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With the development of Hi-C technology, the detection of topologically associated domains (TADs)
boundaries plays an important role in exploring the relationship between gene structure and expression.
However, a method that can identify accurate TAD boundaries from the Hi-C contact matrix with differ-
ent resolutions is currently lacking. We proposed a method named CASPIAN that can identify chromatin
TAD boundaries based on the spatial density clustering algorithm. CASPIAN requires few parameters to
call TADs. This method is realized using the hierarchical density-based clustering method HDBSCAN,
where the distance of pairwise bins is calculated based on three distance metrics (Euclidean,
Manhattan, and Chebyshev distance metric) to adapt to the characteristics of the Hi-C contact matrix
generated from simulation experiments or normalized methods. Our results show that, same as standard
methods (e.g., Insulation Score, TopDom), CASPIAN can enrich factors related to promoting the gene
expression, such as CTCF, H3K4me1, H3K4me3, RAD21, POLR2A, and SMC3. We also calculated the
approximate proportion of various factors anchored at the TAD boundaries to observe the distribution
of these factors surrounding the TAD boundaries. In conclusion, CASPIAN is an easy method to explore
the relationship between transcription factors and TAD boundaries. CASPIAN is available online
(https://gitee.com/ghaiyan/caspian).
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chromosome structure plays an important role in the gene
expression and transcription, and available research has shown
that chromosome structure is hierarchical with A/B compartments
[1], topologically associated domains (TADs) [2], sub-TADs [3], and
Loops [1]. An ‘‘A” compartment is defined as an open and
expression-active chromatin domain with high gene density, and
a ‘‘B” compartment is defined as a closed and expression-inactive
domain with low gene density. Girelli et.al. [4] revealed that ‘‘A”
compartments were more central than ‘‘B” compartments in rela-
tion to their radial distribution in the cell nucleus, the features of
active chromatin, gene density, and expression increased globally
toward the nuclear interior in parallel. This proved that gene func-
tion is related to the chromatin structure. TADs are thought to be
the basic unit of chromatin organization and play significant roles
in gene transcription, regulation and replication [5]. Increasing evi-
dence indicates that when TAD boundaries are disrupted, gene
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Fig. 1. Overview of the CASPIAN Framework. (a) The data pipeline for CASPIAN to
identify and evaluate chromatin TAD boundaries. (b) The workflow for HDBSCAN.
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expression is adversely affected, leading to diseases such as dys-
morphic syndromes and cancer [2,6]. Chromatin Loops are
reported to be squeezed to form chromatin domains [7], resulting
in the spatial proximity [8] of chromatin, such as enhancer-
promoter interactions, that are real and biological chromatin inter-
actions. The methods of identifying significant chromatin interac-
tions from chromatin contact matrices are usually used to
identify chromatin Loops. Existing studies show that some TADs
are related to the chromatin Loops mediated by the CCCTC-
binding factor (CTCF). Most of the two boundaries of a TAD coin-
cide with the two anchor sites of a chromatin Loop [9–11]. There-
fore, the identification of TADs can better facilitate our
understanding of the mechanisms of chromatin formation.

Observation of the Hi-C contact heatmap has shown that TAD
areas appear to be ‘‘triangles” on the diagonal of the heat map
when the Hi-C resolution is less than 100 kb and that the intra-
TAD interactions are merely � 2X those of interactions between
nearby TADs [2,7]. This indicates two fundamental features of
TAD organization: the ‘‘self-association” property within TAD
regions and the ‘‘insulation” property between adjacent TADs.
The boundaries of TADs are enriched with the CTCF, cohesin com-
plex, housekeeping genes, histone mark H3K4me3, as well as other
factors [2,12], and all of these properties are essential features
upon which various computational algorithms for identifying TADs
rely.

Over the past decade, most researchers identified TADs by
extracting 1-dimensional (1D) features from contact matrices for
segmentation or by using clustering algorithms. The former
includes methods such as Directionality Index (DI) [2], Insulation
score [10], Arrowhead [13], TopDom [14], HiCSeg [15], TADtree
[17], rGAMP [12], PSYCHIC [18], HiCDB [19], EAST [20], TADBD
[21], and TADreg [22], convert the identification of TADs to be
the local changes associated with topological features in the 1D
signal. The latter methods including DHDF [23], TAD_Identification
[24], IC-Finder [25], MrTADFinder [26], 3DnetMod [27], Spec-
tralTAD [28], ClusterTAD [29], and TADpole [30] identified TADs
by clustering algorithms. However, most of these methods cannot
identify TADs from high-resolution Hi-C contact matrices (Dali
et al. [31] have proved that only Arrowhead and DomainCaller
could be run at 5 kb resolution on a server with 23 GB of RAM.),
or the identified TAD boundaries cannot anchor factors with a high
ratio (i.e., the ratio of TAD boundaries anchoring factors or tran-
sciption elements, such as CTCF, enhancer, promoter), or the
parameters of TAD callers are too many for researchers to under-
stand how to set suitable parameters to identify TADs.

Hence, we propose a chromatin topological associated domains
(TADs) identification algorithm named CASPIAN based on the spa-
tial density cluster without setting too many parameters. This
method considers three distance metrics (Euclidean, Manhattan,
and Chebyshev distance metric) to do clustering from the Hi-C con-
tact matrix generated by simulated experiments or by different Hi-
C normalized methods to detect TADs. Results show that CASPIAN
using Euclidean distance metric could always perform well for
simulated Hi-C contact matrix or real Hi-C data at different resolu-
tions (5 kb, 25 kb, and 50 kb). By observing the average P-value and
anchor ratio of different factors target ChIP-seq surrounding the
TAD boundaries, we conclude that TAD boundaries are enriched
with factors related to promoting the gene expression (CTCF,
H3K4me1, H3K4me3, RAD21, POLR2A, and SMC3), in particular,
the detected TAD boundaries anchor about 70% CTCF, 29% enhan-
cer, 14% promoters,30% H3K36me3, 40% H3K4me1, 30%
H3K4me3, 30% POLR2A, 60% RAD21, and 50% SMC3. By assessing
the recalling ratio of TADs called by other methods, CASPIAN can
recall more TADs that are detected from Insulation score [10]
and TopDom [14]. Overall, our CASPIAN method can detect TAD
boundaries from simulated Hi-C and real Hi-C generated with dif-
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ferent resolutions to help explore the distribution of different fac-
tors surrounding the TAD boundaries.
2. Methods

2.1. Overview of the CASPIAN Framework

Fig. 1(a) illustrates the data analysis pipeline of CASPI-AN,
including three modules for identifying chromatin TAD bound-
aries: the data preprocessing module, the cluster module, and
the TADs generation module. The data preprocessing module is
designed for obtaining a raw contact matrix or a normalized con-
tact matrix from raw sequence Hi-C data. The cluster module
applies hierarchical density-based clustering methods [32] to clas-
sify these Hi-C bins’ features with different labels. The TADs gener-
ation module divides the boundaries of TAD according to these
clustering results.
2.2. The Data Preprocessing Module

By processing the raw Hi-C sequence data with mapping and
alignment, we could get the raw Hi-C matrix. The Hi-C experiment
measures the probability of physical proximity between pairs of
chromosomal loci at the genome scale, but there are some system-
atic biases during the experiment that seriously affect the experi-
mental results [33]. Therefore, it’s essential to normalize Hi-C
data to eliminate system bias. In this paper, we chose the vanilla
coverage (VC) and Knight & Ruiz methods (KR) [34] to do Hi-C data
normalization. The VC algorithm divided each bin of the matrix by
its row sum and column sum to remove different sequencing cov-
erage of each loci. The KR algorithm [34] aimed to balance nonneg-
ative square contact matrices to eliminate this bias, which is
widely used for correcting Hi-C contact matrices.
2.3. The Cluster Module

The CASPIAN method is designed to cluster bins based on the
chromosome space distance density. Importantly, the DBSCAN
[35] (density-based spatial clustering of applications with noise)
clustering algorithm does not need to set the number of clusters
and can be used to divide clusters with complex shapes. The prin-
ciple of DBSCAN is to identify points in dense regions of the feature
space where many data points are close together, and this is sim-
ilar to the characteristics of TADs in chromatin. Therefore, we
can apply DBSCAN to identify TADs without considering the num-
ber of TADs.
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2.3.1. The Description of DBSCAN
The DBSCAN algorithm has two parameters: the minimum

number of points in the radius, mpts and the neighborhood radius,
eps. Given a sample, let BepsðxiÞ represent a sphere within the radius
of the neighborhood centered on the sample. The function Nð�Þ
given below counts the number of samples contained in the set.
A sample xi 2 X is called a core sample if it satisfies Eq. (1):

NðBepsðxiÞÞ P mpts ð1Þ
The DBSCAN algorithm puts core samples that are less than eps

away from each other into a cluster. The algorithm first randomly
selects a sample xi, and then finds all samples whose distance is
less than or equal to eps. If the number of samples within eps from
xi is less than mpts, then the sample is marked as noise, that is, it
does not belong to any cluster. If this sample is a core sample, it
is assigned a new cluster label. After this, all neighbors within
BepsðxiÞ are visited. If these neighbors have not been assigned a clus-
ter label, and assign them the cluster label just created; if these
neighbors are core samples, visit their neighbors. The cluster grows
until there are no more core samples within the cluster’s neighbor-
hood radius. The above steps are then repeated until all samples
have been visited. Altogether there are three types of samples: core
samples, boundary samples (samples whose distance from the core
samples is within eps), and noise.

However, the parameters (eps and mpts) of DBSCAN algorithm
determine the quality of clustering. In this paper, we chose the
extended algorithm HDBSCAN to do clustering without manual
selection of parameter eps and mpts.

2.3.2. The Description of HDBSCAN
Given a sample set X ¼ fx1; x2; . . . ; xmg, as Fig. 1(b) shows, we

can cluster the samples based on HDBSCAN within six steps:
(1) Choose the Minkowski distance metric (Manhattan, Eucli-

dean, or Chebyshev) to calculate the core distance dcoreðxpÞ of sam-
ple xp 2 X from xp to its mpts-nearest neighbor including xp, where
the Manhattan distance, Euclidean distance, and Chebyshev dis-
tance can be described as Eq. (2), the core distance satisfies the
Eq. (1).

PðA;BÞ ¼
X

ða½i� � b½i�Þp
� �1=p

ð2Þ

where A, B are two data sets with same number n of data,
i 2 ½1;2;3; . . . ;n�. When p is equal to be 1, the Minkowski distance
is the Manhattan distance. When p is equal to be 2, the Minkowski
distance is the Euclidean distance. When p is equal to be 1, the
Minkowski distance is the Chebyshev distance.

(2) Caculate the mutual reachability distance to generate the
Mutual Reachability Graph Gmpts , where the mutual reachability
distance (dmreachðxp; xqÞ) between sample xp and xq is defined as
Eq. (3) shows. The Mutual Reachability Graph Gmpts is a complete
graph, where the vertices are the samples of X, the weight of each
edge is the mutual reachability distance between pairwise
samples.

dmreachðxp; xqÞ ¼ maxðdcoreðxpÞ; dcoreðxqÞ;dðxp; xqÞÞ ð3Þ
(3) Create the minimum spanning tree based on the minimum

spanning tree algorithm prime [37].
(4) Create a hierarchical cluster similar to the preocess of Huff-

man tree construction. Firstly, sort all the edges in the tree by
increasing distance. Secondly, select each edge in turn and merge
the two subgraphs of the edge link.

(5) Condense the clustered tree. Firstly, determine the mini-
mum cluster size n. Secondly, traverse the clustering tree from
top to bottom to see if the number of the two sample subsets gen-
erated by the split is greater than n. If the number of samples of a
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child node in the left or right sons is < n, delete the node directly,
and the other child node retains the identity of the parent node. If
both of the sample size of the two child nodes is < n, then delete
both of its child nodes. If the number of samples in both child
nodes is >¼ n, then the original clustering tree keeps unchanged.

(6) Label these samples based on the cluster stability. Let
k ¼ 1=dist, where dist is the mutual reachability distance. For the
vertices of a tree, define kbirth and kdeath to be the k value when
the cluster splits and becomes its own cluster or the k value when
a cluster splits into smaller clusters. For a sample p in a given clus-
ter, we define kp to be k value of the point ‘‘outlier”, where
kbirth 6 kp < kdeath. The cluster stability is define to beP

p2clusterðkp � kbirthÞ. Firstly, initialize the cluster by assigning each
leaf node of the condensed tree to be a cluster. Secondly, walk
through the tree from the bottom up with the following process.
If the stability of the current node is less than the sum of the sta-
bility of the two children nodes, then we set the stability of this
node to be the sum of the stability of its children nodes. If the sta-
bility of the current node is greater than the sum of the stability of
the two children nodes, the current node is defined as a cluster.

2.4. The TADs Generation Module

As described above, each bin is labeled based on the clustering
module. Research has shown that the length of TAD is between
100 kb and 5 Mb [36]. Therefore, for a continuous area formed
by bins with a same label is identified to be a TAD, when the num-
ber of bins� resolution > 100kb. For example, when the resolution
of Hi-C data is equal to be 50 kb, then the continuous area must
contain at least 2 bins with a same label.

2.5. Simulated Hi-C Data

We used the simulated Hi-C data proposed by Mattia etc. [38]
for TAD callers. The simulation process is described as the follow-
ing. These bins coordinates inside a TAD are randomly simulated
by sampling TAD sizes from a uniform distribution with minimum
TAD bins size value of 3 and a maximum TAD bins size value of 50.
The simulated contact matrix contains a fixed number of TADs and
a random sampling of TAD sizes. The target size of the simulated
contact matrix is defined based on the expected average of the uni-
formly distributed TAD sizes. Using this strategy, 171 TADs were
simulated at 40 kb resolution with a target size similar to the size
of the human chromosome 5 (180.92 Mb), i.e., the same used to
estimate the power-law decay parameters. Among the 171 TADs,
we used the simulated 40 kb resolution Hi-C contact matrix when
noise levels 4, 8, 12, and 16 to compare with other TAD callers. To
assess the performance of CASPIAN at different resolutions, we also
downloaded the synthetic Hi-C dataset provided by Trussart etc.
[39]. This synthetic Hi-C dataset was generated by a worm-like
chain (WLC) model, which was characterized by the physical thick-
ness (the diameter, unit: nm), the stiffness (the persistence length,
unit: nm), the level of DNA compaction of the chain (the linear
density, unit: bp/nm), the experimental noise level to select pair-
wise interactions with a Gaussian probability model. In this paper,
we used the synthetic Hi-C dataset with a linear density of 40, 75,
150 bp/nm and a noise level of 50, 100, 150, and 200.

2.6. Real Hi-C Data

To obtain the Hi-C contact matrix, we downloaded the Hi-C data
(486.85million read pairs of sequencing coverage) in the GM12878
cell line with the accession number 4DNFI1UEG1HD from the 4d-
nucleome platform (https://data.4dnucleome.org/). By executing
the jar package juicer_tools_1.22.01.jar, we could get an N*N raw,
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KR-normalized, or VC-normalized matrix at 5 kb, 25 kb or 50 kb
resolution, where N is the number of bins.

To run the Directionality Index (DI) [2] and Insulation Score (IS)
[10] algorithms, we downloaded the.mcool format Hi-C data in the
GM12878 cell line with the accession number 4DNFIXP4QG5B
from the 4dnucleome platform.
2.7. ChIP-seq Data

The CTCF, POLR2A, RAD21, SMC3, H3K4me3, H3K3-6me3, and
H3K9me3 target ChIP-seq data were downloaded from ENCODE
platform [16] (www.encodeproject.org [40]) with accession num-
ber ENCFF749HDD, ENCFF002GST, ENCF-F822QJA, ENCFF775OOS,
ENCFF480KNX, ENCFF537K-DM, ENCFF174RRQ, ENCFF218YZR,
respectively.

We used the replicated peaks files (bed narrow peak file type) to
calculate the number of peaks where the identified TAD bound-
aries anchor. We used the signal p-value files (bigWig file type)
to plot the average p-value of ChIP-seq data around the genomic
bins of identified TAD boundaries within 40 kb genomic distance.
Fig. 2. Heatmaps with detected TAD boundaries based on a simulated 40 kb
resolution Hi-C contact matrix at noise level 4, where the identified TADs are
outlined by black lines.
2.8. Evaluating the Quality of TADs

To evaluate the quality of TADs, we chose the following metrics.
First, we chose the average length of identified TADs and the num-
ber of identified TADs to be the metrics.

Second, to compare the similarity of TADs identified by CAS-
PIAN with the simulated TADs (the true TADs) from simulation
Hi-C data or TADs identified from other existing methods, bins
are divided into three clusters according to the TAD results: bins
in TAD boundaries, bins within TADs, and bins between TADs.
The Fowlkes-Mallows score (FMS), and Rand index (RI) provided
by the scikit-learn tool [41] are then used to evaluate the extent
of the agreement between two clusters. The FMS is defined as
the mean of the precision and recall as shown in Eq. (4).

FMI ¼ TPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞp ð4Þ

In Eq. (4), TP is the number of true-positive sample pairs, FP is
the number of false-positive sample pairs, and FN is the number
of false-negative sample pairs. The FMI ranges from 0 to 1, and a
higher value indicates more similarity between the two clusters.

The Rand Index is defined as RI ¼ N1=N to compute the similar-
ity between two clusters, where N1 is the number of agreeing pairs,
N is the number of pairs. A higher RI value indicates more similar-
ity between two clusters.

Third, one existing study [2] has suggested that TAD boundaries
are enriched with CTCF, H3K4me3, H3K36me3, and transcription
start sites (TSSs). Because CTCF is related to some active transcrip-
tional activity, the RAD21 and SMC3 are all transcription factors
that promote transcription. Hence, both the ratio of anchoring
CTCF binding sites and histone modification mark H3K4me3,
H3K36me3, and transcription factors signal (POLR2A, RAD21, and
SMC3) are applied to evaluate the TAD quality.

Last, reasearches [9–11] have shown that some of the two
boundaries of a TAD coincide with the two anchor sites of a chro-
matin Loop (such as enhancer-promoter interaction). Therefore, we
also explore the ratio of TAD boundaries identified by different TAD
callers anchoring enhancer or promoter elements to validate the
correctness of identified TAD boundaries. We define
ratioe ¼ Ne=NTAD; ratiop ¼ Np=NTAD, where Ne is the number of TAD
boundaries anchoring an enhancer element, Np is the number of
TAD boundaries anchoring an promoter element, NTAD is the num-
ber of TAD boundaries identified by TAD callers.
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2.9. Baselines

In this paper, we chose the following methods to compare with
CASPIAN: Insulation Score (IS) [10], TopDom [14], Directionality
Index (DI) [2], IC-Finder [25], HiCSeg [15], and ClusterTAD [29].
We chose the above methods by considering two factors: 1)
whether TADs identified by these methods are hierarchical.
Because we do not consider identifying hierarchical TADs struc-
tures in this paper. 2) the only input data of TAD callers is Hi-C con-
tact matrix. Among these methods, Insulation Score, Directionality
Index (DI), TopDom, IC-Finder, and HiCSeg are five standard TAD
callers, ClusterTAD is a TAD caller based on a clustering algorithm.
Since the TADs identified in this paper do not consider the hierar-
chical structure, the above-selected methods all can not detect
hierarchical TADs. All scripts for calling TADs by the above meth-
ods can be found in ‘‘Scripts_for_TAD_caller.txt”, which can be
downloaded from https://gitee.com/ghaiyan/caspian.
3. Results and Discussion

3.1. Determination of the Distance Metric

For the first step of HDBSCAN, considering the characteristic of
TADs (i.e., the triangular domain on the diagonal of the Hi-C map)
in the Hi-C contact map, we used the Minkowski distance includ-
ing Manhattan, Euclidean, and Chebyshev distance to measure
the distance of pairwise bins. For simulated and real Hi-C contact
matrix, the three distance metrics had a different performance.

Firstly, we explored the distance metrics how to affect the TAD
quality of TADs identified from simulated 40 kb resolution Hi-C
contact matrices with noise leveling 4, 8, 12, 16 provided by an
existing study [38]. As Fig. 2 and FigureS1-S3 show, CASPIAN using
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the Euclidean distance metric gets similar TADs segmentation
results with the simulated TADs provided by Mattia et al. [38] from
the aspect of heatmap visualization, CASPIAN using the Manhattan
distance metric not only detects the simulated TADs provided by
Mattia, etc [38], but also detects more TADs within these TADs,
CASPIAN using the Chebyshev distance metric detects tiny TADs,
but obviously differs from the simulated TADs. As Fig. 3 shows,
we used the rand index (RI) and Fowlkes-Mallows score (FMS) to
measure the similarity between identified TADs and simulated
TADs. These results show that CASPIAN using the Euclidean dis-
tance metric performs much better than the other two distance
metrics on simulated Hi-C data with noise leveling 4, 8, 12, 16,
where RI and FMS are both close to 1.

To assess the performance of CASPIAN under different simula-
tion conditions, we used the synthetic Hi-C dataset provided by
Trussart et al. [39] with a linear density of 40, 75, 150 bp/nm
and a noise level of 50, 100, 150, 200 to detect TAD boundaries
using CASPIAN (FigureS4, S5, S6). The heatmaps under different
conditions show that the Hi-C contact matrix at a lower noise level
is sparser than the Hi-C contact matrix at a higher noise level, and
the Hi-C contact matrix with higher linear density is sparser than
the Hi-C contact matrix with lower linear density. Therefore, we
think the Hi-C contact matrix with high linear density at a low
noise level is similar to the real Hi-C contact matrix at high resolu-
tion, the Hi-C contact matrix with low linear density at a high noise
level is similar to the real Hi-C contact matrix at low resolution.
The number of TADs detected using CASPIAN with different dis-
tance metrics (Table S1) shows that the Euclidean metric performs
more robust than Manhattan and Chebyshev metrics. FigureS4, S5
and S6 show that CASPIAN using the Euclidean metric performs
better than using the Manhattan and Chebyshev metrics on detect-
ing TAD boundaries under different simulation conditions. There-
fore, we recommend users run CASPIAN using Euclidean metric
in most conditions.

We next explored the distance metrics how to affect the TAD
quality of TADs identified from the real Hi-C contact matrix of all
chromosomes (from chromosome 1 to chromosome 22) in the
GM12878 cell line at 50 kb resolution. By comparing the distribu-
tion of mean P-value of the CTCF, POLR2A, RAD21, SMC3,
H3K4me3, H3K36me3, and H3K9me3 target ChIP-seq data near
the locus of identified TAD boundaries ranging from �40 kb to
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different methods compared to the simulated TADs with different noise value.
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data, respectively.
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+ 40 kb genomic distance. As Fig. 4 shows, Near the boundaries
of identified TADs by CASPIAN using the three distance metrics,
CTCF, POLR2A, RAD21, SMC3, H3K4me3, and H3K36me3 factors
are enriched, chromatin modifications H3K9me3 is unenriched.
The results are consistent with the results that boundaries of TADs
are enriched for the insulator binding protein CTCF and housekeep-
ing genes as Dixon, et al. [2] reported. This indicates that CASPIAN
using all the three distance metrics could detect TAD boundaries
correctly. However, from the aspect of factors enrichment at the
TAD boundaries (the genomic distance from boundary = 0), the
Euclidean and Manhattan distance metrics perform better than
the Chebyshev distance metric. We also compared the distribu-
tions at 25 kb (FigureS7) and 5 kb (FigureS15) resolution, and
get a similar conclusion with the results at 50 kb resolution. We
detected TADs from 5 kb resolution KR-normalized Hi-C contact
matrix (chromosome 9, 11, 12, 13, 14, 15) in the GM12878 cell line
by CASPIAN using the Euclidean distance metric. As FigureS15
shows, we plotted the mean P-value of CTCF target ChIP-seq sur-
rounding the TAD boundaries within 400 kb genomic distance.
The results show that TADs called from 5 kb resolution Hi-C con-
tact matrix also show enrichment for factors related to promoting
the gene expression (CTCF, H3K4me1, H3K4me3, RAD21, POLR2A,
and SMC3). This means CASPIAN could also detect TADs accurately
from Hi-C data at a high resolution (e.g., 5 kb).
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Fig. 4. The plots of mean P-value calculated from different target factor ChIP-seq
surrounding the genomic locus of identified TAD boundaries from �40 kb to
+ 40 kb genomic distance. From left to right, represents the identified TADs results
by using the Euclidean, Chebyshev, and Manhattan distance metrics, respectively.
From top to bottom, represent the CTCF, H3K4me3, H3K36me3, POLR2A, SMC3, and
H3K9me3 target factors ChIP-seq. The Hi-C contact matrices used in the plots are
from all chromosomes (from chromosome 1 to chromosome 22) in the GM12878
cell line at 50 kb resolution.
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To assess the performance of CASPIAN using different distance
metrics on different normalization datasets, as Fig. 5 shows, we
compared the number of detected TADs, the anchor ratio of factors
including the CTCF, POLR2A, RAD21, SMC3, H3K4me3, H3K36me3,
and H3K9me3 within 20 kb genomic distance. Fig. 5a shows that
CASPIAN using the Manhattan distance metric detects more TADs
than using the other two distance metrics for raw or VC-
normalized Hi-C contact matrix, CASPIAN using the Chebyshev dis-
tance metric detects more TADs than using the other two distance
metrics for KR-normalized Hi-C contact matrix. However, from the
aspect of the anchor ratio of the CTCF factor, Fig. 5b shows that
CASPIAN using the three distance metric have a similar anchor
ratio (all close to 0.6) of CTCF for VC-normalized Hi-C contact
matrix, CASPIAN using the Euclidean and Manhattan distance met-
ric performs better than the Chebyshev distance metrics for the
raw and KR-normalized Hi-C contact matrix. Hence, from the
aspect of TADs count and CTCF anchor ratio, for the raw and VC-
normalized Hi-C contact matrix, CASPIAN using the Manhattan dis-
tance metric performs better than the other two distance metrics.
For the KR–normalized Hi-C contact matrix, the Chebyshev dis-
tance metric performs better.

We also performed the comparison anchor ratio of H3K36me3,
H3K9mes (Fig. 5c, d), H3K4me1, H3K4me3, RAD21, POLR2A, and
SMC3 (FigureS8). The results show that CASPIAN using the Man-
hattan distance metric could always anchor more factors related
to promoting the gene expression (H3K4me1, H3K4me3, RAD21,
POLR2A, and SMC3) for raw and KR-normalized Hi-C, CASPIAN
using the Euclidean distance metric could always anchor more fac-
tors related to promoting the gene expression for VC-normalized
Hi-C (Fig. 5c, FigureS8), CASPIAN using the Chebyshev distance
metrics anchor more factors (H3K9me3) related to inhibiting the
gene expression (Fig. 5d) for the three types of Hi-C contact
matrices.
3.2. Assessment of CASPIAN on Simulated Hi-C datasets

We next evaluated the performance of CASPIAN by comparing
the results on simulated 40 kb resolution Hi-C data at 4, 8, 12,
and 16 noise levels with other five methods: Insulation Score
[10], TopDom [14], IC-Finder [25], HiCSeg [15], and ClusterTAD
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Fig. 5. The comparison of TAD boundary detection results from raw, VC-normal-
ized, and KR-normalized Hi-C contact matrix of all chromosomes (from chr1 to
chr22) in GM12878 cell on 50 kb resolution using different methods using three
different distance metrics. (a). Comparison of the number of identified TADs. (b - d).
Comparison of the anchor ratio of CTCF, H3K36me3, and H3K9me3 within 20 kb
genomic distance. Blue represents the results of CASPIAN using the Euclidean
distance metric. Orange represents the results of CASPIAN using the Manhattan
distance metric. Green represents the results of CASPIAN using the Chebyshev
distance metric.
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[29]. We didn’t compare Directionality Index (DI) [2] with CASPIAN
on simulated Hi-C contact matrix due to the input Hi-C data format
(.cool or.hic format) requirment of DI method. The true TADs and
TADs identified by the six methods are outlined on the heatmap.
The heatmaps at 4 noise level (Fig. 2) show that CASPIAN using
the Euclidean distance metric is more similar to the true TADs than
the other methods. The heatmaps at 8, 12, and 16 noise levels (Fig-
ureS1-S3) show that CASPIAN using the Euclidean or Manhattan
distance metric, TopDom, Insulation score, HiCSeg, and IC-Finder
are all similar to the true TADs.

When we compared the identified TAD boundaries with the
simulated TAD boundaries from the aspect of cluster similarity,
values of the RI and FMI metrics show that CASPIAN using the
Euclidean distance metric had the highest cluster similarity com-
pared with the true TADs when noise levels 4, the same RI and
FMI values with TopDom when noise levels 8 and 12. Therefore,
CASPIAN using the Euclidean distance metric performs better than
the other existing methods in terms of cluster quality compared
with the simulated TADs.

3.3. Assessment of CASPIAN on Real Hi-C Datasets

To assess the performance of CASPIAN on real Hi-C datasets
even further, we tested CASPIAN, Insulation Score [10], TopDom
[14], IC-Finder [25], HiCSeg [15], Directionality Index (DI) [2] Clus-
terTAD [29] on the KR-normalized Hi-C contact matrics (from chro-
mosome 1 to chromosome 22) of the GM12878 cell line at 50 kb
resolution. We tested Directionality Index (DI) [2] on the cool file
of Hi-C data (from chromosome 1 to chromosome 22) of the
GM12878 cell line at 50 kb resolution. The results of Insulation
Score, TopDom, ClusterTAD, IC-Finder, and HiCSeg were calculated
using the recommended parameters in their published code. The
result of DI was calculated using the fanc directionality tool
(https://vaquerizaslab.github.io/fanc/) and HMM_calls.m provided
by PSYCHIC [16]. The results of CASPIAN were generated by choos-
ing the Euclidean, Manhattan, and Chebyshev distance metrics,
respectively.

Firstly, we plotted the KR-normalized Hi-C contact heatmaps
with detected TAD boundaries of chromosome 1 from bin 140 to
bin 250 in the GM12878 cell line at 50 kb resolution. The plots
(Fig. 6) show that CASPIAN using the Euclidean distance metric
has a more accurate visualization performance than the other
methods. By comparing the visualization performance of TADs
identified by CASPIAN using different distance metrics, we found
that CASPIAN using the Euclidean metric and Chebyshev distance
metric is more likely to identify tiny TADs, CASPIAN using the Man-
hattan metric is more likely to identify TADs with big size. By over-
lapping these TADs identified by CASPIAN using the three distance
metrics (the top three heatmaps of Fig. 6), we found some TADs
identified by CASPIAN using the Chebyshev or Euclidean metric
are sub-TADs of TADs identified by CASPIAN using the Manhattan
metric. Therefore, we can also identify hierarchical TADs by com-
bining the TAD results identified by CASPIAN using the three dis-
tance metrics.

Secondly, we observed the distribution of the mean P-value of
CTCF target ChIP-seq surrounding the TAD boundaries of TADs
detected by the above methods. The results (Fig. 7) show that CAS-
PIAN using the Manhattan distance metric gets the highest mean
P-value (0.61), CASPIAN using the Euclidean distance metric gets
a similar mean P-value with HiCSeg, TopDom, Insulation Score,
and DI. This means that CASPIAN using the Manhattan distance
metric could enrich more CTCF factors than other methods in the
domains of the TAD boundaries. We also observed the distribution
of the mean P-value of H3K4me3 (FigureS9), H3K36me3 (Fig-
ureS10), POLR2A (FigureS11), SMC3 (FigureS12), H3K9me3 (Fig-
ureS13), H3K4me3 (FigureS9). The results show that the TAD



Fig. 6. Heatmaps with detected TAD boundaries using different methods based on a
real 50 kb resolution Hi-C contact matrix, where the identified TADs are outlined by
black lines.
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Fig. 7. The plots of mean P-value calculated from CTCF target ChIP-seq around the
genomic locus of identified TAD boundaries of all chromosomes (from chr1 to
chr22) in GM12878 cell on 50 kb resolution using different methods from �40 kb
to + 40 kb genomic distance. The plot of the Insulation Score is calculated from
�400 kb to + 400 kb.
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boundaries identified by CASPIAN are enriched with factors related
to promoting the gene expression.

Thirdly, we compared CASPIAN with other methods on the
number of TADs, the average length of TADs, and the anchor ratio
of different factors. The TADs were detected from Hi-C data of all
chromosomes (from chromosome 1 to chromosome 22) in the
GM12878 cell line at 50 kb resolution. The results show that CAS-
PIAN obtains about 2000–5000 TADs with TAD lengths ranging
from 0.4 Mb to 2 Mb (Fig. 8a,b), where the average TAD size
(0.4 Mb - 2 Mb) is reasonable as study [36] showed. CASPIAN using
the Euclidean distance metric identified about 3000 TADs with
avergae TAD size of 0.81 MB. This result is similar to the TADs iden-
tified by DI method. As article [31] described, the number and size
of identified TADs are correlated with the resolution, sequencing
4822
depth of the Hi-C data and TAD callers. At 50 KB resolution, the
average TAD size ranged from 215 kb to 1.2 Mb. Most tools identi-
fied more tiny TADs at a higher resolution. Fig. 8a,b show that CAS-
PIAN using the Euclidean or Chebyshev distance metric tends to
identify tiny TADs, while CASPIAN using the Chebyshev distance
metric identified more tiny TADs (about 5000) than CASPIAN using
the Euclidean metric (about 3000). CASPIAN using the Manhattan
metric tends to identify TADs with a big size. Therefore, we can
choose CASPIAN using the Chebyshev distance metric to identify
more tiny TADs. These TAD callers including CASPIAN have a
anchor ratio of CTCF about 0.6–0.7 (Fig. 8c), H3K36me3 0.2
(Fig. 8d), H3K4me1 0.4, H3K4me3 0.3, H3K9me3 0.1, POLR2A 0.3,
RAD21 0.4–0.6 and SMC3 0.3–0.5 (FigureS14). Though CASPIAN
doesn’t always anchor the highest ratio of the above factors, we
could get an approximate anchoring ratio for various factors by
observing the distribution of these anchor ratios provided by dif-
ferent TAD callers. These results further indicate that a large num-
ber of transcription factors related to gene transcription or histone
modified ChIP-seq signals are enriched near the TADs boundary.

Fourthly, to examine the similarity between TADs called by
CASPIAN and other methods, we calculated the RI and FMS values
between the TADs called by different methods. As Fig. 9 shows, we
calculated the RI and FMS values between TADs separately called
by CASPIAN using the Euclidean, Manhattan, and Chebyshev dis-
tance metric and TADs called by other existing methods. The com-
parison results among TADs separately called by CASPIAN using
the Euclidean, Manhattan, and Chebyshev distance metrics show
that CASPIAN using the Euclidean metric could always recall the
TADs called by the other two metrics, with the highest RI and
FMS values. The comparison results between TADs called by CAS-
PIAN and other methods show that CASPIAN could always recall
the TADs called by Insulation score and TopDom. Particularly, CAS-
PIAN using the Manhattan distance metric has the highest RI value
of 0.9 and the highest FMS value of 0.93 compared with the Insu-
lation score, and CASPIAN using the Euclidean distance metric has
the highest RI value of 0.72 and the highest FMS value of 0.83 com-
pared with the Insulation score. By comparing the p values
between RI (or FMS) calculated by CASPIAN and other methods,
we found that the similarity (RI and FMS) between CASPIAN using
the Euclidean metric and CASPIAN using the Manhattan metric is
similar with the similarity between CASPIAN using the Euclidean
metric and IS, the similarity (FMS) between CASPIAN using the
Manhattan metric and TopDom (or clusterTAD, or DI), where p
value = 1. The p values were calculated by the Mann–Whitney-
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Fig. 9. The similarity between the TAD boundaries identified from CASPIAN and
other methods. (a). The box plot describes the Rand Index (RI) between TAD
boundaries identified from CASPIAN using the Euclidean distance metric and other
methods. (b). The box plot describes the Fowlkes-Mallows score (FMS) between
TAD boundaries identified from CASPIAN using the Euclidean distance metric and
other methods. (c). The box plot describes the RI value between TAD boundaries
identified from CASPIAN using the Manhattan distance metric and other methods.
(d). The box plot describes the FMS value between TAD boundaries identified from
CASPIAN using the Manhattan distance metric and other methods. (e). The box plot
describes the RI value between TAD boundaries identified from CASPIAN using the
Chebyshev distance metric and other methods. (f). The box plot describes the FMS
value between TAD boundaries identified from CASPIAN using the Chebyshev
distance metric and other methods. The p value statistics were calculated by the
Mann–Whitney-Wilcoxon test two-sided with Bonferroni correction.

Fig. 10. A plot of Hi-C heatmap with TAD boundaries and CTCF, H3K27ac,
H3K4me1, H3K4me3 ChIP-seq track of the area of chr11:34165000–34575000 in
GM12878 cell. TADs are identified from 5 kb resolution Hi-C contact matrix using
CASPIAN- Euclidian.
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Wilcoxon test two-sided with Bonferroni correction. Hence, we
could get the conclusion that CASPIAN using the Manhattan dis-
tance metric can recall more TADs called by other methods com-
pared with the other two distance metrics.

Lastly, to verify the correctness of TAD boundaries, firstly, we
identified the TAD boundaries by running CASPI-AN using different
distance metrics from the Hi-C contact matrix of GM12878 cell line
at 5 kb, 25 kb, and 50 kb resolution. Then, we downloaded the
enhancer-promoter interactions (EPIs) dataset of the GM12878 cell
line provided by https://github.com/wgmao/EPIANN/tree/master/
GM12878, where the EPIs dataset is always used for training and
verifying the accuracy of identifying EPIs. In this paper, we used
the EPIs dataset of the GM12878 cell line to verify the correctness
and function of TAD boundaries. For example, we plotted the Hi-C
heatmap with TAD boundaries and CTCF, H3K27ac, H3K4me1,
H3K4me3 ChIP-seq tracks of the area of chr11:34165000–
34575000 in GM12878 cell, where GM12878—chr11:34264981–3
4267400 is enhancer domain, GM12878—chr11:34378274–34380
867 is promoter domain, GM12878—chr11:34264981–34267400
and GM12878—chr11: 34378274–34380867 is labeled to be a pair
of enhancer-promoter interaction (Fig. 10). We extracted the pro-
moters and enhancers domains of GM12878 from the EPIs data-
sets, and analyzed the ratio of identified TADs anchoring
promoters or enhancers (Table S3 and Table S4). By comparing
the anchor ratio of promoters and enhancers, we found these
TAD callers including our method (CASPIAN) obtained a ratioe val-
ues about 0.29, a ratiop values about 0.14. Table S2 and Table S3
futher validated that CASPIAN performed better than other TAD
callers in anchoring enhancers and promoters.
4. Conclusion

In this study, we proposed a method named CASPIAN that
includes three modules to detect TADs based on the spatial density
4823
cluster algorithm. Our CASPIAN method considers three different
pairwise distance metrics (Euclidean, Manhattan, and Chebyshev
distance metric) to cluster the bins in the Hi-C contact matrix gen-
erated by different Hi-C normalization methods. By assessing the
CASPIAN methods on the simulated and real Hi-C data, we think
the Euclidean distance metric is more suitable for simulated Hi-C
data. Fig. 5 and Fig. 7 show that CASPIAN using the Euclidian/Man-
hattan distance metrics performs better than using the Chebyshev
distance metric on the number of detecting TADs and ratio of
anchoring CTCF, H3K36me3 from raw and VC-normalized Hi-C.
Therefore, we recommend that we can choose CASPIAN using the
Manhattan distance metric to detect more TADs with a higher
anchoring ratio from raw Hi-C contact matrix without normaliza-
tion steps, choose CASPIAN using Chebyshev distance metric from
KR-normalized Hi-C contact matrix. We do not recommend using
CASPIAN to detect TADs from VC-normalized Hi-C contact matrix.
In this paper, we provide CASPIAN with three distance metrics to
detect TADs at the same time. Therefore, we can also choose the
best TAD results by screening from the quality file (number of
TAD, anchor ratio of CTCF).

By observing the mean P-value of ChIP-seq and TAD boundaries’
anchor ratio of CTCF, POLR2A, RAD21, SMC3, H3K4me3,
H3K36me3, and H3K9me3, we conclude that the boundaries of
TAD could always anchor more factors related to promoting the
gene expression (CTCF, H3K4me1, H3K4me3, RAD21, POLR2A,
and SMC3). The comparison of TADs similarity between CASPIAN
and other methods shows that CASPIAN could recall the TADs
called by Insulation score and TopDom. By comparing the ratio of
TAD boundaries anchoring enhancer and promoter elements, we
found that 29% of TAD boundaries identifed by most TAD callers
anchored enhancers, and 14% anchored promoters. CASPIAN per-
formed better than other methods in anchoring enhancers and
promoters.

With the development of bioinformatics research, many TAD
callers are developed to identify TAD boudaries. We listed a table
(Table S4) to compare these TAD callers on input, parameters, out-
put and resolution that tools could support. Though CASPIAN has
the advantages of identifying TADs from high-resolution Hi-C data,
anchoring more enhancers and promoters than other TAD callers,
few parameters, and providing the visualization of TADs. There still
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exist some limitations to its capabilities. The time to detect TADs
on high-resolution (e.g., 5 kb) Hi-C data is quite long. Future work
may include exploration into improving identification efficiency at
high-resolution Hi-C data by investigating algorithms for parallel
computing.
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