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Abstract

Soil is commonly collected from an outdoor crime scene, and thus it is helpful in linking a suspect and a victim to a crime scene. The
chemical profiles of soils can be acquired via chemical instruments such as Ultra-Performance Liquid Chromatography (UPLC). However, the
UPLC chromatogram often interferes with an unstable baseline. In this paper, we compared the performance of five baseline correction (BC)
algorithms, i.e. asymmetric least squares (AsLS), fill peak, iterative restricted least squares, median window (MW), and modified polynomial
fitting, in discriminating 30 chromatograms of brownish soils by five locations of origin, i.e. PP, HK, KU, BL, and KB. The performances of
the preprocessed sub-datasets were first visually inspected through the mean chromatograms and then further explored via scores plots of
principal component analysis (PCA). Eventually, the predictive performances of the partial least squares-discriminant analysis (PLS-DA) models
estimated from 1 000 pairs of training and testing samples (i.e. prepared via iterative random resampling split at 75:25) were studied to identify
the best BC method. Mean raw chromatograms of the 10 soil samples were different from each other, with evident fluctuated baselines.
AsLS and MW corrected chromatograms demonstrated the most significant improvement compared with the raw counterpart. Meanwhile,
the scores plot of PCA revealed that most of the sub-datasets produced three separate clusters. Then, the sub-datasets were modelled via the
PLS-DA technique. MW emerged as the excellent BC method based on the mean prediction accuracy estimated using 1 000 pairs of training
and testing samples. In conclusion, MW outperformed the other BC methods in correcting the UPLC data of soil.

Key points

• UPLC data of soil interfere with baseline drifts.
• BC can improve the quality of the pixel-level UPLC data.
• MW emerges as the most desired algorithm in improving the quality of UPLC data of soil.

Keywords: soil forensics; ultra-performance liquid chromatography; baseline correction; principal component analysis; partial least squares-discriminant
analysis

Introduction

Soil comprises various components such as organic com-
pounds, minerals, and inorganic compounds [1]. The soil com-
position is naturally affected by living organisms or altered by
human activities, e.g. agriculture and mining [2]. Therefore,
soils from different locations potentially show unique compo-
sitions and thus could be highly individualistic. In the context
of forensic analysis, the soil is one of the most common types
of trace evidence that can link a suspect/victim to a crime scene
[3]. This is because soil can be easily transferred from one
place to another and could be a reliable source to identify a
particular location.

Most forensic studies have been concerned with seeking the
best way to discriminate soils originating from different loca-
tions [4]. For example, Xu et al. [5] recently proposed using
laser-induced breakdown spectroscopy and Fourier trans-
form infrared total attenuated reflectance spectroscopy to

characterize the soils according to the elements and organic
compounds. On the other hand, Profumo et al. [6] demon-
strated the benefits of gas chromatography-mass spectrometer
(GC–MS) in forensic soil analysis by focusing on the volatile,
semivolatile and volatilizable fractions of soil samples.
Meanwhile, McCulloch et al. [7] found that the high-
performance liquid chromatography (HPLC) technique could
be feasible to differentiate soils from proximity locations.

It is worth noting that forensic analysts seldom place suffi-
cient attention to preprocessing the data before interpretation.
For instance, McCulloch et al. [7] employed high-performance
liquid chromatography with diode-array detection (HPLC-
DAD) and GC methods to discriminate geoforensic trace
material from close proximity locations. Instead of pixel-
level data, the authors integrated selected peaks from the
HPLC-DAD and GC systems. Hence, the good performances
of the statistical prediction models were attributed to the
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pre-selection of peaks performed manually by the authors.
However, it is generally agreed that pixel-level data are far
more suitable than targeted peak table data in constructing
an automatic data analysis pipeline [8].

Nonetheless, it is well known that pixel-level data comprise
both the samples and irrelevant signals attributed to the inher-
ent limitations of the instruments, e.g. instrumental drift and
aged columns [9–12]. Therefore, this work aims to evaluate
five baseline correction (BC) algorithms in improving the
baselines of 30 Ultra-Performance Liquid Chromatography
(UPLC) pixel-level data of soils [13–15]. The purpose was
to discriminate the soils according to five locations of origin
in Kajang district, Selangor, Malaysia, based on the UPLC
fingerprints.

Materials and methods

Soil sampling

Five proximity locations in the Kajang district, Selangor,
Malaysia, as detailed in Figure 1, were chosen to collect 10
soil samples. All the locations are accessible by the public
without any permit (Supplementary Figure S1). Three of the
five locations are abandoned land without monitoring by
any authority, i.e. BL, KU, and KB. Meanwhile, the forest
(HK) and Fernarium (PP) located on the campus of Uni-
versiti Kebangsaan Malaysia (UKM) are monitored by the
campus security team. Two brownish soils, i.e. brown and
yellowish brown, were collected from each location using the
grid-pattern procedure described by Pye [1]. A stainless-steel
spatula was used to collect ∼5 g of topsoil (0–1 cm depth)
accumulated from the four corners and the central point of a
1 m square grid.

Preparation of soils extracts

All samples were kept in zip-lock plastic bags and placed in
paper boxes to be air-dried overnight at room temperature on
the same day of sampling. On the next day, the samples were
further dried in an oven at 60◦C for 3 h. After leaving cool
in a desiccator, the samples were ground using a mortar and
pestle, which was then sieved using a stainless-steel analytical
sieve (600 μm). Then, ∼0.5 g of soil was placed into a
1.5-mL microcentrifuge tube and dissolved with ∼1 mL of
HPLC-grade acetonitrile (ACN) (Fisher Chemical, Mumbai,
Maharashtra, India). Following that, the snap cap of the tube
was closed tightly before placing it into a sonicator for 20 min.
Eventually, the tubes were centrifuged at 13 000 rpm for
15 min. The supernatant was transferred into a syringe locked
to 0.2-μm polytetrafluoroethylene for filtering into an HPLC
vial [16].

UPLC analysis

The UPLC analysis was performed by using a Waters
ACQUITY UPLC™ system (Waters, Milford, MA, USA)
equipped with a binary solvent manager, autosampler and
photodiode-array detector (PDA). A Waters ACQUITY
UPLCTM BEH C18 column (2.1 mm × 50 mm, 1.7 mm
particle size) from Waters was chosen. The samples were
separated in the column using isocratic elution with 90%
ACN in water (containing 10% ACN); flow rate: 0.2 mL/min;
run time: 15 min. The column temperature was set at 25◦C,
and the injection volume was 7 uL. The detection wavelength
was set at 230 nm [16]. By performing triplicate injections

Figure 1 Location map of soil sample collection sites. Image from Google
Earth 2022 (viewed 6 October 2022). KB: abandoned land nearby the Bangi
commuter station (2.9008074”N, 101.7850107”E); BL: illegal trash dump-
ing site (2.9015417”N, 101.7769922”E); KU: abandoned land nearby the
Universiti Kebangsaan Malaysia (UKM) commuter station (2.9373368”N,
101.7907547”E); HK: UKM forest (2.9135556”N, 101.788083”E); PP:
Fernarium UKM (2.9232222”N, 101.782722”E).

per vial, a total of 30 chromatograms were prepared from
the 10 soil samples. Prior to statistical analysis, the pixel-
level chromatographic data were constructed into a data
matrix with 30 rows (i.e. UPLC chromatograms) and 18 000
columns (i.e. retention time, RT points). Based on preliminary
inspection, it was found that the window after 5 min showed
a minimal number of trivial peaks. Hence, it was decided that
only the sub-RT window covering 1–5 min (i.e. 4 800 RT
points) was studied.

Statistical evaluation

Five variants of BC algorithms available in the R package
“baseline” [17], as listed in Table 1, employ a different princi-
ple in correcting the baseline of the chromatograms. An addi-
tional five treated sub-dataset were created by preprocessing
the sub-RT dataset with the five BC algorithms. The impact
of the BC algorithms was evaluated using three approaches:
(i) visual inspection of the mean chromatograms; (ii) spatial
distribution of samples in scores plot of principal component
analysis (PCA); and (iii) predictive performance of partial
least squares-discriminant analysis (PLS-DA) models. All the

https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad045#supplementary-data
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statistical analyses were accomplished in the R statistical
software, v. 3.6.2 [18].

As mentioned above, each chromatogram presented 18 000
variables; thus, the chromatographic data are of high dimen-
sionality. Therefore, after comparing the treated mean chro-
matograms with the raw counterpart, the data were reduced
using PCA. The most discriminative scores plot was identified
by inspecting ten 2-dimensional scores plots deriving from
the first five PCs. PLS-DA modelling [19] was also applied
to both the raw data and treated counterparts to gain more
insights into the discriminative capability of the data. PLS-
DA deploying the naïve decision rule was employed to predict
the location of origin of soil based on the pixel-level UPLC
data. The data were first randomly split into 75% training
and 25% testing samples repeated 1 000 times. Then, the
model built using the training samples was tested using the
corresponding testing samples. The mean predictive accuracy
rate was estimated from the 1 000 pairs of training and testing
samples. Given a sub-dataset, four models were incrementally
constructed by considering the first five PLS components, i.e.
PLS1-2, PLS1-3, PLS1-4, and PLS1-5.

Results

Mean chromatograms

Figure 2 presents the mean chromatograms of the 10 soil
samples averaged by the five locations of origin deriving from
the raw data and the five baseline corrected counterparts.

Referring to the raw chromatograms alone (Figure 2A),
most peaks were unresolved and overlapped with proxim-
ity peaks, partly caused by the unstable baseline. The most
undesired baseline was seen in the BL sample; the part of
the baseline crowded by majority peaks immensely fluctu-
ated. Meanwhile, the KU sample showed the least number of
prominent peaks, denoting composed of the least number of
non-volatile organic compounds than the remaining samples.
The PP and HK were highly similar in terms of the UPLC
fingerprint. This could be explained by the fact that both are
located on the campus of UKM. Lastly, KB is readily identified
according to the prominent peak eluted ∼1.7–1.8 min.

At first glance, the most desired baseline was seen in
asymmetric least squares (AsLS) treated chromatograms
(Figure 2B). The AsLS algorithm has modified the overall

chromatographic patterns, particularly the chromatogram
of BL. Meanwhile, iterative restricted least squares (iRLS)
(Figure 2D) and median window (MW) (Figure 2E) seemed to
preserve the chromatographic pattern of BL whilst minimizing
the baseline drift though not as good as achieved via AsLS. In
particular, MW slightly outperformed the iRLS as the latter
showed a more fluctuated baseline in 1–1.5 min. Last but not
least, the other two algorithms, i.e. fill peak (FP) and modified
polynomial fitting (MPF), have not caused any improvement
to the raw data. (Figure 2C and F)

Thus, the relative performances of the MW and AsLS were
thus further elucidated based on the scores plot of PCA and
PLS-DA predictive modelling. In addition, the individual repli-
cate chromatograms of the raw, AsLS and MW treated sub-
datasets are presented in Supplementary Figures S2 and S3.

Scores plots of PCA

Next, the classification ability of the sub-dataset by the five
locations of origin was assessed through the spatial clustering
seen in the scores plot of PCA. After inspecting the 10 scores
plots constructed with the first five PCs, it was found that
only the PC1 vs. PC2 and PC2 vs. PC3 produced meaningful
separation. The remaining plots mainly showed all the sam-
ples scattered around without any clustering. Hence, Figure 3
shows only the scores plot built using PC1 vs. PC2 and PC2
vs. PC3 by the raw and five treated counterparts.

As described above, each of the five locations was repre-
sented by two soil samples of brown and yellowish-brown,
respectively. Hence, the most desired scores plot shall present
five clusters by the location of origin. Unfortunately, none of
the plot shown in Figure 3 produced five but three clusters.

Yellowish-brown BL soil was always away from the remain-
ing samples, including the brown BL soil. This is expected
since it possessed a highly individualistic chromatographic
profile (check Supplementary Figure S2). However, it was
observed to cluster with the majority of samples when
inspected through a PC3 vs. PC2 scores plot. In other words,
yellowish-brown BL soil still shares similarities with other
soils in the RT window dominating the PC2. Although the
yellowish-brown BL soil was consistently separated from
the rest regardless of the type of sub-datasets, it is worth
noting that its intra-sample variation was improved after
being processed by the five BC algorithms.

Table 1. List of baseline correction (BC) algorithms evaluated in this study.

Algorithm Description Parameters

AsLS An iterative algorithm applying second derivative constraints Second derivative constraint, lambda = 6
Weighting of positive residuals, P = 0.05
Maximum number of iterations = 20

FP An iterative algorithm using suppression of baseline by means in
local windows

Second derivative penalty for primary smoothing =3
Number of iterations in suppression loop =10
Half width of local windows = 20

iRLS An algorithm with primary smoothing and repeated baseline
suppressions and regressions with second derivative constraint

Second derivative constraint for primary smoothing = 5
Second derivative constraint for secondary smoothing = 9
Maximum number of iterations = 200
Weighting of positive residuals = 0.05

MW An algorithm finding medians in local windows and smoothing
with Gaussian weighting

Window half width for local medians = 300

MPF Polynomial fitting with baseline suppression relative to original
spectrum

Degree of polynomial = 4
Maximum number of iterations = 100

AsLS: asymmetric least squares; FP: fill peak; iRLS: iterative restricted least squares; MW: median window; MPF: modified polynomial fitting.

https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad045#supplementary-data
https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad045#supplementary-data
https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad045#supplementary-data
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Figure 2 Mean chromatograms of raw (A) and that treated by AsLS (B), fill peak (C), iRLS (D), MW (E) and MPF (F) of sub-RT window data. KB: abandoned
land nearby the Bangi commuter station (2.9008074”N, 101.7850107”E); BL: illegal trash dumping site (2.9015417”N, 101.7769922”E); KU: abandoned
land nearby the Universiti Kebangsaan Malaysia (UKM) commuter station (2.9373368”N, 101.7907547”E); HK: UKM forest (2.9135556”N, 101.788083”E);
PP: Fernarium UKM (2.9232222”N, 101.782722”E).

Next, it was observed that brown HK soil clustered with
different samples dependent on the BC algorithm. Based on
PC1 of the raw data and FP as well as MPF treated counter-
parts, it grouped with the brown soils of PP and KB. However,
it clustered with the other soils when referred to the AsLS,
iRLS, and MW treated data. In fact, the three algorithms were
shortlisted as outperforming the other two algorithms based
on mean chromatograms.

Overall, the soils seemed to cluster according to the colour
rather than the location of origin. For instance, brown soils of
three of the five locations, i.e. BL, PP, and KB, are hardly clus-
tered with the corresponding yellowish-brown soils. Whilst
the HK soils showed inconsistent intra-location variation, and
the BC algorithms governed the degree of the intra-location
variation. In contrast, brown and yellowish-brown KU
soils were always clustered together. The low intra-location
variation of KU could be attributed to the minimal human

activities. The site is a hidden abandoned area away from the
main road. In brief, the inter-locations variations of the five
groups have been swamped by the exaggerated intra-location
variations of PP, BL, and KB.

PLS-DA predictive performances

Supplementary Table 1 summarizes the mean and standard
deviation of predictive accuracy rate estimated by the training
and testing samples based on the PLS-DA models constructed
using the first five PLS components. Surprisingly, AsLS treated
data scored the lowest accuracy rates in both the samples
and the raw sub-dataset outperformed the four treated sub-
datasets. Nonetheless, the raw sub-dataset exhibited the high-
est standard deviation value denoting unstable performances
and a high risk of overfitting.

The underperformance of AsLS could be explained by
the drastic changes of the overall chromatographic patterns.

https://academic.oup.com/fsr/article-lookup/doi/10.1093/fsr/owad045#supplementary-data
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Figure 3 Scores plots of PCA showing spatial distribution of brown (squares) and yellowish-brown (triangles) soils presented by the raw and treated
counterparts. KB: abandoned land nearby the Bangi commuter station (2.9008074”N, 101.7850107”E); BL: illegal trash dumping site (2.9015417”N,
101.7769922”E); KU: abandoned land nearby the Universiti Kebangsaan Malaysia (UKM) commuter station (2.9373368”N, 101.7907547”E); HK: UKM
forest (2.9135556”N, 101.788083”E); PP: Fernarium UKM (2.9232222”N, 101.782722”E).
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In other words, the algorithm has introduced artefacts that
potentially degraded the performance of the original data.
This alarmed the users to not rely upon only the visual
exploratory tool in assessing the performance of a BC algo-
rithm and data preprocessing method in general.

In order to gain more insight into the merits of BC
algorithms in the UPLC data of soil, the modelling was
repeated with another 1 000 pairs of training and testing
samples by considering only the top three BC algorithms,
i.e. FP, MW, and MPF, together with the raw counterpart.
The mean and standard deviation of predictive accuracy rate
shown in Table 2 are presented by four models constructed
incrementally considering the first five PLS components.
Moreover, the impact of second derivative penalty for primary
smoothing in FP and window half-width for local medians in
MW were carefully evaluated by considering varying values.
The results indicated the parameters caused negligible effects
(results not shown).

As expected, prediction accuracy is improved as more PLS
components are considered, regardless of the input data.
By referring to the prediction accuracy obtained using the
training samples, one can see that MW tends to outperform
the remaining sub-datasets except when modelled using the
first five PLS components, where the raw counterpart emerged
to be the outstanding sub-datasets. Nonetheless, MW also
achieved over 0.9 accuracies. In contrast, MW consistently
outperformed the remaining sub-datasets based on the pre-
diction accuracy estimated using the testing set, which is also
associated with the lowest standard deviation values. Hence,
it is determined that MW is the excellent BC algorithm in this
study.

Discussions

UPLC, one type of liquid chromatography, was employed in
this work to obtain chemical profiles of 10 brownish soils
from five proximity locations in Malaysia. Even though they
presented different UPLC profiles allowing discrimination of
soils by the location of origin, it is seen from Figure 2 that
all the UPLC chromatograms showed varying fluctuations
on the baselines. The baseline drift could deteriorate the
discrimination of the soil samples via statistical predictive
modelling.

According to Bos et al. [17], baseline drift in liquid chro-
matography data is mainly caused by small fluctuations in

the flow rate and the mobile-phase composition; meanwhile,
drifting of baseline in a gas chromatogram principally results
from the variations in the flow rate and temperature-induced
‘bleeding’ of the column (i.e. stationary phase). Apparently,
baseline problems can be of mechanical and chemical origins.
Those arising from mechanical defects could be minimized
or removed by technical measures, e.g. cleaning the flow cell
in a UV detector [20]. However, chemical-originated defects
are hard to be controlled but could be eliminated through
a suitable BC algorithm. The BC algorithm typically aims
to improve data performance by removing uneven amplitude
shifts across the retention time of chromatograms [21].

Herein, five BC algorithms, i.e. AsLS, FP, iRLS, MW,
and MPF, in discriminating the 30 UPLC chromatograms
of brownish soils by five locations of origin were carefully
assessed via visual inspection on mean chromatograms and
scores plot of PCA as well as predictive modelling by PLS-
DA method. On the other hand, the performances of the five
BC algorithms in infrared spectral data of pen inks have been
reported elsewhere [23]. The authors concluded that AsLS, FP,
and MW algorithms outperformed iRLS and MPF algorithms.
In contrast, this work found that MW outperformed the
remaining algorithms, including the AsLS, which have often
been reported as good in correcting infrared [24] and
Raman [25] spectral data.

Mathematically, MW corrects the baseline by finding medi-
ans in local windows and smoothing with Gaussian weighting.
The merits of MW are: (i) do not need to discriminate peak
from noise; (ii) require no assumption regarding the source
or functional form of the distortion [22]. On the other hand,
AsLS is an iterative algorithm applying second derivative
constraints in removing baseline artefacts. AsLS does not
require peak finding because it sets the weights asymmetri-
cally, updated iteratively. Technically, MW relies on only one
parameter, i.e. window half-width for local medians, while
AsLS has two parameters, i.e. second derivative constraint and
weighting of positive residuals. Herein, we have not optimized
AsLS based on the two parameters but employed the default
values. Meanwhile, the only parameter of MW was assessed
carefully using three different values since no default value is
available. Hence, it seems like the underperformance of AsLS
was not purely due to the unoptimized parameters but the
inherent properties of the algorithm.

To date, the community of chromatographic users, espe-
cially UPLC data, seldom place considerable attention on

Table 2. Mean (standard deviation) predictive accuracy rate of partial least squares-discriminant analysis (PLS-DA) models estimated from 1 000 pairs of
training and testing sets.

Algorithm PLS1–2 PLS1–3 PLS1–4 PLS1–5

Training set
Raw 0.4697 (0.0694) 0.6535 (0.0639) 0.8205 (0.0674) 0.9255 (0.0573)
FP 0.4647 (0.0678) 0.7002 (0.0636) 0.8325 (0.0569) 0.9222 (0.0499)
MW 0.5637 (0.0531) 0.7380 (0.0485) 0.8311 (0.0548) 0.9088 (0.0590)
MPF 0.4667 (0.0662) 0.7045 (0.0616) 0.8315 (0.0562) 0.9175 (0.0498)

Testing set
Raw 0.3061 (0.1430) 0.5214 (0.1668) 0.7071 (0.1828) 0.7889 (0.1768)
FP 0.3214 (0.1406) 0.5464 (0.1681) 0.7746 (0.1598) 0.7880 (0.1640)
MW 0.3389 (0.1195) 0.6089 (0.1355) 0.7864 (0.1416) 0.7920 (0.1542)
MPF 0.3208 (0.1438) 0.5620 (0.1678) 0.7805 (0.1546) 0.7893 (0.1571)

FP: fill peak; MW: median window; MPF: modified polynomial fitting. Bold value denotes the most desired PLS-DA model, i.e., highest accuracy rate and
lowest standard deviation value.



FORENSIC SCIENCES RESEARCH 319

optimizing the data via BC algorithms. This could be partly
attributed to the conventional practice of deploying peak
table data rather than pixel-level data for interpretation. By
modelling the data composing only peaks selected carefully
and manually by the researchers, interferences caused by
uneven baseline can be detrimental. However, Riquelme et al.
[8] have demonstrated that an automatic analysis pipeline is
more feasible with pixel-level rather than peak table data.
Hence, this study has signified the role of BC algorithms in
processing pixel-level UPLC data.

Undeniably, the positive impact caused by the outstanding
BC algorithm, i.e. MW, seen in this work is detrimental. This
could be because the UPLC data studied herein is relatively
small. Hence, to elucidate the role of BC algorithms in pixel-
level data more clearly, future work shall attempt to evaluate
the performance of the three best-performing BC algorithms
with bigger UPLC data. Next, it is crucial to emphasize that
most BC algorithms have multiple parameter values worth
optimizing.

Conclusion

The five BC algorithms performed differently in correcting
baseline drift of the UPLC data of soils. AsLS has improved the
baseline of the raw chromatograms optimally. However, PLS-
DA modelling denoted that MW is more outstanding than
the AsLS sub-dataset. In conclusion, MW is the most desired
option for the studied data.

Acknowledgements

The authors like to acknowledge the contributions of Anas,
Ameeta, and Syahiera for performing the soil sampling,
extraction, and data collection.

Authors’ contributions

Muhamad Adibbin Ahmad drafted the manuscript. Nur Ain
Najihah Mohd Rosdi performed the statistical analysis. Nadi-
rah Binti Abd Hamid and Ab Aziz Ishak performed UPLC
analysis. Loong Chuen Lee supervised the research. Hukil Sino
conceived the experiment and the initial experimental design.
Muhamad Adibbin Ahmad, Nadirah Binti Abd Hamid, and
Nur Ain Najihah Mohd Rosdi were undergraduate and post-
graduate students, registered under the forensic science pro-
gram at UKM and supervised by Loong Chuen Lee and Hukil
Sino.

Compliance with ethical standards

Ethical approval was gained from the UKM CRIM.

Disclosure statement

None declared.

Funding

The work was supported by UKM CRIM under Grant
[GUP-2020-085].

References

1. Pye K. Geological and soil evidence: forensic applications. Boca
Raton (FL): CRC Press, 2007.

2. Fitzpatrick RW. Soil: forensic analysis. In: Jamieson A, Moenssens
A, editors. Wiley encyclopedia of forensic science. Chichester (UK):
Wiley, 2009. p. 2377–2388.

3. Salih C, Ali CK, Ismail C, et al. SEM-EDS analysis and discrimina-
tion of forensic soil. Forensic Sci Int. 2004;141:33–37.

4. Sangwan P, Nain T, Singal K, et al. Soil as a tool of revelation in
forensic science: a review. Anal Methods. 2020;12:5150–5159.

5. Xu X, Du C, Ma F, et al. Forensic soil analysis using laser-induced
breakdown spectroscopy (LIBS) and Fourier transform infrared
total attenuated reflectance spectroscopy (FTIR-ATR): principles
and case studies. Forensic Sci Int. 2020;310:110222.

6. Profumo A, Agnese G, Sonia AG, et al. GC-MS qualitative analysis
of the volatile, semivolatile and volatizable fractions of soil evi-
dence for forensic application: a chemical fingerprinting. Talanta.
2020;219:121304.

7. McCulloch G, Dawson LA, Ros JM, et al. The discrimination
of geoforensic trace material from close proximity locations by
organic profiling using HPLC and plant wax marker analysis by
GC. Forensic Sci Int. 2018;288:310–326.

8. Riquelme G, Zabalegui N, Marchi P, et al. A Python-based pipeline
for preprocessing LC-MS data for untargeted metabolomics work-
flows. Metabolites. 2020;10:416.

9. Lee LC, Liong C-Y, Jemain AA. A contemporary review on
Data Preprocessing (DP) practice strategy in ATR-FTIR spectrum.
Chemom Int Lab Syst. 2017;163:64–75.

10. Md Ghazi MG, Lee LC, Sino H, et al. Review of contemporary
chemometric strategies applied on preparing GC-MS data in foren-
sic analysis. Microchem J. 2022;181:107732.

11. Slosse A, Van Durme F, Samyn N, et al. Evaluation of data
preprocessing for the comparison of GC-MS chemical profiles of
seized cannabis samples. Forensic Sci Int. 2020;310:110228.

12. Aloglu AK, Peter BH, Saliha S, et al. Chemical profiling
of floral and chestnut honey using high-performance liquid
chromatography-ultraviolet detection. J Food Compost Anal.
2017;62:205–210.

13. Ameeta NE. Pembeza Layan Sampel Tanah Keperangan Den-
gan Menggunakan Teknik Kromatografi Cecair Berprestasi Ultra
(UPLC). [Distinguishing soil samples with reddish tones using
ultra-performance liquid chromatography (UPLC)] BSc Thesis.
Malaysia: Universiti Kebangsaan Malaysia, 2020. Malaysia.

14. Anas Z. Pembeza Layan Sampel Tanah Kemerahan Dengan
Menggunakan Teknik Kromatografi Cecair Berprestasi Ultra
(UPLC). [Distinguishing soil samples with reddish tones using
ultra-performance liquid chromatography (UPLC)] BSc Thesis.
Malaysia: Universiti Kebangsaan Malaysia, 2020.

15. Syahiera K. Pembeza Layan Sampel Tanah Perang Kekuningan
Dengan Menggunakan Teknik Kromatografi Cecair Berprestasi
Ultra (UPLC). [Differentiating soil samples with yellowish brown
tones using ultra-performance liquid chromatography (UPLC)]
BSc Thesis. Malaysia: Universiti Kebangsaan Malaysia, 2020.
Malaysia.

16. Lee LC, Ishak AA, Nai Eyan A, et al. Forensic profiling of non-
volatile organic compounds in soil using ultra-performance liquid
chromatography: a pilot study. Forensic Sci Res. 2022;7:761–773.

17. Bos TS, Knol WC, Molennar SRA, et al. Recent applications
of chemometrics in one- and two-dimensional chromatography.
Separation Sci. 2020;43:1678–1727.

18. R Core Team. (2019). R: A Language and Environment for
Statistical Computing. R Version 3.6.2 (12 December 2019). R
Foundation for Statistical Computing: Vienna. Austria. Available
from: https://www.Rproject.org/.

19. Lee LC, Liong C-Y, Jemain AA. Partial least squares-discriminant
analysis (PLS-DA) for classification of high-dimensional (HD)
data: a review of contemporary practice strategies and knowledge
gaps. Analyst. 2018;143:3526–3539.

https://www.Rproject.org/
https://www.Rproject.org/
https://www.Rproject.org/
https://www.Rproject.org/
https://www.Rproject.org/
https://www.Rproject.org/


320 Ahmad et al.

20. Agilent Technologies. Eliminating Baseline Problems. 2007.
Available from: https://www.agilent.com/cs/library/Support/Docu
ments/Baseline_problems.pdf

21. Liland KH, Mevik B-H, Canteri R. Baseline correction of spectra.
R Package ‘baseline’, Version 1.3-1, 2020. Available from: https://
cran.r-project.org/web/packages/baseline/baseline.pdf

22. Friedrichs MS. A model-free algorithm for the removal of baseline
artifacts. J Biomolecular NMR. 1995;5:147–153.

23. Lee LC, Liong C-Y, Khairul O, et al. Effects of baseline correction
algorithms on forensic classification of paper based on ATR-FTIR

spectrum and principal component analysis (PCA). Pertanika J Sci
Tech. 2017;182:767–774.

24. Lee LC, Liong C-Y, Jemain AA. Effects of data
preprocessing methods on classification of ATR-FTIR
spectra of pen inks using partial least squares-discriminant
analysis (PLS DA). Chemom Intel Lab Syst. 2018;182:
90–100.

25. Korepanov VI. Asymmetric least-squares baseline algorithm with
peak screening for automatic processing of the Raman spectra.
J Raman Spectrosc. 2020;51:2061–2065.

https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://www.agilent.com/cs/library/Support/Documents/Baseline_problems.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf
https://cran.r-project.org/web/packages/baseline/baseline.pdf

	 Comparing baseline correction algorithms in discriminating brownish soils from five proximity   locations based on UPLC and PLS-DA methods
	Introduction
	Materials and methods
	Results
	Discussions
	Conclusion
	 Acknowledgements
	Authors' contributions
	Compliance with ethical standards
	Disclosure statement
	Funding


