.6 | Meta‐analysis of UKB‐ICBP
and MVP

We performed the IVW meta‐analysis of pleiotropy test
to combine UKB‐ICBP and MVP. We observed an addi-
tional 219 novel signals with either BPpleio1 or BPpleio2
at a significance level 5 × 10−8, including an additional
40 novel loci (Table S10).

4 | DISCUSSION

Our analysis of GWAS summary statistics from over
1 million subjects has, here, revealed important aspects
of the genetic architecture of the two principal and

TABLE 3 Using mediation variants and pleiotropy variants separately in Mendelian Randomization analysis with outcomes: CAD, MI,
and stroke

Outcome Exposure # of IVsa
IMRP

# of PVsc
MRmix

Causal effectb 95% CI p Causal effectb 95% CI p

CAD SBP 758 1.85 1.73; 1.97 3.73 × 10−78 103 1.80 1.56; 2.09 2.68 × 10−15

MI SBP 756 1.77 1.65; 1.90 1.60 × 10−57 89 1.72 1.42; 2.08 3.57 × 10−8

stroke SBP 758 1.66 1.55; 1.76 1.37 × 10−57 77 1.70 1.29; 2.24 1.80 × 10−4

CAD BPpleio1 730 1.48 1.34; 1.63 2.64× 10−14 150 1.49 1.06; 2.10 0.022

MI BPpleio1 729 1.32 1.18; 1.47 7.11 × 10−7 125 1.43 1.09; 1.88 9.41 × 10−3

stroke BPpleio1 730 1.42 1.30; 1.55 1.98 × 10−14 92 1.16 0.81; 1.67 0.417

CAD DBP 774 1.85 1.74; 1.97 1.16 × 10−80 105 1.86 1.60; 2.16 5.38 × 10−16

MI DBP 771 1.85 1.73; 1.98 3.22 × 10−68 91 1.86 1.51; 2.29 5.65 × 10−9

Stroke DBP 773 1.67 1.57; 1.77 2.77 × 10−60 79 1.88 1.51; 2.33 8.84 × 10−9

CAD BPpleio2 730 1.37 1.24; 1.50 4.63 × 10−11 157 1.34 1.02; 1.75 0.037

MI BPpleio2 729 1.13 1.02; 1.25 0.017 134 1.31 1.05; 1.63 0.015

Stroke BPpleio2 730 1.28 1.18; 1.39 5.07 × 10−9 90 1.13 0.80; 1.59 0.491

CAD PP 899 1.53 1.45; 1.62 3.76 × 10−50 22 1.61 1.43; 1.82 6.11 × 10−15

MI PP 898 1.41 1.33; 1.50 3.31 × 10−29 17 1.46 1.31; 1.64 4.03 × 10−11

Stroke PP 899 1.46 1.38; 1.54 2.98 × 10−44 8 1.20 0.97; 1.51 0.095

Abbreviations: BP, blood pressure; CAD, coronary artery disease; CI, confidence interval; DBP, diastolic BP; IV, instrumental variable; MI, myocardial
infarction; PV, pleiotropic variants; SBP, systolic BP.
aNumber of genetic instrumental variables that are genome‐wide significantly associated with exposure. For SBP and DBP, IVs were the genetic variants
associated with SBP and DBP but with no pleiotropic evidence of SBP and DBP, respectively. For BPpleio1 and BPpleio2, IVs were the genetic variants associated
with BPpleio1 and BPpleio2, respectively.
bOdds ratio.
cNumber of pleiotropic variants detected by IMRP among the IVs.
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highly correlated BP traits, SBP and DBP. The bidirec-
tional MR analysis of SBP and DBP demonstrated that
1 SD unit increase of SBP leads to 0.86 SD unit increase of
DBP, and vice versa, indicating that SBP and DBP share
74.8% of its variation. We assume these arise from com-
mon genetic factors and common biological mechanisms
between SBP and DBP. This shared causal contribution is
substantially higher than the 55.6% estimated by phe-
notype correlation analysis of SBP and DBP in UKB
European ancestry subjects. We then identified the ge-
netic variants that impact SBP and DBP through two
different paths: (1) mediation path (either from SBP to
DBP or vice versa) and departure from the mediation
path (pleiotropic path, Figure 1). We defined the variants
contributing to BP traits through the pleiotropic path as
pleiotropic variants, which have different biological
processes from the BP variants through the mediation
path. We observed that most of the BP variants identified
through SBP or DBP univariate associations were med-
iation variants and would be expected to be discovered in
either the SBP or DBP GWAS. By examining the variants
departing from the mediation paths, we identified 815
independent variants demonstrating horizontal pleio-
tropy evidence in the original UK Biobank + ICBP con-
sortium data (Evangelou et al., 2018), of which 201 were
undetected by univariate GWAS of SBP, DBP, or PP in
literature. Replication analysis in the MVP confirmed 118
of the 201 novel variants, including the 18 novel loci
(Tables 1 and S3). Pleiotropic variants often demon-
strated an effect size opposite in direction for SBP and
DBP and yet contributed 8.71% heritability of the newly
defined BP trait (Figure 3). The effect sizes of pleiotropic
variants also demonstrated a higher correlation than that
of the mediation variants between UKB‐ICBP and MVP,
suggesting that the pleiotropic variants may be more
transferable across ethnic populations. BPpleio1 and
BPpleio2 were highly correlated with PP (ρ≥ 0.62) in UKB
Whites, taken as an indicator of arterial stiffness, and
considered as an independent risk factor for CVD
(Franklin, 2004). However, BPpleio1 and BPpleio2 were less
correlated than PP with either SBP or DBP, which is
consistent with pGRS being less correlated than GRSPP
with either SBP or DBP‐defined GRS (Table S2). Thus,
BPpleio1 or BPpleio2 represent a different risk factor of CVD
from PP. This is consistent with the finding that GRSs of
SBP, DBP, PP, and BPpleio all contribute to the risk of
CAD, stroke, and MI in the MR analysis (Table 3). Thus,
our results clearly suggest that a substantial fraction of
BP variants affect both SBP and DBP through pleiotropic
effects. By combining UKB‐ICBP and MVP, we identified
an additional novel 219 variants with horizontal pleio-
tropic evidence, including 40 novel loci, although in-
dependent replication of these latter results are

warranted (Table S10). Thus, pleiotropic variant searches
in existing datasets can identify many new BP genes.

In addition to the traditional BP GRS (Evangelou
et al., 2018; International Consortium for Blood Pressure
Genome‐Wide Association et al., 2011), which we termed
the core genetic risk score cGRS, the pleiotropic genetic
risk score pGRS independently predicted BP, HTN, and
CVD outcomes (Table 2) in the UK Biobank European
ancestry subjects. Additionally, including the pGRS led to
substantial increments in heritability explained for BP
traits (Table 2 and Figure 5). Although we observed
consistent opposite directional effects of pGRS for SBP
and DBP in UK Biobank European, African, and Asian
ancestry subjects, the prediction of HTN and CVD risk
was significantly improved by including pGRS
(Figure 5c,d). The cGRS and pGRS defined in European
participants both consistently and significantly pre-
dicted BP, HTN, and CVD in UK Biobank Africans and
Asians, suggesting that pGRS is able to improve pre-
diction accuracy across populations. Recent studies
have suggested that cGRS models alone have a modest
improvement of predictive accuracy for CAD (Elliott
et al., 2020; Khan et al., 2020; Mosley et al., 2020). The
principal outcome of this set of analyses, therefore, de-
monstrates that adding pGRS significantly improves the
prediction model over cGRS alone. This approach of
constructing polygenic risk scores is conceptually dif-
ferent from existing approaches using multiple related
traits (Inouye et al., 2018; Krapohl et al., 2018; Maier
et al., 2018; Richardson et al., 2019) and can be gen-
eralized to other diseases by incorporating multiple
disease‐related traits through pleiotropy analysis.

In our analysis, the UK Biobank Europeans were a
part of data for identifying BP variants and pleiotropic
variants. We then constructed the cGRS and pGRS in UK
Biobank data by using the estimated effect sizes of the
independent genome‐wide significant variants from
UKB‐ICBP summary statistics as the weights. This pro-
cedure was used in Evangelou et al. (2018) and was not
involved in a model selection. However, there is a po-
tential winner's curse effect as suggested by Evangelou
et al. When we applied the cGRS and pGRS to the UK
Biobank Africans and Asians, we again observed the
improved R2 (Table S9), suggesting that adding cGRS
improves the prediction power.

Our analysis avoided an examination of the interac-
tion of individual variants and age because of insufficient
power. We were able to observe interaction effects of
both cGRS and pGRS with age in UKB Europeans for
SBP, DBP, PP, and HTN although the interaction for
CVD was only significant for pGRS (Table 2). Age–pGRS
interactions were also replicated in Asians despite a
substantially smaller sample size. We observed that the
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interaction contribution to phenotype variation was
consistently small (0.1%–0.3% BP heritability in both
UKB Europeans and Asians). The negative interaction
contributions of both cGRS and pGRS to DBP may par-
tially explain the decline of DBP after 60 years older
(Franklin, 1999). In comparison, the interaction of age
and cGRS was positive for SBP, suggesting genetic effects
on SBP increases in older individuals. As noted, the cGRS
interaction effects in UKB Europeans could not be ob-
served in UKB Africans or Asians, likely as a result of the
latter's smaller sample size. In comparison, the age‐
modulated interaction of pGRS was observed in both
UKB European and Asian subjects, indicating stronger
pGRS interactions than for the GRS. In our functional
annotation analysis, we observed a wider range of BP‐
related tissues and biological pathways for the BP pleio-
tropic variants than mediation variants, which implies
that pleiotropic variants are influenced by a wider range
of environmental factors and, therefore, continue to
make genetic contributions over the life span.

Our analysis approach bears some similarities with
the recently developed GWAS‐by‐subtraction (Demange
et al., 2021). However, there are significant differences.
(1) The GWAS‐by‐subtraction is based on a genomic
structure equation model (genomic‐SEM) and our
method is based on MR. (2) GWAS‐by‐subtraction as-
sumes that all genetic effects on one trait affect the other.
In contrast, our method does not make this assumption.
Instead, our method estimates the causal effects in both
directions. (3) The GWAS‐by‐subtraction tests the null
hypothesis γ̂ σ hΓ̂ − /g E

2 = 0, where Γ̂ and γ̂ are the esti-
mated effect sizes of an SNP on two traits (trait 1 and 2),
σg is the genetic covariance between the two traits and hE

2

is the heritability of trait 2. In contrast, our method tests
the null hypothesis βγ̂Γ̂ − = 0 and γ βˆ − ′Γ̂ = 0, where
β βand ′ are the two causal effects estimated from
MR. Note that σ h/g E

2 is not the same as causal effect β
when pleiotropic variants play a significant contribution
for two traits such as in our study. The GWAS‐by‐
subtraction includes the pleiotropic variants in estimat-
ing genetic covariance and our method intends to remove
these variants. Therefore, our method is less affected by
pleiotropic variants. However, further research is war-
ranted in understanding these two methods better.

Traditionally pleiotropy has been studied for two
different phenotypes. In comparison, our analysis was
performed on two highly correlated and similar BP traits,
in which we defined mediation and pleiotropy variants.
We were able to identify a “core” mediation pathway
shared by both SBP and DBP, and a pleiotropy pathway
that has different effects on SBP and DBP. Our method is,
therefore, useful in analyzing different symptoms of a
disease for understanding the biological mechanism of

the disease. However, our approach can also be applied
to less genetically correlated or different phenotypes to
identify pleiotropic variants. In this case, we will less
likely to identify “core” phenotypes as we observed in BP
traits.

Our study also supports an omnigenic model for
complex traits (Boyle et al., 2017; Chakravarti &
Turner, 2016; X. Liu et al., 2019). In fact, it could be
inferred that pleiotropic variants act on multiple per-
ipheral genes to impact the expression of core genes. As a
result, pleiotropic variants have weak effects on a phe-
notype and are more difficult to detect in a traditional BP
GWAS that focuses on single‐trait analysis, as observed
here. In comparison, mediation variants may be more
likely to occur in core genes. We acknowledge that the
data presented here can only provide suggestive rather
than conclusive evidence for that hypothesis.

In conclusion, our new findings here include iden-
tifying 815 independent BP pleiotropic variants—201 of
which were not previously identified in BP GWAS in the
UKB‐ICBP study; of these, 118 were confirmed includ-
ing 18 novel BP loci. In addition, 219 novel BP signals
and 40 novel loci were identified by combining UKB‐
ICBP and MVP. Our way to construct a polygenic risk
score represents a substantial advance in understanding
the genetic architecture of the highly correlated SBP
and DBP.
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