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Abstract
Background: Reconstruction of high quality two dimensional images from fan beam computed 
tomography (CT) with a limited number of projections is already feasible through Fourier based 
iterative reconstruction method. However, this article is focused on a more complicated reconstruction 
of three dimensional (3D) images in a sparse view cone beam computed tomography (CBCT) 
by utilizing Compressive Sensing (CS) based on 3D pseudo polar Fourier transform (PPFT). 
Method: In comparison with the prevalent Cartesian grid, PPFT re gridding is potent to remove 
rebinning and interpolation errors. Furthermore, using PPFT based radon transform as the measurement 
matrix, reduced the computational complexity. Results: In order to show the computational efficiency 
of the proposed method, we compare it with an algebraic reconstruction technique and a CS type 
algorithm. We observed convergence in <20 iterations in our algorithm while others would need at least 
50 iterations for reconstructing a qualified phantom image. Furthermore, using a fast composite splitting 
algorithm solver in each iteration makes it a fast CBCT reconstruction algorithm. The algorithm will 
minimize a linear combination of three terms corresponding to a least square data fitting, Hessian (HS) 
Penalty and l1 norm wavelet regularization. We named it PP‑based compressed sensing‑HS‑W. In the 
reconstruction range of 120 projections around the 360° rotation, the image quality is visually similar 
to reconstructed images by Feldkamp‑Davis‑Kress algorithm using 720 projections. This represents 
a high dose reduction. Conclusion: The main achievements of this work are to reduce the radiation 
dose without degrading the image quality. Its ability in removing the staircase effect, preserving edges 
and regions with smooth intensity transition, and producing high‑resolution, low‑noise reconstruction 
results in low‑dose level are also shown.
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Introduction
Today, X‑ray computed tomography (CT) is 
widely used in hospitals and clinics with the 
purposes of diagnosis and intervention.[1‑6] 
There is no doubt about harmful side effects 
of X‑ray radiation such as genetic 
problems, cancerous tissues, and other 
diseases. That justifies increased attention 
to radiation risk, yielding to famous slogan: 
As low as reasonably achievable principle 
is employed.[5,6]

Considering quantum accumulation process 
in X‑ray imaging, the signal to noise 
ratio (SNR) has quadratic dependency 
on the dose of X‑ray. As other conditions 

are identical, any reduction in the X‑ray 
dose will degrade the quality of image 
dramatically.[7,8]

A hot topic in the field of CT is 
reconstructing adequate CT images at 
minimum radiation dose level. Two 
strategies are already developed to 
address this problem: Reducing the X‑ray 
flux toward each detector element and 
decreasing the number of projections 
across the object to be reconstructed.[2] The 
former is often carried out by adjusting 
the operating current, the exposure time of 
an X‑ray tube and the operating potential, 
which would result in noisy projections. 
The latter, which we utilize in this study, 
produces inadequate projection data, 
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flawed with few‑view, limited‑angle, interior scan, and 
other deficiencies. Such deficiencies encourage algorithmic 
solutions in this area.

The first algorithmic strategy is to preprocess the 
projection data (with optimization variables) before image 
reconstruction. The second algorithmic strategy, which is 
also known as statistical iterative reconstruction (SIR), 
optimizes the maximum‑likelihood or penalized‑likelihood 
function formulated based on the statistical characteristics 
of projection data.[7‑11] The image pixels or voxels would be 
accounted as optimization variables.

The compressive sensing (CS) theory,[12‑19] as a subcategory 
from SIR methods, has shot to prominence. It is 
instrumental in reconstructing a reliable and clean image 
from a limited number of noisy projection measurements.[9] 
The CS theory allows for accurate reconstruction of a sparse 
signal from samples much less than required by the 
Shannon/Nyquist sampling theorem. CS owes its success to 
the sparsity of a signal being studied. Although generally 
speaking an object is not sparse, a sparsifying transform 
may be used to convert it into a domain in which the signal 
has a sparse representation.[14,17,19,20] This method would 
be able to reconstruct high‑quality images from roughly 
one‑tenth of the number of views required by filtered 
back projection (FBP) in two‑dimensional (2D) images, 
thereby allowing a much lower dose scanning protocol than 
required in applying conventional reconstruction methods.[5] 
However, a major drawback with CS‑based reconstruction 
algorithms is their being prohibitively computationally 
intensive for clinical use.[11,21]

In this paper, Fourier‑based reconstruction 
algorithms (FRAs), potentially enjoying high‑speed 
implementation in the frequency domain[9,11,21,22] are 
incorporated to reduce the computational complexity 
of image reconstruction. The Fourier reconstruction 
approaches are based on the relationship between the 
fast Fourier transform (FFT) of the image and FFT of 
the parallel‑ray projections. The critical two steps are the 
estimations of the samples of the projection transform, 
on the central section through the origin of Fourier space, 
from the samples of the transform of the image, and vice 
versa for back‑projection.

Interpolation errors are defined as limitation of 
Fourier‑based methods of reconstruction. Our method, 
pseudo‑polar based compressed sensing (PPCS), relies 
on as three‑dimensional (3D) pseudo‑polar Fourier 
transform (PPFT), which is a new form of FFT. In PPFT, 
the grid points in Fourier domain lie on equally‑sloped 
lines rather than on equally angled lines. PPFT removes 
the errors associated with iterative re‑gridding and the 
PP trajectory keeps the details untouched. PPFT has 
been proven to be a an algebraically precise and fast 
method in addition to being geometrically faithful and 
invertible.[22‑28]

Our CS‑based method has three steps: encoding, sensing, 
and decoding. In encoding, f is encoded into a smaller 
vector y = ϕf, including projections, by a linear transform 
ϕ. It’s clear that y contains less information than f; 
therefore, it is a compression of f. In many CS applications, 
the linear transform ϕ is not calculated by a computer; 
rather it has been obtained by certain physical or digital 
means. In cone beam computed tomography (CBCT), for 
example, ϕ represents a PPFT, where it is “partial” as ϕf 
would only yield the Fourier coefficients corresponding 
to an incomplete set of frequencies. It has to be noted 
that because f is unknown during this step, ϕ will only 
be chosen independently of  f. In sensing, y is acquired 
by X‑ray projections on the objects that are measured on 
the detectors before being sent to a computer. Decoding 
requires recovering f from y. As f is sparse, it may be found 
as the sparsest solution to the underdetermined equations 
y = ϕf unless another even sparser solution is found to 
these equations.

The main advantage with this article in comparison with 
the published compressed sensing techniques is the 
acceleration of the CBCT reconstruction by lowering the 
CS complexity. To that effect, 3D PPFT‑based Radon 
transform as suggested in[28] and fast composite splitting 
algorithm (FCSA) are used for solution. Furthermore, the 
simultaneous use of Hessian (HS) penalty and 3D wavelet 
transform in the reconstruction of CBCT images will 
remove blocky and staircase artifacts while the edges are 
retained. We refer to our method as PPCS‑HS‑W.

The rest of the article is organized as follows: Section II 
outlines different stages of the method including step‑by‑step 
implementation and verification of the optimization problem. 
Section III expresses the criteria and data used to evaluate 
the algorithm. Section IV is dedicated to experiments. We 
provide the results obtained from computer simulations to 
illustrate the performance of the method. Discussions and 
conclusion are provided in Sections V.

Methods
In this section, we elaborate a fast method developed to solve 
a l1‑HS constrained regularization problem for a 3D image 
reconstruction of conventional geometry of single circular 
source trajectory CBCT with a limited number of projections.

Problem formulation

In the case of normal clinical exposures, assuming the 
source to be monochromatic, the X‑ray CT measurements 
are modeled mainly as the sum of a Poisson distribution 
representing photon counting data and an independent 
Gaussian distribution denoting additive electronic noise,[29]

( )( )[ ] σΦi T i i iI = Poisson I exp ‑ f +Gaussian(m , )  (1)

where φ ∈ T Ti × j  is a matrix describing the intersections 
of x‑rays and voxels in the image f, iT and jT are the 
total number of projection measurements and image 
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voxels, respectively. ×1∈ Tjf  represents the vector of 
attenuation coefficients of the object to be reconstructed 
and yi=[ϕf]i represents the line integrals through the image 
for a variety of positions and projection angles,[30] where 

×1∈ Tiy  denotes the vector of projection measurements. 
The CT transmission scan does not provide the projection 
measurements directly, but rather is formed of a collection 
of recorded detector measurements Ii that are related to the 
line integral projections by Beer’s law of attenuation. They 
represent the detected x‑ray intensity after attenuation by 
the scanned object, and follow a Poisson distribution. mi and 
σi represents the mean and standard deviation of electronic 
noise that has been converted to photon units, The offset 
mean of m background signals such as dark current would 
be estimated using blank measurements before each scan 
and subtracted from the measured intensity. Therefore, 
we assume m=0 hereafter. IT denotes the impinging X‑ray 
photon intensity emitted from the X‑ray.[29]

Modeling the electronic noise is significant in low‑dose 
CBCT. While there is no simple analytical form for the 
likelihood function of the combined Poisson and Gaussian 
model in (1), the sum, after adding a constant, can be 
approximated by a Poisson distribution.[31]

( )( )σi T i iI ~ Poisson I exp ‑y +  (2)

The reconstruction problem may be formulated in the 
Bayesian framework as the maximum a posteriori (MAP) 
estimate.

( )ˆ
ff = argmax P f | y  (3)

where P(.) denotes the probability, which is equivalent to:

( ) ( ){ }argmax log | lˆ ogff P y f P f= +  (4)

Using the second order Taylor series expansion of 
the Poisson distribution,[30] the log likelihood of the 
measurements is given by:

( ) ( ) ( ) ( )31log | ‑ ‑ D y ‑ + O
2

≈ Φ ΦTP y f y f f y  (5)

where ∈ T Ti ×iD is a diagonal weighting matrix with the ith 
diagonal element,. di (y

3) may be ignored since it does not 
depend on f. Ignoring this term, (5) describes a shortened 
CT model that can be written as y = ϕf + w, where w 
denotes an additive Gaussian noise with a covariance matrix 
D‑1. di is proportional to the detector counts, corresponding 
to the maximum likelihood of the inverse of the variance 
of the projection data, that is, to 

2
1
σ

iy

.[32‑34]

2
y

∼
σ

≅i‑y
i i T

1 1d I = I e =
var(y)

 (6)

Where IT is the number of radiated photons from the X‑ray 
source. Ii follows the Poisson distribution with σ 2

I i= I , 
where Īi is the average detector count.

Based on (6) we have:

( ) ( ))var y = var(log I  (7)

If h(X) is a function of X, then Taylor expansions for the 
moments functions of random variables establish that:[35]

( ) [ ]( )( ) [ ] [ ]( )( ) σ≈  
2 2 2

Xvar h X h' E X var X = h' E X  (8)

Where is E [X] the expected value of X. h(X) = log(X) So 
if then

( )( ) 2

var(I)var log I =
mean (I)

 (9)

Since electronic noise is an additive process with standard 
deviation σn, the variance in the total detector counts is 
σ σ2 2

I n+ . By means of an unbiased estimation of Īi, Ii,
[9] di 

can be defined as:[36]

σ σ

2
i

i 2 2
y n i

I1d = =
+ I

 (10)

The tomography operator, ϕ in y = ϕf+w, is ill‑posed 
and therefore cannot be inverted. We apply variational 
reconstruction methods wherein a solution is found through 
convex optimization problem.[37]

J* 2
ff = arg min f y + (f)Φ − λ 

1
2

 (11)

where J(f) is a prior energy, whose choice will be explained 
in the following sections.

The main challenge in solving (11) within a reasonable 
amount of time arises from the size of the measurement 
matrix ϕ. Currently, in most available CS‑based reconstruction 
methods, projection operator or 3D Radon transform, ϕ 
consist of integrals over planes through image data points and 
is a (NI×NJ×NK) large scale matrix with entries ϕijk

( )( ) ( ), ,ϕ θ ρ ϕ θ∆Φ ρ ∫, f = f x dx  (12)

where sin cos sin sin cosρ ϕ θ ρ θ ϕ ρ θ ϕ ρ θ∆ h , i j k i j k i j=  + +
is a vector with length of {ρi}(0≤i≤I) in the direction 
of {θj=2π⁄J}(0≤j≤J) and {φk=2π⁄K}(0≤k≤K) in spherical 
coordinates [Figure 1], that describes the length and 
direction of the normal from origin to the integration plane.

To solve (11) iteratively, each iteration would typically 
need two multiplications by ɸ and ɸT,[38] which would 
result in a very significant increase in the computation 
burden for image reconstruction, as compared to 
Feldkamp‑Davis‑Kress (FDK)‑based methods. To do 

Figure 1: Sphere coordinate. (a) Coordinate of a point on three‑dimensional 
radon space. (b) Sinogram Sampling on a conventional three‑dimensional 
Radon diameter

ba
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the CS‑based CT reconstruction within a reasonable 
computation time, graphics processing units (GPU)‑based 
algorithms are suggested.[39,40]

Reduction of complexity and elimination of interpolation 
errors using the pseudo‑polar Fourier transform

In order to alleviate the computational burden on the Radon 
transform, we use the Fourier slice theorem (FST), which 
builds up a 3D FFT of the object through 1D FFT of the 
projections.[9,11,22,26,41,42]

As depicted in Figure 2a the 3D conventional FST[28] shows 
that (Ŷφk,θj)(ω), the 1D radial FFT of (ɸφ,θ f)(ρ) along a line 
with direction of φk,θj, is equivalent to a line of the 3D FFT 

of f in the same direction, f̂
φk,θj,

[37] where ω is frequency 
variable.

( )( )Y
k j k j

j k
, ,

j k j

sin cos ,
= f

sin sin , cosϕ θ ϕ θ

ω θ ϕ
ω

ω θ ϕ ω θ
 
 
 

ˆˆ  (13)

According to FST, we explore a FFT version of ɸ in (11), 
since it corresponds to the sampled FFT of the image along 
discretized rays.

The major challenge with conventional FST is the 
provision of the 3D Radon and Fourier space on 
spherical coordinates as sinogram sampling [Figure 2a]. 
In the calculation of 3D inverse FFT, the data needs 
to be on Cartesian coordinate. Meanwhile, accurate 
3D interpolation is needed in the frequency domain to 
exchange between spherical and Cartesian lattice. Since 
interpolation does not have a known analytical adjoint, 
its use in iterative algorithms is not a practical option. 
In addition, inclusion of a gridding and regridding step 
at each iteration increases the overhead computational 
complexity.

Rebinning is transforming the diverging cone beam 
projections to parallel beam projections. Using the 2D 
and 3D FST and debt recovery tribunals[23] in the stage 
of the rebinning, instead of sinogram sampling in Radon 
space, an accurate and fast linogram sampling has been 
proposed by Teyfour et al.,[28] This algorithm applies 3D 

PPFT and its inverse on Radon transform (T and ɸT) and 
in pseudo‑polar (PP) grid with complexity of O(N3logN) 
[Figure 2b]. PP grid 1 2 3(P PP PP PP∪ ∪ shown in 
Figure 2b] would be of help in bypassing the interpolation 
stage.[28,43,44] The PPFT‑based Radon space is ideally 
acquired at angles corresponding to the lines of the PP 
grid, which consists of concentric squares with a horizontal 
and a vertical groups of lines [Figure 3].

In reconstructing under‑sampled radial data with CS, 
we would need regridding and inverse‑regridding to 
transfer data between the frequency and image domains. 
In each CS iteration, 3D interpolations are implemented 
twice in the regridding and inverse‑regridding. That 
would give rise to errors and affect the reconstruction 
quality. To resolve these problems, a radial‑like PP 
trajectory for the CS CBCT applications would allow 
for an exact image reconstruction with PPFT rather than 
interpolations.

PPFT has three significant properties making it an ideal 
substitute to conventional Fourier methods: (1) PPFT 
provides an exact PP‑based FFT and its inverse, setting 
the gridding error to zero, (2) PPFT has a fast‑forward 
and a fast‑backward calculation algorithm,[23,28,45] enabling 
our proposed algorithm to avoid the regridding step used 
in iterative non‑Cartesian Fourier‑based reconstruction 
methods, and (3) PPFT has an analytical inverse 
function.[45]

Designing the optimization problem

It has been shown that each projection is capable 
of reconstructing a limited number of Radon space 
diameters.[28] In this study, due to a limited number of 
projections and using of PPFT version of ɸ, there are only 
a few nonzero diameters in 3D PPFT Radon space.

Hence, recovering from tomography measurements, y = ϕf  
is equivalent to inpainting the missing Fourier frequencies. 
We assume the partial noisy Fourier measures as

ˆ[ ] [ ] [ˆ ]ˆ, y f wω ω ω ω∀ = +∈Ω  (14)

Where ŷ is 1D radial FFT of the 3D Radon space, f̂  
denote 3D PPFT of 3D unknown image and Ŵ[ω] is the 
measured noise on projections in the frequency domain.

Iterative reconstruction algorithms have demonstrated 
excellent performance in improving the quality of the 
image. We therefore the use an improved algorithm 
by manipulating the penalty term in objective function 
to increase the quality of the reconstructed images. 
For this purpose, HS penalty term (‖f‖HS) and wavelet 
transform (‖Ψf‖1) are proposed to be added to the 
optimization problem. Justifications for such choices are 
elaborated in section II. C. After combining all terms, we 
will reach (15) instead of (11).

[ ] [ ]* 2
1

ˆ ˆ1arg min
2 HS

f
f f y f f   = − + + Ψ      (15)

Figure 2: Comparing conventional Fourier slice theorem with Fourier slice 
theorem on pseudo‑polar grid. (a) Three‑dimensional conventional Fourier 
slice theorem on spherical coordinate, sinogram sampling in the Radon 
space. (b) Three‑dimensional Fourier slice theorem on pseudo‑polar grid, 
linogram sampling in the Radon space[28]

ba
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Solving the optimization problem

FCSA[14] is selected to solve (15) by solving a composite 
regularization problem including HS and l1 norm term, 
effectively. FCSA is motivated by FISTA[46] which 
minimizes the following relation:

( ) ( ) ( ){ }, Pmin F x P x Q x x≡ + ∈  (16)

Where P denotes a smooth convex function with Lipschitz 
constant LP, and Q denotes a convex function that can be 
nonsmooth. The efficiency of FISTA largely depends on 
its ability to quickly solve its second step fk = proxρ(Q)(fQ) 
With a continuous convex function Q(x) and any scalar 
P>0, the proximal map associated with function Q is 
defined as:

( )( ) ( ) 21arg min
2u

prox Q f Q u u f 
 

= + − 
 

 

 (17)

FISTA easily solves the l1 regularization problem as the 
second step fk= proxρ(β‖Ψf‖1)(fQ) has a close form solution.

The HS regularization problem, fk= proxρ(α‖Ψf‖1)(fQ) 
is solved by the fast alternating minimization (FAM) 
algorithm.[4,47‑49]

However, FISTA does not solve the composite l1 and HS 
regularization in (15) efficiently since there would be no 
efficient algorithm to solve (18).

( )( )1
k

Hs Qf prox f f f  = + Ψ     (18)

FCSA,[14] solves the problem (18) by combining the 
composite splitting denoising, FISTA and FAM.

In this section, we describe two subproblems related (18).

Three‑dimensional hessian penalty

The total variation denoising problem is as follows:
* 2argmin TV

f
f f u f= − +     (19)

Where u is an observed noisy image. This is particularly 
suitable for medical imaging from body organs with 
relatively constant gray value, thereby resembling the 
cartoon image model. That indicates the ability of total 
variation in recovering sharp features while inpainting 
Fourier measures.

However, the TV penalty calculated from first‑order 
derivatives results in the unwanted staircase artifact that 
would often make reconstructed images over‑sharpened 
and unnatural[4,48‑50] In this article, we suggest a 
second‑order derivative penalty involving the Frobenius 
norm of the HS matrix from an image for CBCT 
reconstruction.[49] When using the second order penalty, 
some of the most favorable properties of the TV penalty, 
including homogeneity, convexity as well as rotation and 
translation invariance, are retained. The performance of 
the second order penalty is better in preserving gradual 
transition structures in the reconstructed images.[47] HS 
penalties can reflect the smooth intensity transitions 
of the underlying image without causing any staircase 
effect.

For 3D signals f: Ω C, we know the standard isotropic 
TV regularization penalty is the l1 norm of the gradient 
magnitude,[49] specified as:

( ) ( )) ( )) ( ))2 2 2TV(f)= | f r | dr = f r ( f r +(+ f r drΩ Ω∫ ∇ ∫ ∂ ∂ ∂( x y z  (20)

Isotropic Higher degree TV (HDTV) regularization is 
specified by (21).

( ) ( )
1

2 22

,
0

1[ ,
2

dr2] u nHDTV n f f r
π

Ω

 
=  π ∫ ∫   (21)

where fu,n is the nth degree directional derivative defined as:

( )u,n γγ
γ
∂
∂

n

=0nf r = f(r + u)|  (22)

Given a specific nth degree differential 
operator D=∑|α|=2cα ∂α, (α is a multi‑index and the cα are 
constants), we define the generalized HDTV penalty as:

[ ]( ) ( )( ), p Ω∫ ∫
1

p p
SO(3) uf = f r du dr    (23)

where p=2, ×3 3 ‑1{ 1}∈ TS = SO(3)= U :U = U ,detU =
and Du is discrete derivative operators for u∈S that 
penalizing all rotations in 3D.

One choice of D is so that the expression of [ ]( ), p f    
will be as (24).[49]

Figure 3: Different grids. (a) Two‑dimensional cartesian grid. (b) Two‑dimensional PP grid. (c) Three‑dimensional pseudo‑polar grid

cba



Teyfouri, et al.: CS-based CBCT Reconstruction by 3D PPFT

Journal of Medical Signals & Sensors | Volume 12 | Issue 1 | January-March 2022 13

[ ]( )

( ) ( ) ( )
( ) ( ) ( )

Ù

2 2 2

2 2 2
Ù

,

, , , , , ,
2 , , 2 , , 2 , ,

Hs Frob

xx yy zz

xy xz yz

f p f f

f x y z f x y z f x y z
f x y z f x y z f x y z

=

+ + +
=

+ +

∫

∫

   



  

 (24)

That H is HS matrix and ‖Hf‖Frob is Frobenius norm of the 
HS in 3D, equivalent to the isotropic generalized HDTV 
penalty.[49] Thus, instead of (19), the image recovery 
problem with the HS penalty in this work is as (25).

* 2argmin Hs
f

f f u f= − +     (25)

To solve (25), we used the effective algorithm of FAM 
whose speed is ten times higher than the iteratively 
reweighted majorize minimize algorithm.[49] In order to 
facilitate understanding of the FAM optimization parameters 
given in the section IV, the details of this algorithm for 
special case of denoising is given in the appendix.

Three‑dimensional sparsifying transform

To provide further improvement in the results, 3D 
Daubechies wavelet transform, Ψ is proposed in (26) to 
serve as a sparsifying function.

* 2
1argmin

f
f f u f= − + Ψ     (26)

We use a cycle spinning hard threshold denoising by taking 
average from the denoising results of the translated version of 
the signal which is expected to lighten blocking artifacts due 
to thresholding in orthogonal wavelets.[51] The threshold was 
adjusted to T, since we achieved the best result by trial and error.

Mask generation

In the rebinning step (redistribution of the cone beam 
projections to equally sloped lines in a PP grid), each 
characteristic point of the 3D Radon space [Figure 2b], 
C:(ρ,θ,φ) is mapped to a point D:(s,α,ψ) on the detectors 
based on Grangeat’s formula [Figure 4].[28]

Assuming limited number of projection angles, ψt, an 
interpolation step is needed to calculate all of C:(ρ,θ,φ) 
using Dt:(st,αt,ψt), where (st,αt) show the polar coordinate of 
pixels on each detector.

The larger the angular distance between Ψ and the nearest 
ψt would be, the greater the error of interpolating will be. 
To compensate interpolation errors and obtain a high quality 
image, we consider matrix ξ as the mask operator. ξ is as 
large as ϕ. In this matrix, the points located far from original 
projection angles (ψt) are set to zero. So all points on some 
diameters of Radon space with the same angular direction 
of will be zero. Their values will be computed by the CS 
algorithm. The mask operator is then constructed as follows:

( )
1
0

ψ ψ
ξ

ψ ψ




t 1

t 2

, | ‑ |< M
i, j,k =

, | ‑ |< M
 (27)

Where ψ1 and ψ2 are the two nearest ψs to ψt, and 
empirically, we found that considering M=(ψ1‑ψ2)/4 give 
the best results. Note that ξ is computed only once before 
the iterative algorithm.

In short, let f be the 3D image to be reconstructed in the object 
domain and f̂  be the 3D PPFT of f. At first, we compute 
Radon transform on PP grid in space domain (the rebinning 
process) by Teyfouri’s method.[28] After applying 1D radial FFT 
on each diameter (ŷ), what we obtain from tomography data is:
ˆ ˆξ f = y  (28)

Where ξ denotes a linear operator or mask matrix selecting 
the entry of approachable frequency values and ŷ denotes 
an array in the Fourier domain containing the known 
frequency values. According to “frequency constraint,” 
f̂ is restricted in the subspace { }ˆ ˆ î  ˆ:f f y= , and only 

changeable elements are unknown (equal to zero) elements. 
We solve (15) inside the space { }ˆ ˆ î  ˆ:f f y= .

It must be also pointed out that the rebinning process has 
to be applied only once, before the initiation of the iterative 
process. Since, the parallel projections are not calculated at 
all the lines of the PP grid, rather only limited portion of 
the PP grid in Fourier space are filled with ŷ, the rest of the 
lines are filled in by the iterative CS algorithm.

Time complexity and convergence analysis

Applying CS‑based CBCT reconstruction algorithms to 
medical imaging has proven difficult as it requires a prohibitive 
time to compute. A single, complete iteration requires at least 
one forward and one backward projection calculations that are 
computationally expensive. Thus, the efficiency of an algorithm 
requires (1) a minimal number of forward and backward 
projection calculations per iteration, in addition to the necessity 
of (2) converging in a minimal number of total iterations.

We now discuss the computational complexity of Algorithm 
1. In each iteration, there are three operators with the highest 
computational cost: the PPFT φ , its inverse operator, φ
T and the FCSA solver. The computational complexity 
of φ [23,28] and φ T[28,45] has been proven to be O(N3logN).

To generate initial image for Algorithm 1, use of PPFT 
based method makes it possible to reduce the arithmetic 
operations from O(N4) with the conventional FDK method[44] 

Figure 4: (a) Three‑dimensional Radon space on sphere coordinate. (b) Detector 
on polar coordinate.[28] The OC line is perpendicular to the integration plane 
and Xψ is the virtual detector at the angle Ψ of the projection

ba
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to O(N3log(N))[23,28] for an image with N × N × N voxels. This 
result in a faster convergence compared with setting f1=FDK.

FCSA solver in the PPCS‑HS‑W method includes FAM 
and FISTA solvers. We used an efficient FAM solver has 
been proposed In[49] which is faster than TV regularization 
problem with cost O(N3).

The cost of FISTA solver is O(N3 log(N3))in each 
iteration. The step 4, 6 and 7 of “for” loop of algorithm 
only involve adding vectors or scalars, thus cost only 
O(N3). In the step 1, ( ) ˆ ˆ ( ˆ)k T kP f f y∇ = φ φ −  since 

( ) 21 ˆ ˆ 
2

k kP f f y= φ −  in this case. Thus, this step only 

costs O(N3 log(N3)). As introduced above, both of two steps 
f k= proxρ(2α‖f‖Hess)(fg) and f k = proxρ(2β‖Ψf‖1)(fg) has a close 
form solution and can be computed with cost O(N3 log(N3)) 
in each iteration.

Another important specification is its fast convergence 
performance borrowed from FISTA. FISTA is able to 
obtain an ∈‑optimal solution in (1/ )O ∈  iterations,[14] 
implying that the required number of the iterations for 
reaching ∈*| f(x) ‑ f |< is (1/ )O ∈ .

In[14] it has been proved that if {fk} is the sequence generated by 
the ( )( )( )1

1 ( 2 ) (2 )
2 Hess Q Qprox f f prox f f  + Ψ   

, 

then, fk will converge to ( )( )1Hess Qprox f f f  + Ψ    .

Summary of pseudo‑polar based compressed 
sensing‑HS‑W algorithm

After combining the entire process together, Algorithm 1 
will elaborate the proposed method.
Algorithm 1: Summary of pseudo‑polar based 
compressed sensing‑HS‑W algorithm for solving[15]

• Input: ρ
p

1= L  ,α,β,λ,λfac,T,t1=1,f1= Zero matrix and 
CBCT parameters.

• R = Compute 3D Radon space from cone beam 
projections on PP grid by Teyfouri’s method [28].

• ŷ =Apply radial 1D FFT on diameters of R.
• ξ = Compute mask matrix.
• ŷ = ξŷ.
• For k = 1 to K do{

)*ρ∇k k
gf = f ‑ P(f

f1 = proxρ(2α‖f‖Hess)(fg): solve by FAM.

f2 = proxρ(2α‖Ψf‖1)(fg): solve by FISTA.

fk = (f1+f2)⁄2
fk = project(fk,[0,255])

( ) 2k+1 k 2t = 1+ 1+4t /
fk+1 = fk+((tk‑1)⁄tk+1)(fk‑fk‑1)}

( ) ( ) 21ˆ ˆ ˆ ˆ( ), : 3  ,
2

ˆ ˆ ,k T k k kP f f y P f f y D PPFT∇ = φ φ − = φ − φ 

ˆ : 3   , 1      ˆT D Inverse PPFT y D radial FFT of Radontransformφ =

radical FFT of Randon transform.

Algorithm 1 is executed easily due to its concise structure. 
However, we need to address some details of the process of 
implementation. Two things need to be considered. We want 
first to have good performance and fast convergence. Then, 
we intend to minimize the number of parameters needed 
to tune up in practice. Some parameters are available for 
tuning the optimization problem of (15). The guidelines for 
parameters selection are summarized in Table 1.
Materials and Evaluation Indexes
The experiments were carried out on three computer 
simulation phantoms: A compressed sensing (CS) 
phantom,[52] a Head phantom and a modified Shepp‑Logan 
phantom. Figure 5a demonstrates a representative slice of 
a noise‑free image out of the CS phantom with size of 
64 × 64 × 64. In the phase of initial Radon generation, 
due to the memory constraint of Matlab, in none of the 
experiments we were able to consider the image size larger 
than 64 × 64 × 64 voxels.

The phantom with a uniform background contains an 
octahedron with a linearly gradual transitioning intensity. 
Figure 5b plots the horizontal profile of the center of 
octahedron along the shown slice. Furthermore, the phantom 
contains a set of line objects to measure the resolution, a 
set of circular cylinders of different diameters and different 
intensities to measure the contrast‑to‑noise ratio (CNR), 
as well as a ball with linear gradual transitioning intensity 
resembling the octahedron.

To demonstrate the performance of PPCS‑HS‑W method in 
the low dose configurations, the number of projections in our 
framework was selected to be 720 in high, 120 in medium 
and 360° in low dose level in each rotation, and zero mean 
Gaussian noises was added to the projections. The incident 
X‑ray intensity, I0, and the background electronic noise 
variance, σ, are set to 0.6 × 105 and 10, respectively.

The parameter values, customized for different phantoms 
used in the experiments, are summarized in Table 2.

To measure the quality of reconstructed images using a 
variety of penalty terms, we measured peak signal to noise 
ratio (PSNR), improvement signal to noise ratio (ISNR), 
CNR,[53] structural similarity index (SSIM),[47,54,55] and full 
width at half maximum (FWHM).[56]

The SSIM metric is defined as:[47]

( ) ( )( )
( )( )

µ µ σ

µ µ σ σ
a b 1 ab 2

2 2 2 2
a b 1 a b 2

2 +C 2 +C
SSIM a,b =

+ +C + +C
 (29)

Where a and b are two local windows of size 8 × 8 
pixels in two images. The two windows have the same 
position, and μa and σa and μb and σb are their mean and 
standard deviation, respectively. σa,b is the covariance 
between the two windows. C1 and C1 are two constants 
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to avoid instability. In this study, C1 and C1 were chosen 
as C2=(0.01μmax)2 and C1=(0.01μmax)2. While the two 
windows move pixel‑by‑pixel over the reference image and 
the reconstructed image, a SSIM map will be obtained.[47]

Results
In this section, the performance of the proposed method is 
evaluated in terms of the accuracy (section  ), convergency 
and reconstruction time (section IV.  ) and reduction of 
radiation dose (section  ).

To evaluate the performance of PPCS‑HS‑W, we 
have compared it with some other algorithms. First 
ordered‑subset simultaneous algebraic reconstruction 
techniques (OS‑SART)[57] was implemented. second 
the adaptive steepest descent projections onto convex 
set (ASD‑POCS)[58,59] was implemented. Third and fourth, 
PPCS‑TV‑W and PPCS‑HS method were presented 
to demonstrate the effect of Hessian and l1 norm 
regularization terms in (15). In addition, the inverse of 
Radon transform (iRadon)[28] as an initial images of our 
iterative method and FDK reconstruction as a conventional 
method are compared.

A SART‑type family is a set of algorithms derived 
originally from the Kaczmarz method. It is also adapted to 
work projection by projection rather than row by row. This 
group of algorithms follows the equation:

λ Φ Φ(k+1) k k T kf = f + V W( f ‑ y)  (30)

Where V and W denote weight matrices based on ray length. 
OS‑SART updates the image with a subset of the projections.[57]

ASD‑POCS is an algorithm where the total variation norm 
requires the image to be piecewise smooth. It is expressed as:

* 21 ˆarg min  
2 TV

f
f f y f= φ − +     (31)

Where ϕ is a matrix in space domain or 3D Radon space 
describing the intersections of X‑rays and voxels in the 
image.

Table 2: Customized parameters in two selected 
phantoms

Shepp‑Logan, CS and head phantom

The distance between the source and the real 
detector in mm: SP

1500

The distance between the source and the middle 
plane of the object in mm: SO

1000

The number of voxels in the 3D unknown cubic 
image: nx×nx×nx

64×64×64

The length of each side of 3D unknown cubic 
image in mm: sx

32

The number of pixels in the 2D detector: nu×nu 256×256
The length of each side of the real detector located 
at the distance of SP in mm: su.

64

CS – Compressed sensing

Table 1: Summary of the parameter selection guidelines
Variable Meaning/criterion/range
Parameters of proposed 
optimization problem

α and β The regularization parameters α and β are expected to strike a balance between the fidelity of data 
and prior information data. It is often selected empirically in practice. We can empirically select them 
also for PPCS‑HS‑W. As the data fidelity term is proportional to the noise standard deviation in the 
projection domain, it should be increased proportionately with the noise increment

Step size The step size in FCSA, ρ is designed based on the inverse of the lipschitz constant LP. In fact, using 
larger values is a way of gaining faster versions of the algorithm[14]

Iteration number One way to stop the iterations is to set a threshold for changing the objective function or the number 
of iterations

Stopping criterion Selecting stop criterion usually depends on the desired algorithm convergence. In this study, the MSE 
metric, which measures the similarity between the resulting image and reference image, was used to 
gauge the quality of the desired image. A small MSE value shows a small difference value between 
the two images and vice versa. We stop the reconstruction process when the reconstructed image 
changes becomes meager

Parameters of HS term
λ Continuation parameter
λfac

Increment rate, fac n+1 fac n> 1 = ×λ λ λ λ

Nouter and ninner Maximum outer and inner iteration number
Inner loop convergence tolerance If the relative change in the cost function is less than this specified threshold each new iteration would 

stop
Parameters of l1 norm term

T Threshold the wavelet coefficients
MSE – Mean‑square‑errors; FCSA – Fast composite splitting algorithm; HS – Hessian; PPCS‑HS‑W – Pseudo‑polar based compressed sensing 
Hessian Wavelet method
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In PPCS‑TV‑W we have:

[ ] [ ]* 2
1

1arg mi ˆn
2

ˆ
TV

f
f f y f f   = − + + Ψ     

 (32)

Where,
( ) ( ) ( )2 2 2

Ù

, , , , , ,TV x y zf f x y z f x y z f x y z= + +∫   (33)

We solved (32) by FCSA including two FISTA solvers.[46]

In PPCS‑HS‑W without l1 norm named PPCS‑HS, we 
have:

[ ] [ ]* 21arg min ˆ ˆ
2 HS

f
f f y f  = − +     (34)

All notations are similar to (15). We solved (34) by FAM.[49]

In each case, the regularization parameters are optimized 
to obtain the optimized SNR that would ensure fair 
comparisons between different schemes. In our method, 
to achieve good quality reconstructions, the regularization 
parameters α and β are set as 0.001 and 0.035. In all of 
cases presented in this work, we stopped the computation at 
50 iterations at which good convergence was seen through 
the observation of the reconstructed image at each iteration. 
In our experiment, the step size is set as 1.We set the max 
inner and outer iteration time of Hessian regularization 
problem as 7 and 10, respectively, and choose 20 and 2 
for continuation parameter λ initialization and λfac Error 
tolerance is as 10‑7 inner loop convergence tolerance. T, the 
threshold of wavelet coefficient is 0.18.

Accuracy of the reconstruction

The quality performance of PPCS‑HS‑W was assessed in 
subsections   to A.7.

Visual assessment

We chose the red rectangles in Figure 5a as region of 
interest (ROI) to compare the quality of different methods. 
The enlarged rhombus ROI of reconstruction results acquired 
through iRadon, PPCS‑TV‑W, PPCS‑HS, and PPCS‑HS‑W 
method with 36, 120, and 720 projections as low, medium 
and high dose levels are shown in Figure 6a‑o respectively.

As the reconstruction results indicate, all IR methods 
worked well in high dose level, while the iRadon algorithm 
could not reduce noise and caused significant artifacts 
even in high dose level. The TV penalty in both 2nd and 
3rd column of Figure 6 caused a serious staircase effect and 
gave rise to several artificial piecewise constant regions in 
low dose level. The reconstructed images with PPCS‑HS 
look more natural and smoother, emphasizing on ability 
of PPCS‑HS in preserving smooth regions as well as 
suppressing the noise.

Compared to PPCS‑HS, using a sparsity regularization in 
an orthogonal basis was made to better reconstruct edges 
in the PPCS‑HS‑W method [red arrow in Figure 6e], 
while denoizing artifacts are reduced by using a 
translation invariant wavelet transform [orange arrow in 
Figure 6d].

Quantitative comparison

We first studied the performance of PPCS‑HS‑W with sparse 
views and the fixed incident X‑ray intensity I0 of 0.6 × 105 
photon counts per ray. To assess quality of the reconstructed 
image with different methods, the mean PSNR, ISNR, and 
SSIM of the whole slice obtained in ten repetitions for CS 
phantom are listed in Table 3. Quantitatively, PPCS‑HS‑W 
outperformed others. PPCS‑HS‑W would produce less noise 
and more structures than two others.

Ability to preserve local structure

Figure 7 illustrates a representative slice of the results 
acquired through applying different reconstruction methods 
for the head phantom from 120 projections. The ability of 
PPCS‑HS‑W in preserving local structure is clear.

We used SSIM (the closer to 1, the higher structural 
similarity) in our study to measure the degree of similarity 
in local structures between reconstructed images and the 
original image. The SSIM map of the anthropomorphic 
head phantom [Figure 8] in PPCS‑HS‑W was whiter, 
indicating a higher ability in preserving structures.

Figure 5: One representative slice of CS phantom, (b) horizontal profile of center of octahedron at the shown slice
ba
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Comparison of edge preservation ability

In order to provide a quantitative analysis on performance 
of penalty terms in edge‑preservation, we focused our 
study on the FWHM of reconstructed images along the red 
line in Figure 9.

The penalties showed clear differences in sharpness along 
the red line. The FWHM value for PPCS‑TV‑W and 
PPCS‑HS‑W were 2.35 and 1.2, respectively. However, 
PPCS‑HS‑W conduced to the smallest FWHM value; it 
means that reconstructed image using HS penalty has the 
sharpest edges, while TV penalties produced reconstructed 
images with less sharp edges.

Furthermore, we selected the strip area [Barcode indicate 
by the pink square in Figure 5a]. Line profile of the 
reconstructed barcode in Figure 10 indicates that the 
proposed method preserved the edges better than iRadon, 
ASD‑POCS and PPCS‑TV‑W.

Ability to provide high spatial resolution and deblurring

Figure 11 shows a representative slice of the reconstructed 
Shepp Logan phantom images generated using different 
methods of iRadon [Figure 11b], Pseudo‑polar based 
compressed sensing‑TV‑W [Figure 11c] and Pseudo‑polar 
based compressed sensing‑HS‑W [Figure 11d]. The noise 
level was calculated by using the red rectangle area. Two 
ROIs are selected to make a quantitative comparison of 
CNR in different reconstruction methods [shown by arrows 
in Figure 11a].

Table 4 lists CNRs corresponding to ROIs in Figure 11. It 
is clear that by changing projection number, the noise level 
shows variation. In comparison, HS was better than the TV 
penalty for denoising with different projection numbers.

Since CNR is dependent on background noise level, this 
value should not be ignored in the evaluation of the quality 
of reconstructed images.

To underscore the significant contribution of PPCS‑HS‑W 
in deblurring task, we calculate FWHM in blue line 
indicated in Figure 9 FWHM in the TV penalty is 2.69 
and that of HS stands at 1.75, showing the higher image 
resolution in PPCS‑HS‑W. These numerical observations 
are consistent with visual inspection in Figure 12, in which 
the iRadon caused significant artifacts [Figure 12b], the TV 
penalty slightly blurred the image edges [Figure 12c] and 
the HS penalty preserved better edges [Figure 12d].

Table 3: Peak signal to noise ratio, improvement signal 
to noise ratio, and structural similarity Index values 

of images with different reconstruction algorithms for 
compressed sensing phantom

Level of dose 
(projection number)

Penalty PSNR ISNR SSIM

36 projections iRadon 14.73 ‑ 0.56
ASD‑POCS 26.05 0.5 0.81
PPCS‑HS‑W 30.49 16.12 0.98

120 projections iRadon 15.2 ‑ 0.79
ASD‑POCS 28.45 5.1 0.85
PPCS‑HS‑W 32.17 17.16 0.98

720 projections iRadon 16.2 ‑ 0.83
ASD‑POCS 32.8 5.1 0.89
PPCS‑HS‑W 33.53 18.52 0.98

PSNR – Peak signal to noise ratio; ISNR – Improvement signal 
to noise ratio; SSIM – Structural similarity index; ASD‑POCS – 
Adaptive steepest descent projections onto convex set; PPCS‑HS‑W 
– Pseudo‑polar based compressed sensing Hessian Wavelet method

Figure 6: Visual assessment of  region of  interest  (rhombus)  in  reconstructed  images with different algorithms and different projection numbers.  (a) 
iRadon. (b) Adaptive steepest descent projections onto convex set. (c) Pseudo‑polar based compressed sensing‑TV‑W. (d) Pseudo‑polar based compressed 
sensing‑HS. (e) Pseudo‑polar based compressed sensing HS‑W. (f) iRadon. (g) Adaptive steepest descent projections onto convex set. (h) Pseudo‑polar 
based compressed sensing‑TV‑W. (i) Pseudo‑polar based compressed sensing‑HS. (j) Pseudo‑polar based compressed sensing‑HS‑W. (k) iRadon. (l) Adaptive 
steepest descent projections onto convex set. (m) Pseudo‑polar based compressed sensing‑TV‑W. (n) Pseudo‑polar based compressed sensing‑HS. (o) 
Pseudo‑polar based compressed sensing‑HS‑W
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and the power of the proposed method in removing blocky 
artifacts is quite clear through the visual comparison.

Ability to remove staircase effect and preserve smooth 
images

The intensity curves along the red line in Figure 12a show 
that TV‑based reconstruction produced several staircase 
artifacts, while the reconstructed results using HS penalties 
were far smoother [Figure 13].

The regions of smoothly‑changed intensity, such as 
octahedron in the upper‑right corner and the sphere in 

Ability to remove blocky artifact

Figure 11c and d shows the ability of PPCS‑HS‑W method 
compared to PPCS‑TV‑W in removing blocky artifacts. The 
image is reconstructed from 36 projections around 360° 

Figure 9: Representative slices of original image in order to explore the 
ability to preserve the edges along the red line

Figure 10: Line profile of the pink region of interest in Figure 5 to explore 
the ability of our proposed method to preserve the edges

Figure 7: A representative slice reconstructed in low dose condition. (a) Original 
head phantom. (b) iRadon. (c) Adaptive steepest descent projections 
onto convex set. (d) Pseudo‑polar based compressed sensing‑TV‑W. (e) 
Pseudo‑polar based compressed sensing‑HS. (f) Pseudo‑polar based 
compressed sensing‑HS‑W

a b

c d

e f

Figure 8: Structural similarity index map of the head phantom using different 
methods. (a) Pseudo‑polar based compressed sensing ‑TV‑W (structural 
similarity index = 0.65). (b) Pseudo‑polar based compressed 
sensing ‑HS‑W (structural similarity index = 0.93)

ba

Table 4: Contrast‑to‑noise ratio for different regions of 
interest of Shepp ‑ Logan phantom in [Figure 8]

Penalty Projection 
number

Noise 
level

ROI1 ROI2

iRadon 36 0.02 2.81 1.43
120 0.020 13.16 7.24

PPCS‑TV‑W 36 0.0182 6.84 3.54
120 0.0085 18.38 9.03

PPCS‑HS‑W 36 0.0017 115.45 55.77
120 0.0014 140.03 69.88

ROI – Regions of interest; PPCS‑HS‑W – Pseudo‑polar based 
compressed sensing Hessian Wavelet method; PPCS‑TV‑W – 
Pseudo‑polar based compressed sensing Total Variation Wavelet 
method
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the lower‑left corner of Figure 12, exhibited numerous 
small and unnatural constant intensity artifacts in the 
reconstructed image, where the TV penalty was used. It 
stemmed from the staircase effect [Figure 12c]. The results 
yielded by HS penalty were more natural [Figure 12d], 
indicating its capacity in suppressing the staircase effect.

Convergence analysis and central processing unit time

We implement our method on central processing unit (CPU) and 
apply it on a 3D Shepp‑Logan phantom of size 64 × 64 × 64 
voxels with 36 projections around 360° to compare its speed 
with other algorithms. Our MATLAB codes ran on a PC with 
one i7–6800K CPU@ 3.40GHz and a 32 GB RAM.

A rebinning step was performed before initiating the iterative 
algorithm to transform the cone beam projections to parallel 
projections along equally sloped lines of the PP gird.[28]

To prove the ability of the frequency‑domain 
methods in increasing the speed of iterative 
regularization problem solving, we made a comparison 
between PPCS‑TV‑W and PPCS‑HS‑W and two 
algorithms in the spatial domain, OS‑SART[57] and 
ASD‑POCS.[58,59] Figure 14 shows the reconstructed 3D 
images using these algorithms in three different iteration 
numbers. The level of quality agreement goes in the order 
of PPCS‑HS‑W >PPCS‑TV‑W >ASD‑POCS >OS‑SART. 
This finding proves to be correct at all levels of iterations, 
as shown in Figure 14.

As Figure 15 indicates, the PPCS‑TV‑W and PPCS‑HS‑W 
algorithms show convergence at about 20 and 15 iterations, 

respectively. That is while the OS‑SART and ASD‑POCS 
algorithms need further convergence at 50 iterations.

The relative error is the mean squared percent error from 
the original image pixel values.

( )
( )

Σ

Σ

Origin 2
i, j,k i, j,k i, j,k

Origin 2
i, j,k i, j,k

f ‑ f
RelativeError =

f
 (35)

Where fi,j,k denotes the voxel values in the reconstructed 
volume f and Origin

i, j,kf represents the original values of the 
Shepp‑Logan phantom used.

A fair comparison study on the recovery time vs CPU 
time (s) would require the MATLAB code of the other CBCT 
reconstruction algorithms with CPU implementation. Since 
the codes of OS‑SART and ASD‑POCS and some available 
others are in GPU,[59‑62] we didn’t report any comparative 
study on the speed of our algorithms vs time. 2D version 
of PPCS‑TV‑W, solved by FSCA in,[9] by Bregman iterative 
regularization in[11] and by nonlocal TV regularization in[21] 
has been shown that PPCS‑TV‑W is faster than FBP and 
algebraic reconstruction technique‑TV based method for 
fan beam images reconstruction. In addition, Huang[14] 
used Fourier based CS‑TV‑W in 2D magnetic resonance 
imaging (MRI) images reconstruction, solved by FSCA too, 
and showed that it is faster than the other Fourier based CS 
algorithms, such as TVCMRI, RecPF, Sparse MRI.

The average computation times of the PPCS‑TV‑W and 
PPCS‑HS‑W method were 1336 and 1535 seconds with 
50 iterations in the given studies with the phantom of size 
64 × 64 × 64. For image applications involving real‑time 
reconstruction, the computational performance can be 

Figure  11: A  representative  slice of  different  reconstructed algorithms 
with low dose view. (a) Original phantom. (b) iRadon. (c) Pseudo‑polar 
based compressed sensing‑TV‑W. (d) Pseudo‑polar based compressed 
sensing‑HS‑W

dc

ba

Figure 12: A representative slice of image reconstructed in low dose view. (a) 
Original CS phantom. (b) iRadon. (c) Pseudo‑polar based compressed 
sensing‑TV‑W. (d) Pseudo‑polar based compressed sensing‑HS‑Wv

dc

ba
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enhanced by implementing the reconstruction code in 
more effective formats, such as C language, rather than the 
commonly used MATLAB scripts.

Ability to recover images with dose reduction

Reducing the number of projections is an important strategy 
to reduce image time and radiation dose, giving the few‑view 
problem. To evaluate the proposed algorithm for few‑view 
tomography, the number of projections around 360° was 
down‑sampled from 720 to 120 and 36, respectively. The 
PPCS‑HS‑W method was then applied. Also, the FDK, 
iRadon, OS‑SART and ASD‑POCS methods were performed 
for comparison. The results are in Figure 16. The number of 
iterations was set to 50 in all three iterative methods.

It is seen that the performance of the FDK and iRadon 
reconstruction increased and improved as the number of 
views rose from 36 to 720. The findings of PPCS‑HS‑W 
were far better than the rest of the reconstructions. The 
PPCS‑HS‑W result was nearly as good as that reconstructed 

from 720 views in the case of 36 views [column two of 
Figure 16]. We note that the OS‑SART and ASD‑POCS 
have patchy artifacts and wash out the fine structures 
in low‑dose setting, while the higher‑degree scheme, 
PPCS‑HS‑W, provided very similar results with more precise 
reconstruction (see the regions indicated by the red arrows).

As shown in Figure 16, the PPCS‑HS‑W algorithm achieved 
a reasonable image quality comparable to the image 
reconstructed by the FDK using all 720 projections, even 
with the dose reduction to 1/20th (36/720 projections).But, 
for a clinical patient case, about 120 projections or more 
were necessary to generate a reasonable quality images.

This achievement still represents a significant reduction 
in dose (120/720≅83%), but any further reduction in 
dose (i.e., less projections) is usually not recommended due 
to a rapid deterioration of image quality, as some structures 
in the PPCS‑HS‑W result may have been obscure or 
invisible with 36 projections. The possible reason that more 
projections are required in patients than in phantoms is that 
the internal anatomy of humans is much less detailed and 
therefore needs more information to depict it properly.

The Discussion and Conclusion
We presented a new rapid CBCT image reconstruction 
method which combines 3D PPFT and CS. Using PPFT 

Figure 13: Profiles through the red line in Figure 13

Figure 14: The reconstructed images of the Shepp‑Logan phantom, using 
different algorithms, as a function of 10, 30, and 50 iterations. A total of 
36 projections in cone‑beam geometry were used for the reconstructions

Figure 15: Mean‑squared relative error as a function of the number of 
iterations, for the respective four algorithms
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would avoid repeated regridding/inverse‑regridding 
operations that may give rise to interpolation errors in 
reconstruction based on Cartesian FFT. Conducted in three 
simulated phantoms, our studies demonstrated that HS 
penalty can wipeout the staircase effect while preserving 
both edges and regions with smooth intensity transition or 
piecewise constant. A significant advantage with using the 
PP based Radon transform is reducing the computational 
complexity. In addition, solving CS problem with FCSA 

for an image of size N×N×N voxels, requires a number of 
O(N3log(N3)) operations in each iteration and can obtain 
an ∈‑optimal solution in (1/ )O ∈ iterations and is therefore 
faster than ordinary iterative methods.[14]

Not only did the proposed method minimize the computational 
complexity, but it also decreased the dose of X‑ray radiation 
by reducing the number of predictions. Nonetheless, 
approximately 120 calculations are required for a medical 
patient case to produce images of reasonable quality. This 
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Figure 16: The reconstructed images of the Head phantom (with size of 64 × 64 × 6, using different algorithms, as a function of 36, 120, and 720 projections. 
The 2nd column is related to 22th vertical slice of the image, unlike the others that are 22th horizontal slices
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achievement represents a significant dose reduction of 83 
percent, but any further dose reduction (i.e., lower number 
of projections) is usually not recommended due to a rapid 
deterioration in some structures of the image contrast and 
performance.

The future work is implementing of PPCS‑HS‑W in C# 
with the CUDA programming environment (NVIDIA, 
Santa Clara, CA) and utilizing the massive parallel 
computational capability of the GPU hardware to make it 
usable in clinical application and the large size 3D images.

Appendix

Fast alternating minimization algorithm for hessian 
regularized inverse problems

We change (25) as an image recovery problem with the 
Hessian penalty like:

2

* 2argmin u l
f

f f y D f du= − + ∫   



 (36)

Duf denotes the multi‑dimensional convolution of f with Du 
discrete filter.[49]

Given the Huber function and its half‑quadratic 
dual [49], (36) can be transformed to (37).

1

2 2

, 
min

2 u u u lf Z
f y D f Z Z dU

  − + − + 
 ∫     



 (37)

Where Zu is an auxiliary function. In order to solve (37), we 
use the alternative minimization method, which produces 
two efficiently solved subproblems: the z‑subproblem that 
can be solved in one shrinkage step; and the f‑subproblem 
involving the reversal of a linear process that can often be 
solved in one step using DFTs. Below are the specifics of 
these two sub problems.

• The z‑Subproblem: Minimization With Respect to z, 
Assuming f to be Fixed

With the assumption of fixed f, we can minimize the cost 
function in (37) with respect to z in order to have

1

2min  
2 u u u lZ

D f Z Z dU − + 
 ∫    



 (38)

The soft‑shrinkage formula provides the exact 
component‑wise solution to the above problem:

[ ] [ ]
[ ]
[ ]

0
λ

 
 
 

u j
u uj j

u j

D f1Z = max D f ‑ ,
D f

 (39)

• The f‑Subproblem: Minimization With Respect to f, 
Assuming z to be Fixed

With the assumption of fixed z, we minimize (37) with 
respect to f, which leads to

2 2min
2 u uf

f b D f Z dU
− + −∫   



 (40)

The objective described above is quadratic in f, and from 
the normal equations its minimizer satisfies the following:

( )2 + = 2 +s sαλ αλ∫ ∫T T
u u u uI D  D du f y D Z  du  (41)

In general, a simple matrix solver such as the conjugate 

gradient algorithm can be used to solve the linear Eq. 41. It 
can be simplified by applying the DFT on both sides.

αλ

αλ

    
 

    






T
‑1

T

2y+ E q
= 

2I + E CE
 (42)

Where I is the identity matrix, E is circulant matrix 
corresponding to convolution with discretized partial 
derivatives, Du= ES. It should be note that S is steering 
function and C= STS. Finally, q, the projected shrinkage 
defined as ≈ Σ

i

K
i=1 i i uq w S(u )Z where the samples  ui∈S and 

weights wi are determined by the choice of quadrature; 
more details on the choice and performance of specific 
quadratures are given at.[49]

The FAM pseudocode is shown below.

Algorithm 2: Pseudo code of fast alternating 
minimization to solve the hessian regularized 
problem(25)[49]

Initialization: {Input N_outer, N_inner, λ, λfac, 
siz = size (y), tol, nsamples = number of samples in 
Lebedev quadrature scheme.

Define derivative operators and steering functions:{

• G = Compute 3D filters cooresponding to discrete 
derivative operators defined by the tensor product of 
derivative of 1D B‑spline operators.

• nfilters = size of G.
• D = Build derivatve operators from filters G.
• Dt = Adjoint of D (t is adjoint operator).
• (pts, weights) = Get quadrature samples/weights from 

nsamples.
• su = Compute steering polynomials of pts for Hessian 

penalties.
• su = su× weights.}

Precompute quantites:{

• C = tensor product between ∫S sutsu and identity matrix.
• Dvec = resize D (im0) to siz× nfilters.
• CD = resize (Dvec×C) to siz×nfilters.
• DtCD = FFT (Dt (CD)).}
• f = y: initialize f

Begin alternating minimization algorithm:

• e = [ ] _ _ ,0 N outer N inner× , Ind = 0.
• for i = 1:N_outer
• for ii = 1:N_inner

Calculate error: {
• DF = Compute 4D array of all partial derivatives of f.
• DFvec = resize DF to siz× nfilters.
• DD = DFvec×su: Compute directional derivatives of f.
• diff = f‑y.
• αΣ2e =| diff + | DD || : objective function
• ind = ind + 1, e (ind) = e.
• If | e (ind)‑e (ind‑1) |<tol, then break: Convergence 

test.}
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Shrinkage step:{
• shrinkDD = shrink (DD,1/λ).
• Compute projected shrinkage step: DD = shrinkDD×DD.
• DF = resize DD×su to siz×nfilters.

Inversion step: {
• F1 = FFT3 ((2y + αλDt (DF)).
• F2 = αλ × DtCD + 2.
• f = iFFT3(F1/F2).}
• λ = λ ×λfac: Increase continuation parameter}
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