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Abstract: This study analyses the energy absorption and stiffness behaviour of 3D-printed support-
less, closed-cell lattice structures. The unit cell design is bioinspired by the sea urchin morphology
having organism-level biomimicry. This gives rise to an open-cell lattice structure that can be used
to produce two different closed-cell structures by closing the openings with thin or thick walls,
respectively. In the design phase, the focus is placed on obtaining the same relative density with all
structures. The present study demonstrates that closure of the open-cell lattice structure enhances the
mechanical properties without affecting the functional requirements. Thermoplastic polyurethane
(TPU) is used to produce the structures via additive manufacturing (AM) using fused filament fabri-
cation (FFF). Uniaxial compression tests are performed to understand the mechanical and functional
properties of the structures. Numerical models are developed adopting an advanced material model
aimed at studying the hysteretic behaviour of the hyperelastic polymer. The study strengthens
design principles for closed-cell lattice structures, highlighting the fact that a thin membrane is the
best morphology to enhance structural properties. The results of this study can be generalised and
easily applied to applications where functional requirements are of key importance, such as in the
production of lightweight midsole shoes.

Keywords: additive manufacturing; cellular structure; support-less lattice structure; closed-cell
lattice; hyperelastic material; 3D printing

1. Introduction
1.1. Nature and Characterization of Lattice Structures

The word cell means a small, enclosed space or compartment. Cells of different
morphology and size can cluster to form structures observed in nature. Wood, cork, sponge,
and many other naturally occurring formations are all cellular structures. Such natural
cellular structures can be found in the five ancient geometric solids called regular polyhedra
or platonic solids [1,2]. ‘Lattice structure’ is defined as a cellular structure in which an
interconnected network of surfaces repeats itself in a design space [3-5]. Hence, lattice
structures are classified as a specific type of cellular structure. The mesoscale size of a unit
cell, ranging from micrometres to one millimetre, allows lattices produced by Additive
Manufacturing (AM) to be viewed both as a structure and a material; in other words,
a “metamaterial”. Therefore, lattice structures can be considered materials in their own
right. As is well known, an AM lattice structure exhibits its own set of material properties
depending on the microstructural features of the representative unit cell [6]. All these
cellular solids can be composed to have different shapes, forms, and tesselations.
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Bhat et al. demonstrated the effect of tessellation on the mechanical and functional
property, while the morphology of the unit lattice structure was the same [7]. The cel-
lular structure based on topological space can be classified as two-dimensional (2D) or
3-dimensional (3D). Two-dimensional cellular solids are the simplest of all cellular solids,
made of a two-dimensional array of polygons that fill a design space and are extruded in
the third dimension. Such structures, for example, honeycomb lattices, have anisotropic
properties and can also be termed 2.5D structures [8,9]. Three-dimensional cellular solids
are instead polyhedral cells packed in three dimensions and can have either isotropic or
anisotropic mechanical properties [3]. Lattice structures can be designed in two ways, (a)
Truss-based [10] or (b) Plate-based [11]. By varying unit cell design parameters such as
topology (connectivity), geometry (truss/plate dimensions), and morphology, the func-
tional and mechanical properties of a lattice can be significantly affected, which would not
be impossible with the bulk constituent materials [12].

The most important structural characteristics of lattice structures are the relative
density, p*, and the relative stiffness, E", described as:

The relative density:

«_ P1
P = s @
where p; and p; are the densities of the lattice and solid, respectively, which can be expressed
in terms of the volume reduction coefficient (VRC) ¢, ranging from zero to one, where zero
indicates that the lattice is fully solid:

1
¢=1 Vs ()
and (ii) the relative stiffness E:
E= ©)
P

where E denotes Young’s modulus of the lattice. The mechanical properties of the cellular
structure can be tuned by modifying optimisation parameters such as the thickness or
diameter of the truss/surface element or size of the unit cell. Finally, to fulfil design or
functional requirements, the topologies of open-cell structures are important to consider.
A closed-cell lattice is usually designed by understanding the functional requirement of
an open-cell lattice, which can be transformed into a closed-cell structure by closing the
openings with thin or thick walls such that the functional requirements remain unchanged.
In this case, two important design principles arise for closed-cell lattice structures:

L. open-cells are closed with a relatively thin solid wall/membrane
II.  open-cells are closed with relatively thick solid wall/membrane [3,5,13]

These two principles can be employed to produce both local and global closed-cell
lattice structures [14,15]. Local closed-cell lattice structures have fully closed unit cells that
are tessellated in the design space. In contrast, global closed-cell lattice structures have
open unit cells tessellated in the design space but enclosed from the outside.

1.2. Thermoplastic Polyurethane for Additive Manufacturing

Additive manufacturing considered sustainable technology could mitigate the effect
of future climate change with distributed manufacturing and lattice structure that could
help build parts lightweight with high speed [16,17]. The impact of additive manufacturing
and its material development is seen in various fields, such as photopolymerization of the
polymer under visible light [18,19]. Additive manufacturing of thermoplastic polyurethane
(TPU) material is increasingly used in industrial fields, such as footwear, automotive, and
aerospace, owing to its biodegradable nature, abrasion resistance, flexibility, and energy
absorption capability [13,14]. Printed TPU does not exhibit intuitive behaviour due to its
hygroscopic, viscoelastic and hyperelastic nature [20]. In order to understand the complex
behaviour of this material, finite element (FE) modelling has been employed in parallel
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with experimental investigations. Designed structures are produced by AM via a material
extrusion process (MEX) with a TPU filament of known nominal mechanical properties.
Three-dimensional printing of this hyperelastic polymer with an open-source MEX process
is challenging due to the viscosity and low Young’s modulus of TPU. Common problems in
printing with flexible/soft filaments are frequent, including buckling and kinking, slippage
of the filament in the feed module, clogging of the nozzle and absorption of moisture from
the atmosphere. This study has minimised above problem by two ways:

I Design of support-less continuous surface-based lattice structure. This type of design
can eliminate the requirement of filament retraction during printing. Repeated retrac-
tion of filament is normally seen during printing truss-based lattice structures as these
are non-continuous surfaces.

II  Printing process parameter optimization. The retraction is not allowed as this is
a major problem during soft-material printing. Repeated retraction is responsible
for buckling, kinking, and filament slippage in the feed module. The hygroscopic
nature of TPU is minimised by keeping the filament in the dry box during the 3D
printing process.

At the same time, numerical analysis and matching the hysteresis and energy absorp-
tion of printed TPU is also very difficult due to variability of the resulting properties and
anisotropy introduced by the layering nature of the process [21,22].

1.3. Analysis of Cellular Structures

The selected open and closed-cell lattice structures considered in the present work,
bioinspired by the sea urchin (SU), have excellent functional and mechanical properties
and can be successfully fabricated without support with the MEX process [15,16]. Recently,
many researchers have used bioinspiration to design lattice structures for energy absorption
applications [23]. Ha et al. designed a novel bioinspired honeycomb structure for energy
absorption for lightweight panels [24]. The SU exhibits remarkable mechanical properties
driven mainly by its structural morphology, exhibiting relevant functional and mechan-
ical properties such as energy absorption and stiffness. Further, by designing the lattice
structures for support-free printing, requirements for support structures for primary or
secondary material within the lattice are eliminated, resulting in a considerable advantage
in terms of cost and production time [25]. This can be performed with the MEX process,
requiring no essential post-print operations to remove support structures from closed cells.

This study wants to analyse the relationship between specific design features and
functional and mechanical properties of this kind of cellular lattices made in TPU. Relevant
industrial applications are detectable, as the development of products based on filled or
unfilled closed-cells. Where functional requirements are key considerations, such as per-
sonal protection gears, customized shoe midsoles, and other lightweight, high-performance
panel or layer components.

2. Materials and Methods
2.1. Design of Closed Lattice Cell

The unit cell is the basic building block of a lattice structure. The topology of a unit
cell characterises each lattice structure in determining its functional properties. The first
step in the design phase is to select an imaginary rectangular prism or voxel of dimensions
X XY x Z, which acts as a bounding box for the unit cell. Values of X, Y, and Z may vary
based on design specifications. Inside this bounding box, the plate/shell is connected or
intersected to form the morphology of the unit cell according to the design requirements.

The design phases of the unit cell inspired by SU morphology having organism level
biomimicry are illustrated in Figure 1. Based on this geometry, a local closed-cell lattice
structure was developed. The lattice structure was supportless based on generating a
primitive surface patch in Matlab 2021b©. These surface geometries were exported in Creo
Parametric© environment for converting them to solid by adding and trimming material
in the outer direction for the final local closed-cell design, as shown in Figure 1 [14,26].
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Figure 1. The biomimetic local closed-cell lattice structure based on SU morphology (a) SU morphol-
ogy (b) primitive patch (c) primitive patch developed by boundary equation (d) surface generation
on the boundary equation and mirroring of this surface patch for final design in Creo (e) final design
of supportless open-cell lattice structure in Creo parametric (f) closed-cell designed by closing the
openings of the open-cell lattice structure.

The boundary equations defining the surface patch are described in Equations (4)—(9).

Curve 1: Z = Oplane: (x—a)*+ (y—a)® = (a/2) 4)
Curve 2: X = aplane: 12 +2 = (a/2)* ()
Curve 3: Y =0plane: (z—a)*+ (x —a)* = (a/2)* (6)
Curve 4: Z=aplane: x*+y* = (a/2)* (7)
Curve 5: X =0plane: (y—a)>+ (z—a)* = (a/2)? (8)
Curve 6: Y = aplane: z%+x% = (a/2) )

The openings shown in Figure le were then closed with thin and thick walls to
understand the effect of their presence on stiffness and energy absorption, representing the
main mechanical and functional properties of such structures. The thin wall was designed
with a lower thickness than that of the open-cell shell. The thick wall was instead designed
with a greater thickness than that of the open-cell shell, as illustrated in Figure 2 and
Table 1. The third step in design is the tessellation of the unit cell with the concept of
periodic tessellation having a unary connection of edge-to-edge type. Each unit cell shared
a complete edge (open or closed) with their adjacent lattice for uniform load transfer. In this
way, there was no bridge between adjacent unit cells [17], allowing supportless printing of
lattice structure with the MEX process, as shown in Figure 2.
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Wall or

Shell membrane

Figure 2. Designed model (a) open-cell lattice (b) thin-walled closed-cell lattice (c) thick-walled
closed-cell lattice.

Table 1. Parameters of analysed lattice structures.

Specimen/ Open Shell Closing Wall VRC

Cell Structure Material Unit Cell Size Thickness (T) Thickness (Tyw) ¢ (%)
(mm) (mm) (mm)

Open-cell 1.2 - 56.9

Thin-walled TPU P37 x 16/8 x 8 x 8 1.0 0.6 57.0

Thick-walled 0.66 1.2 56.6

The final step comprised of completing tessellation of the lattice structure over the
entire design space, which was chosen to be a cylindrical specimen. This procedure
was very challenging due to overhangs of the lattice truss/plates near the boundary of
design space, leading to failure of the printing process. The behaviour of both open and
closed structures was then characterised and directly compared with experimental and
numerical methods.

2.2. Additive Manufacturing

The designed lattice structures were optimised using the “design for additive man-
ufacturing and post-processing” (DfAM&PP) concept for the MEX/FFF process (Flash-
forge dreamer®©, Jinhua, China). DFAM&PP focuses on four crucial design parameters
for successful printing of supportless structures, including minimum feature size, min-
imum thickness, minimum overhang angle, and minimum parallel ledges [27-29] (see
Figure 3). These parameters differ according to the material, process, and 3D printer used
for manufacturing.
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Figure 3. Four parameters considered within design for additive manufacturing and post-processing
(a) minimum feature size (b) minimum wall thickness (¢) minimum overhang angle (d) minimum
bridge length.

The optimised MEX process for defect-free printing of TPU was characterised by
a minimum feature size of 6 X 6 x 6 mm (Figure 3a), a minimum thickness of 0.2 mm
(Figure 3b), and a minimum overhang angle of 50° (Figure 3c). As shown in Figure 3,
no parallel ledges or bridges were printed, thus requiring no continuous support during
fabrication. For each type of lattice structure, including open-cell and thin and thick-walled
closed-cell structures, three specimens were printed with the parameters listed in Table 2.
No special filament extruder was employed for the fabrication of the parts in TPU.

Table 2. MEX parameters used for printing all lattice structure and dog-bone samples with
TPU filament.

Extruder Extruder Platform Layer . .
. . Infill Print Speed
Diameter Temperature  Temperature Thickness (%) (mm/min)
(mm) (W) (WO (mm)
0.4 230 70 0.2 100 1100

Figure 4 shows all the manufactured parts, with the red arrow representing the printing
direction in all cases. Particular attention was paid to the ambient temperature, which
was maintained between 22 and 25 °C. No post-process was performed on the printed
lattice structures.
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FIin < Posesd

=

Figure 4. AM using MEX process: (a) thick-wall closed-cells; (b) thin-wall closed-cells; (c) open-cells.
The arrow represents the build direction.

2.3. SEM Measurements

Defects such as sagging, distortion, improper layer adhesion, and porosity can change
the mechanical and functional properties of 3D-printed lattice structures. The presence
of such defects in the printed sample, both in the longitudinal and lateral directions, was
observed using a JOEL JSM-6390LV, Japan, scanning electron microscopy (SEM). Each
specimen was subject to titanium dioxide sputtering in both exposed surface directions to
make the polymer surface conductive.

3. Experiments and Simulation
3.1. Experiments

A standard monotonic compression test at a constant strain rate is usually employed
for the mechanical characterisation of MEX-fabricated structures. With this relatively simple
test, the load-deformation and equivalent stress—strain behaviour can be determined and
compared up to the densification regime. Owing to the hysteretic viscous behaviour of TPU,
the load should be applied cyclically at least 10-20 times to evaluate the energy absorption
of this material [30,31]. The stabilised cycle must then be analysed based on the area under
the load curve in the hysteresis plot.

In this work, uniaxial compression tests were performed at a 5 mm/min strain rate
using an MTS 104 pneumatic electromechanical material testing system equipped with a
10 kN load cell. Compression was performed at three levels, including 10, 20, and 30% of the
sample height, /iy, perpendicular to the printing layer direction. Load-displacement curves
were obtained, from which the classical stress—strain relationship and energy absorption,
W,, were calculated according to the following equations [3]:

P
= 1
ON,c AO,eq ( 0)
\%
AO,eq = }Tg = (1 - ¢)h% (11)
u
ENc = h*; (12)
€=¢€04
W, :/ ON cEN A€ (13)
e=

where P and oy are the compressive loads and nominal stress, Ay, is the equivalent
cross-sectional area of the lattice, 1, and ey . are the displacement and nominal compressive
strain, and W, is the energy absorbed per unit volume. The stiffness of the specimen was
calculated by interpolating the slope line over the load portion. The energy loss area was
calculated after 20 loading cycles with the stabilised curve.
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3.2. Simulation

The simulation approach was based on the analysis of a unit cell for each different
type of 3D-printed lattice structure to characterise the behaviour of the entire structure, as
shown in Figure 5. With this approach, the unit cell was a representative volume element
of the full structure. Hence, it could be repeated without any limit over three dimen-
sions to constitute a lattice structure. With this approach, correct boundary conditions,
mechanical properties, and deformation behaviour of cells can be easily and quickly inves-
tigated, saving computational time. Different geometric configurations can be analysed
and compared without needing to produce and test them all experimentally. Optimisation
problems are also solvable with reasonable calculation resources. Morphological features
are typically given as variable parameters in optimisation runs aiming to maximise a struc-
ture’s performance in terms of given properties such as the specific stiffness. In this work,
two variable parameters were chosen for analysis: the wall and shell thicknesses, T;, and
T = Ry — Ry, respectively.

A
R

7a

W,

Figure 5. FE models of open, thin- and thick-walled closed unit cells.

The Abaqus/CAE® 2022 (6.20) software suite was used for numerical simulation. The
models were developed by importing CAE generated solid models into the software. The
meshing of the solid cells was performed by an automatic algorithm based on the inner
growth option. Meshing was performed on a test model adopting a convergence criterion
of 1% deviation in stiffness. Linear solid tetrahedral elements with a hybrid formulation
and a characteristic dimension of 0.8 mm were used, resulting in 1111-1441 nodes and
4189-5847 elements depending on the geometry.

Simulations were performed using the large deformation option in the explicit solver
within the software. Movement of a rigid analytical surface at the top of the cell was
imposed, with a small sliding option at the surface’s contact. Contact was governed by a
friction coefficient of f = 0.1, as results had been found to remain largely invariable for
values between 0.05 and 0.3. Periodic boundary conditions were applied to the unit cell
faces to fully reproduce the actual deformation behaviour. Specifically, periodicity was
applied to the displacement of nodes on the cell-free faces with the ABAQUSO equation
option. The studied FE unit cell models are shown in Figure 5.

The numerical results yielded ‘RF;” as the reaction force at Nc due to the compressive
displacement of constrained nodes in the z-direction, from which the load curve and cell
stiffness, Ky, were obtained according to the following relations:

NC,z
Fr = Y_ RF,; (14)
i=1
F(z) =Koz+q forz e [O, Z|Fmax:| (15)

The total reaction force, Fr = f(z), was interpolated with a linear function over the com-
pression strain range up to Fj;ux, from which the stiffness was calculated using Equation (15).
The stiffness of a lattice structure with certain dimensions can be estimated in a simple
manner. From the data obtained for the unit cell, an equivalent, homogeneous virtual
material was defined, characterised by stiffness based on the resulting section-to-length
ratio. Finally, by applying 20 cycles of compression release, the numerical hysteresis loop
was plotted. This was performed to ensure that steady-state hysteresis was reached, which
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Energy

was generally the case after 15 cycles. For the purposes of analysis, data relating to the
twenty-first cycle were taken into consideration. Energy absorption was determined as the
integral of the load-displacement graph, as shown in Figure 6. The percentage coefficient
of absorbed energy was calculated as:

W

Q I W2

21 (%) (16)
where Wj and W, are the absorbed and total energy, respectively. The total energy was
defined as the sum of the absorbed and released energy during the 21st cycle of the unit
cell. During the experimental phase, the behaviour of each cell was analysed at 20% and
30% deformation.

Hysteresis 21 cycles (Integral) s 21st cycle (Integral)

/W2

14 1
12 1

10 |

II'HE

Energy
(o]

0.0 0.2 04 0.6 0.8 0.0 0.2 04 0.6 0.8
Displacement Displacement

Figure 6. Schematic of numerical calculation of absorbed energy.

3.3. Material Model

TPU is a complex material exhibiting hyper-elastic and viscoelastic properties [20].
In addition, fused filament fabrication (FFF) produces an anisotropic, layered material
structure that is usually no more than half as strong in the tangential direction than it is
in the transversal direction [32]. By comparing a tensile test of the ASTM D638 Type 4
dog-bone sample with the different strain energy potential models offered by Abaqus®, it
turned out that the second-order Ogden model better reproduced the experimental tensile
curve in the stretch of deformation of interest, as shown in Figure 7. Following the Ogden
formulation, the N-order polynomial strain energy potential U%f is expressed as follows:

def L2 (s s N1
u :Z?(A1+A2+A3 3)+ Y 55U = 1) (17)
i=1 " i=1 "1

where A; is the deviatoric stretch, J, is the elastic volume ratio and a;, y;, and D; are
material model parameters reported in Table 3. Hysteretic behaviour, responsible for energy
dissipation under repeated cyclic loading, is modelled within ABAQUS®©. The mechanical
response is made up of an equilibrium part following stress relaxation after a long time
(network A) and a non-linear, time-dependent function that produces a perturbation from
the equilibrium state (network B). The model considers the total stress as the sum of the
network A and network B stresses. In mathematical terms, the effective creep strain rate in
network B (ég) is given by Equation (18):

€y = A[AY — 1+ E]|(0p)" (18)

where A — 1 and o are the nominal creep strain and effective stress in network B, respec-
tively. Five parameters fully define the material model. These include the stress scaling
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factor (S), which is the ratio of the network B and network A stresses under instantaneous
loading, the exponent m, which is generally greater than one and expresses the network B
stress dependence of the steady-state creep strain rate, the exponent C [—1, 0], which char-
acterises the network B creep strain dependence of the creep strain rate, and the constants A
and E, which characterise the effective creep strain rate. The network B stress scaling factor
and creep parameters, together with an optimisation procedure for FE modelling of cylin-
drical specimens subject to compression loading, were selected based on the literature [20].
The chosen parameters are indicated in Table 4.

30

20 1

10

Nominal stress (MPa)

Ogden N2 UNIAXIAL TPU
e Test Data UNIAXIAL TPU

-20 ++ T T T T T T T
0 2 4 6 8 10 12 14 16

Nominal strain (mm/mm)

Figure 7. Experimental and Ogden model (N = 2) behaviour for the employed TPU.

Table 3. Ogden material model parameters for the employed TPU.

Order Hi o; D;
1 0.4055 2.4580 6.1616 x 1073
2 6.1298 —1.9004 0.0000

Table 4. Hysteresis parameters for the employed TPU.

A
S (s-1MPa—m) m C E
22 0.556 4.0 0.0 0.01

The employed hysteresis model allowed not only strain-dependent hysteresis loops
during unloading to be reproduced but also the permanent deformation after each compression-
release cycle. This made it possible to determine the energy absorption per cycle, as
shown previously.

4. Results
4.1. SEM Analysis

SEM images of the fabricated open-cell and thin and thick-walled closed-cell lattice
structures are illustrated in Figure 8 in both the longitudinal (LD) and transversal (TD)
directions. The printed open-cell lattice topology in the LD (Figure 8a) did not exhibit
imperfections such as sagging, distortion, layer peeling or porosity. A few microscopic
pores between the layers were instead present in the TD, as seen in Figure 8d. After careful
analysis, it was found that the presence of these pores, due to air bubbles or under-extrusion,
did not adversely affect the structural performance of the TPU-printed open-cell structures.
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x27

500pm

500pm

500pm

500pm NTUST

NTUST

X30  500pm NTUST

NTUST xX27 500pm N S X27 500pm NTUST

Figure 8. SEM images of the TPU layer deposition in both longitudinal direction (LD) and transversal
directions (TD) (a) open-cell LD direction no defects are observed (b) thin-wall LD under-extrusion
layer deposition is observed (c) thick-wall LD no defects are observed (d) in open-cell TD random
micro-pores encircled with red colour is observed (e) continuous micro-pore encircled in red colour
are seen in thin-wall TD (f) In thick-wall TD too micro-pores are observed.

Longitudinal pores in the print direction were observed on the surface in both the LD
and TD for the thin-walled closed-cell lattice structure (Figure 8b). In the TD, microscopic
pores between the two layers of the outer and inner walls were present, as can be seen in
Figure 8e. These microscopic pores were observed in a linear pattern up to the end of the
thin wall. This effect was due to the under-extrusion of the material from the nozzle during
the printing of this thin layer. Unlike the thin-walled structures, no longitudinal pores or
layer peeling in the print direction were observed in the thick-walled structures, as seen
in Figure 8c. In the TD, continuous microscopic pores were present in the inner and outer
layers of the thick-walled lattice structure, as can be observed in Figure 8f. This was due to
the small gap left during the connection of the infill to the boundary wall layer. However,
these microscopic pores did not significantly affect the thick-walled closed-cell structural
performance [15].
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4.2. Functional Response of Structures

Figure 9 shows images of the specimens tested at the three considered levels of com-
pression. As can be observed, 30% compression led to a very large degree of deformation
with barrelling and densification of the specimens. The obtained hysteresis curves are
shown in Figure 10 for the various tested levels of deformation, while the full set of results
is shown in Table 5. Based on these outcomes, it can be observed that the mechanical
and functional properties of the open-cell and thin-walled closed-cell structures exhibited
comparable behaviour in terms of stiffness and energy absorption.

Thick walled cell g .
0% 10% 20% 30%

Figure 9. Images obtained during compression testing of all printed lattice structures.

1
30%
075 | /
=
£,
s 987 10%
©
(o]
-
I —Open cell
0.25
r —Thin section
—Thick section
o 1 1 1 1 1
0 1 2 3 4 5 6

Displacement (mm)

Figure 10. Experimental load-displacement curves.
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Table 5. Experimental and simulated lattice structure stiffness and energy absorption.

Lattice 3
Structure Ko (N/mm) We (J/m3) Qc (%)

en,c (%) 10 20 30 10 20 30 10 20 30

Exp FEA Exp FEA Exp FEA Exp FEA  Exp FEA Exp FEA Exp FEA  Exp FEA Exp FEA

Open-cell ~ 331.0 3353 2203 2358 1655 171.0 758 121 2773 832 5961 2512 214 70 229 153 249 231
Thin-wall 3360 2646 2192 2123 1617 1614 684 1.08 3272 1333 6152 4823 200 43 231 154 246 267
Thick-wall 278.9 279.7 1819 2311 1375 188.1 6.35 098 2504 1206 5711 49.13 20.4 3.9 23.5 13.7 26.4 25.5

In contrast, thick-walled closed-cell structures exhibited a 20% reduction in perfor-
mance. In general, the stiffness of the considered hyperelastic polymer material appeared
to decrease with increasing deformation. At low strain levels, all tested samples exhibited
high levels of resilience; however, as deformation increased, the stiffness decreased.

In relation to the FE simulations, unit cells with applied periodic boundaries (see
Figure 11) exhibited very similar behaviour to the experimental outcomes both in terms of
stiffness and energy absorption, even if a clear deviation was evident at low strain levels.
The deformation behaviour, i.e., logarithmic strain in the compression direction of open-
cell (Figure 11a), thin wall (Figure 11b) shows barrelling whereas thick wall (Figure 11c)
negative barrelling effect is seen.
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Figure 11. Unit cells 30% deformed: Von Mises equivalent stress, Principal and compressive strains
€27. The deformation behaviour of open (a), thin (b) shows barrelling, whereas thick wall (c) negative
barrelling effect is seen.

A plot comparing numerical and experimental data is shown in Figure 12, where it
is clearly visible how the open and thin-walled closed-cell structures exhibited a similar
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mechanical response in terms of stiffness and energy absorption. On the other hand, results
differed for the thick-walled closed-cell structures.
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Figure 12. Experimental and numerical results.

5. Discussion
5.1. Mechanical Properties

As discussed previously, the stiffness of the printed TPU lattice structures decreased as
the degree of compression increased, with little variation in initial response between each
cell type. It is important to note that the open-cell structure had no walls, with material
concentrated at the ribs. As the cell ribs were free to bend more easily than the walls during
compression tests, they could better withstand the load. Therefore, the open-cell structure
possessed material where it was most useful, with the ribs providing the most geometrically
efficient topology. This consideration, however, was no longer valid for high strain levels
where they caused significant deformation at the beginning of the densification regime.

The results of FE simulations were in agreement with experimental outcomes for the
open-cell structures, while the stiffness of the closed-cell structures was overestimated. It is
likely that the thick-walled structures shrunk in the transversal direction, which will be
discussed in more detail below.

Experimental values of the energy absorption coefficient, (), exhibited low sensitivity
to the level of deformation, ranging from 20-25% for 10-30% compression. These values
were in accordance with previous findings by the same authors for similar relative densi-
ties [25]. The numerical approach using FE software considered lower dispersion of the
deformation energy at low levels of compression, giving rise to evident differences in the ex-
perimental results. The hysteretic material model was certainly responsible for this effect as
it was calibrated for a given deformation range and did not consider dependence on other
parameters such as the temperature. Moreover, although strain rate effects were considered
within the numerical model, it is likely that they require further dedicated testing. Finally,
since results were obtained by homogenisation of the response of a single cell, the numer-
ical models with boundary conditions failed to reproduce the real contact state between
closed-cell walls, which may have drastically reduced the deformation. In relation to this
aspect, Figure 13 displays an analysis of the samples’ simulated and experimental radial
dilatation. From this analysis, it is possible to determine that the numerical simulation:

- was accurate for the closed thick-walled structures;
- overrated the thin-walled structures by a factor of 1.25;
- underestimated the open-cell structures by a factor of 1.5.

The observed behaviour, which was in contrast with the stiffness prediction, did not
significantly change with variations in friction coefficient over the range considered within
the investigation (f = 0.05-0.3).
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Figure 13. Experimental and numerical radial dilatation of specimens.

As discussed in detail below, this effect may have been due to anisotropy between
material layers, with elastic constants being different between lattices. However, the
study shows that it is possible to compare the behaviour of different lattice structures
via FE modelling prior to conducting experiments. Despite the sophistication of the
material model, numerical analysis can be an effective virtual design tool to study the
maximum variation in load response of unit cells for different geometries and identify and
optimise performance.

5.2. Effect of AM Process

Specimens obtained with the MEX process were generally non-uniform at different
levels, as observed during SEM analysis. Anisotropy in elasticity and strength was also
readily observed. More broadly, numerous process parameters that adversely affect the
mechanical properties of the final printed polymeric object were highlighted and are
summarised below:

Pores: additive manufacturing of TPU filament with MEX often left pores between
layers, which was due to the hygroscopic nature of TPU, under-extrusion of material while
printing thin sections or retraction of the filament into the nozzle during printing [26-28],
as can be seen in Figure 8.

Building orientation: some compression tests performed on the MEX-printed samples
exhibited different values of failure load depending on how the load was applied with
respect to the deposition plane, with horizontal orientation leading to a higher strength than
vertical orientation [33-35]. Building orientation had a significant effect on the difference
between FE results and experimental outcomes.

Temperature: the difference in temperature between adjoining layers during solidi-
fication of the filament caused residual stress, shrinkage and distortion of the fabricated
part. The temperature difference between the build chamber and filament, therefore, had a
significant effect [36,37].

These effects appeared to be amplified in the thin-walled structure, which was charac-
terised by the minimum printing thickness. A higher concentration of micro-voids occurred
in layers during printing, as seen in Figure 8b,e, drastically reducing the ability of this
structure to withstand loads [15,38]. Lattice structures obtained with the MEX process were,
therefore, already very sensitive to process parameters used during the 3D printing phase.
In relation to the compressive mechanical response of polymeric samples obtained via the
MEX process, a comprehensive review of the literature over the last two decades, starting
from 1996 [38], revealed that the process is influenced by the raster orientation (transverse,
axial), air bubbles or gaps, layer width, model temperature, layer thickness, building orien-
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tation, raster angle, raster width, and infill (low, high, double dense, solid) [39]. Therefore,
it is possible to state that the combined effect of these parameters, the material, processing
conditions, and environment greatly influence the final response of the printed product.
This is of considerable importance for appropriate analysis of the numerical results by
considering the combined effect of all possible conditions that alter the mechanical response
of printed samples.

5.3. Effect of Hyperelasticity, Suggestions Relating to Design

The compressive behaviour of the open and thin-walled closed lattice structures was
similar in terms of mechanical and functional properties; however, the performance metrics
of the thick-walled results were 20% lower. This was in contrast with previous results
obtained by the same authors for closed-cell lattice structures printed with PLA filaments,
where the best response in terms of stiffness and energy absorption was obtained with a
thin-walled structure compared to other geometries [14].

For lattice structures printed in TPU, a thermoplastic elastomer [20,40], the stiffness
was only slightly affected by the shell thickness. The open-cell structure was 1.2 mm thick,
the shell thickness of the thin-walled closed structure was 1.0 mm (0.6 mm for the walls),
and the shell thickness of the thick-walled closed structure was 0.66 mm (1.2 mm for the
walls). Since the flexural stiffness D of a shell is proportional to its thickness T,

D« E-T? (19)

A variation =+ of 70% was expected between the lattices if the walls do not bend, or a
variation of 40% was expected if the walls do bend. None of these extreme bounds was
met. Because of the extended strain range for TPU, which is an elastomer, the compression
of such structures can extend to very high levels. Thus, the bending of cell ribs and
the closing of walls became strongly non-linear both geometrically and in terms of the
material response.

It is possible that the ribs and walls unevenly supported bending, as the material was
distributed to achieve constant density. Figure 14 displays the strain in the vertical direction
(load direction), &y, for the ribs and walls at 10-20% to 30% compression levels. It is evident
that the ribs were only subject to tensile loading for the open and thin-walled cells at the
extrados. As the wall thickness increased, bending decreased both in the ribs and walls,
as shown in Figure 11. Moreover, the open-cell structure was more efficient in bending.
If the compressive strain is subtracted and the thickness considered, an equivalent non-
dimensional bending moment M, can be calculated considering the strain gradient across
the sections, yielding the results plotted in Figure 15. Here, the individual contribution
of the ribs and walls (when present) can be appreciated, showing that walls increasingly
supported bending, unloading the shell, as their thickness increased. However, bending
in the two closed-cell geometries was always less than that occurring in the open-cell
structure. This can explain the observed difference between the predicted and observed
stiffness, supporting the hypothesis that the deposition process had a strong influence on
the mechanical properties, accentuated at large thickness.
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Figure 14. Strain in ribs and walls at the intrados and extrados of the cell structures.
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Figure 15. Comparison of bending load in the ribs and walls of the structures.

6. Conclusions

The properties of lattice structures with open-cells and thin and thick-walled closed-
cell geometries printed in TPU via MEX have been investigated. Wall thickness, useful
for designing closed unit cells from open topologies, was analysed in terms of its effect on
the functional and mechanical properties. Extensive laboratory testing and sophisticated
numerical modelling were performed to investigate the determinant design features for
optimising structural performance. The mechanical and functional properties of the lattices
were found to exhibit unintuitive behaviour, from which new design considerations could

be drawn:

- AM of TPU allows closed-cell lattice structures to be designed that mimic the sea
urchin and behave as non-linear springs with excellent energy absorption properties;
- closed cells with thin walls are more effective for optimising mechanical and functional-
properties compared to those with thick walls. Hence, a closed-cell lattice structure
should be designed with a thin wall to maintain or enhance an open-cell lattice
structure’s mechanical and functional requirements;
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- FE simulations can be employed to reveal manufacturing defects, including the fact
that printed TPU samples are anisotropic, with the degree of anisotropy depending
on the level of deformation;

- strong interaction between the layering process and structural properties must be
considered during the design phase of lattice structures produced via MEX.
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