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Minocycline targets multiple secondary injury 
mechanisms in traumatic spinal cord injury

Introduction
Traumatic spinal cord injury (SCI) causes deleterious 
functional loss below the level of injury. The initial trauma 
results in rapid hemorrhage and cell death, and offers little 
opportunity for therapeutic intervention. Following the 
initial trauma, secondary injury cascades occur, causing 
widespread and persistent inflammation and progressive tis-
sue loss. During this stage, lesions can become many times 
larger than the initial injury (Fitch et al., 1999; Rossignol et 
al., 2007; Fehlings and Nguyen, 2010). Therapies that can 
inhibit secondary injury progression thus offer a promising 
and clinically viable approach to reduce tissue damage and 
functional deficits following SCI. 

Many mechanisms contribute to the secondary injury, 
including inflammation, cellular damage from free radicals 
such as reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), glutamate exitotoxicity, calcium influx, isch-
emia, hemorrhage, and edema (Oyinbo, 2011). However, 
most current therapies only target one or a few elements of 
the secondary injury mechanisms, and have been largely un-
successful in clinical trials (Thuret et al., 2006; Lammertse, 
2013; Varma et al., 2013). 

Minocycline hydrochloride (MH), a semi-synthetic 
tetracycline derivative, is a clinically available antibiot-
ic and anti-inflammatory drug that also exhibits potent 
neuroprotective activities. It can potentially target a broad 

range of secondary injury mechanisms, and protect neu-
ral tissue from multiple neurotoxic insults after SCI, via 
its anti-inflammatory, anti-oxidant, and anti-apoptotic 
properties (Stirling et al., 2005; Elewa et al., 2006; Sapadin 
and Fleischmajer, 2006; Plane et al., 2010; Ghazali et al., 
2016; Chin et al., 2017). MH has been shown to (1) inhib-
it inflammatory processes contributing to progression of 
secondary injury (Lee et al., 2003a); (2) protect neurons 
from oxidative stress and scavenge free radicals (Lee et al., 
2003a); (3) inhibit inducible nitric oxide synthase (iNOS) 
that produces nitric oxide (NO) (Amin et al., 1996); (4) 
prevent glutamate-induced apoptosis of neurons (Pi et al., 
2004); (5) prevent N-methyl-D-aspartate (NMDA)-induced 
excitotoxicity by diminishing NMDA-induced Ca2+ influx 
and mitochondria Ca2+ uptake (Garcia-Martinez et al., 
2010); (6) prevent apoptosis by inhibiting mitochondrial 
cytochrome c (CytC) release after SCI (Teng et al., 2004); (7) 
inhibit oligodendrocyte apoptosis and improve functional 
recovery after SCI (Stirling et al., 2004); (8) protect grey 
and white matter from spinal cord ischemia (Takeda et al., 
2011); (9) protect neurons from hemorrhage-induced tox-
icity (Takeda et al., 2011); and (10) protect blood-brain bar-
rier and reduces edema following intracerebral hemorrhage 
(Wasserman and Schlichter, 2007). Thus, MH can serve 
as a multifaceted agent that targets multiple mechanisms 
contributing to secondary injury and has great therapeutic 
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potential for the treatment of SCI. 
Although there is a wealth of evidence supporting the 

efficacy of MH treatment following SCI in animal models, 
a comprehensive discussion of the multiple mechanisms of 
action within this context is missing. The mechanisms of 
action can be classified into three categories: (1) anti-inflam-
matory activity; (2) anti-oxidative activity; and (3) direct 
neuroprotective activity. In this review, we discuss the possi-
ble mechanisms by which MH exerts these effects to reduce 
secondary injury after SCI.

Mechanisms of Anti-Inflammatory Activity
Inflammation is a key mediator of secondary injury pro-
gression in SCI. Following initial injury, resident microglia 
become activated to pro-inflammatory phenotypes, while 
blood-borne factors and leukocytes infiltrate the spinal 
cord tissue (Byrnes et al., 2006; Zhou et al., 2014). In the 
mileu of cellular signals that follow, a complex network 
of cross-talk is established among recruited peripheral 
leukocytes, resident microglia, and astrocytes, resulting in 
further upregulation of neurotoxic and pro-inflammatory 
cytokines and chemokines (McTigue et al., 1998; Gonza-
lez et al., 2003; Pineau and Lacroix, 2007; Stammers et al., 
2012); increased production of cytotoxic ROS/RNS (Xu et 
al., 2005; Cooney et al., 2014); upregulation of regenera-
tion-inhibitory molecules including proteoglycans and the 
myelin-derived inhibitors Nogo-A, myelin-associated gly-
coprotein (MAG), and oligodendrocyte myelin glycopro-
tein (OMgp) (Filbin, 2003; Schweigreiter and Bandtlow, 
2006; Yiu and He, 2006; Dou et al., 2009); and formation 
of the inhibitory glial scar (Pekny and Nilsson, 2005; Yiu 
and He, 2006). While inflammation has also been shown 
to promote clearance of debris and regeneration following 
SCI (David et al., 2012), therapeutic strategies that miti-
gate inflammation have been shown to promote cell sur-
vival and functional recovery after SCI (Lee et al., 2003a; 
Stirling et al., 2004; Wang et al., 2017), probably because 
inflammation is excessive at least at the acute stage (Gen-
sel and Zhang, 2015). MH has been found to modulate 
inflammation through a number of pathways—a detailed 
illustration is presented in Figure 1.

Regulation of pP38 mitogen-activated protein kinase 
(MAPK) and phosphoinositide 3-kinase (PI3K)/Akt 
inflammatory signaling pathways
Inflammation is associated with activation (phosphory-
lation) of p38 MAPK (Figure 1), a protein kinase with a 
number of pro-inflammatory downstream effects (Yang et 
al., 2014). Activation of p38 MAPK results in activation 
and/or nuclear translocation of pro-inflammatory tran-
scription factors, including nuclear factor kappaB (NF-κB) 
(Olson et al., 2007), lipopolysaccharide-induced tumor ne-
crosis factor-alpha factor (LITAF) (Ceccarelli et al., 2015), 
Nur77 (Pang et al., 2012), activator protein 1 (AP-1) (Slo-
miany and Slomiany, 2013), and activating transcription 
factor 2 (ATF-2) (Hirose et al., 2009). These transcription 
factors regulate synthesis of leukocyte-recruiting chemo-

kines and pro-inflammatory cytokines, including mono-
cyte-chemoattractant protein-1 (MCP-1) (Hacke et al., 
2010), tumor necrosis factor α (TNFα), interleukin-1β (IL-
1β) and interleukin-6 (IL-6) (Olson et al., 2007; Pang et al., 
2012; Yu et al., 2014). MH has been shown to inhibit phos-
phorylation of p38 MAPK (Yune et al., 2007; Corsaro et al., 
2009; Pang et al., 2012), reduce activation and translocation 
of inflammation-associated transcription factors such as 
NF-κB, LITAF, and Nur77 (Pang et al., 2012; Song et al., 
2016), and decrease expression of pro-inflammatory cyto-
kines and chemokines both in vitro and in vivo (Lee et al., 
2003b; Kielian et al., 2007; Cai et al., 2010; Pang et al., 2012; 
Switzer et al., 2012). MH treatment has also been shown to 
maintain activation of PI3K/Akt (Pang et al., 2012; Hahn 
et al., 2016), a negative regulator of p38 MAPK (Guha and 
Mackman, 2002). Inhibition of PI3K/Akt and subsequent 
stimulation of p38 MAPK was shown to ameliorate the 
effects of MH on transcription factor activation/transloca-
tion and cytokine expression (Pang et al., 2012), suggesting 
that MH regulation of transcription factors and cytokine/
chemokine expression are, at least in part, downstream ef-
fects of p38MAPK inhibition.

Inflammation-induced p38MAPK activation also leads 
to increased expression of iNOS (Choi et al., 2005; Sung et 
al., 2012) and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase subunit (Spencer et al., 2016). NO and su-
peroxides produced by iNOS and NADPH oxidase are high-
ly reactive species capable of damaging cell membranes, pro-
teins, nucleic acids, and organelles, resulting in cell death. At 
the same time, NO also acts as a pro-inflammatory signaling 
molecule (Korhonen et al., 2005; Sharma et al., 2007), while 
superoxides can participate in the formation of lipid-derived 
pro-inflammatory signaling molecules (Yadav and Ramana, 
2013). MH has been shown to reduce iNOS expression and 
NO production from reactive microglia and macrophages 
(Amin et al., 1996; Zhang et al., 2014), and to prevent the 
overexpression of NADPH oxidase in the remission phase of 
experimental multiple sclerosis (MS) microglia (Di Filippo 
et al., 2016). No direct effect of MH was found on the enzy-
matic activity of iNOS, suggesting a regulatory effect on gene 
expression was responsible for decreases in NO production 
(Amin et al., 1996). It is possible that MH regulation of 
iNOS/NADPH oxidase expression is a downstream effect of 
inhibiting p38 MAPK pathway. 

Inflammation-activated p38 MAPK has also been shown 
to regulate microglial expression of proNGF, a nerve growth 
factor (NGF) precursor (Yune et al., 2007). ProNGF has been 
shown to act as a distinct ligand, activating a death-inducing 
receptor complex in neurons (Nykjaer et al., 2004; Hemp-
stead, 2009) and inducing oligodendrocyte death following 
SCI (Beattie et al., 2002). MH has been shown to inhibit p38 
MAPK activation and microglial proNGF expression fol-
lowing SCI, resulting in improved oligodendrocyte survival 
(Yune et al., 2007). In addition, treatment with a specific p38 
MAPK inhibitor reduced proNGF expression from lipopoly-
saccharide (LPS) stimulated microglia in vitro. This data 
clearly illustrates that p38 MAPK activation is a prerequisite 
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for inflammation-induced proNGF expression that can be 
targeted by MH treatment.

Regulation of phospholipase A2
Inflammation also results in upregulation and activation 
of a class of enzymes known as phospholipase A2s (PLA2s) 
that break down membrane phospholipids, yielding ara-
chidonic acid (AA). AA is then metabolized into prosta-
glandins and leukotrienes by cyclooxygenase (COX) and 
lipoxygenase (LOX), respectively. Both prostaglandins and 
leukotrienes are potent pro-inflammatory mediators that 
are then secreted into the extracellular space (Balsinde 
et al., 2002). Prostaglandins and leukotrienes have been 
shown to exacerbate secondary injury by increasing vas-
cular permeability and peripheral immune cell invasion 
following SCI (Xu et al., 1990; Sharma et al., 1993; Liu 
and Xu, 2010), and have been implicated in chronic neu-
ropathic pain (Zhao et al., 2007; Buczynski et al., 2010). 
Treatment with a dual COX/LOX inhibitor reduced in-
flammation and mechanical hypersensitivity following SCI 
(Dulin et al., 2013).

SCI is associated with upregulation/increased activity of 
multiple PLA2 isoforms including cytosolic PLA2 (cPLA2) 
and secretory PLA2 (sPLA2) (Titsworth et al., 2008; Liu et 
al., 2014), cyclooxygenase-2 (COX2) (Resnick et al., 1998) 
and 5-lipoxygenase (5-LOX) (Genovese et al., 2005). MH 
has been shown to reduce cPLA2 expression following neu-
rologic injury (Ma et al., 2010), and directly inhibit sPLA2 
activity in cell-free conditions, potentially via binding site 
interference (Pruzanski et al., 1992; Dalm et al., 2010). MH 
has also been shown to inhibit monocyte and microglial 
expression of COX2 and production of pro-inflammatory 
prostaglandin E2 (Krady et al., 2005; Pang et al., 2012), and 
suppress 5-LOX expression and activation in the injured 
central nervous system (Chu et al., 2007, 2010). These ef-
fects of MH treatment may be partially due to inhibition 
of p38 MAPK pathways, as the involvement of p38 MAPK 
signaling pathways in cPLA2 upregulation and activation 
has been well established (Waterman et al., 1996; Hernán-
dez et al., 1999; Coulon et al., 2003; Kriem et al., 2005; Nito 
et al., 2008). Similarly, p38 MAPK has been shown to regu-
late LPS-induced upregulations in COX2 expression (Chen 
et al., 1999; Dean et al., 1999). Upregulation of 5-LOX has 
been associated with increased NF-κB binding in LPS-stim-
ulated macrophages (Altavilla et al., 2009), and activation 
of 5-LOX is achieved by kinases downstream of p38 MAPK 
(Werz et al., 2000). In addition, treatment with p38 MAPK 
inhibitors significantly reduced inflammation-associat-
ed expression and activation of cPLA2 (Zhu et al., 2001; 
Kriem et al., 2005; Nito et al., 2008), COX2 (Newton et al., 
2000; Nagano et al., 2002), and 5-LOX (Boden et al., 2000; 
Werz et al., 2000). MH likely inhibits sPLA2 isoforms pre-
dominantly via p38-independent direct interference with 
binding sites (Pruzanski et al., 1992; Dalm et al., 2010). 
Although associations have been made between p38 MAPK 
activation and sPLA2 expression/activity (Rosenson and 
Gelb, 2009), further investigation is warranted to determine 

the relationship between p38 MAPK signaling and sPLA2 
expression and activation. 

Regulation of glutamate-induced inflammation
Following SCI, the glutamate level rises in the extracellular 
space, resulting in significant tissue damage (Liu et al., 1991, 
1999; McAdoo et al., 1999). NO and PLA2, known targets of 
MH treatment, have been shown to inhibit astrocytic gluta-
mate reuptake (Volterra et al., 1994) and contribute to ele-
vated glutamate levels. Glutamate has been shown to induce 
microglial activation and proliferation in a p38 MAPK-de-
pendent manner, resulting in IL-1β and NO release and 
neuronal apoptosis, while MH treatment was shown to ab-
rogate this effect by inhibiting microglial p38 MAPK phos-
phorylation (Tikka et al., 2001). These findings highlight the 
complex interconnections between excitotoxicity, inflamma-
tory signaling, and oxidative stress following SCI that could 
potentially serve as conserved mechanisms of MH activity in 
multiple contexts.

Mechanisms of Anti-Oxidative Activity
Oxidative damage occurs when cells are exposed to free rad-
icals including ROS and RNS. The reactive species destabi-
lize cell membranes, damage organelles, proteins and nucleic 
acids, and trigger apoptotic or necrotic pathways resulting 
in cell death (Ryter et al., 2007). The widespread oxidative 
damage induced by the highly reactive ROS/RNS may be 
central in the etiology of cellular death and functional loss 
after SCI (Oyinbo, 2011). Following SCI, disruption of the 
blood-spinal cord barrier results in hemorrhage and isch-
emia (Mautes et al., 2000). Under ischemic conditions, many 
cells die due to energetic failure, buildup of acidic anaerobic 
metabolites, loss of ionic homeostasis and mitochondrial 
dysfunction, while surviving cells produce excessive reactive 
species upon re-oxygenation of the tissue (Kalogeris et al., 
2012). Furthermore, as blood-derived leukocytes enter the 
spinal cord tissue via damaged blood vessels, they produce 
ROS/RNS (Trivedi et al., 2006), while blood-derived iron 
catalyzes lipid peroxidation reactions, yielding additional 
free radicals (Hall, 2011). In addition, glutamate activation 
of NMDA receptors increases intracellular Ca2+ level, which 
activates neuronal NO synthase (nNOS) via calmodulin 
(Conti et al., 2007). Later, microglia and astrocytes within 
the spinal cord become activated and upregulate iNOS and 
NADPH oxidase that are responsible for prolonged free rad-
ical production and tissue damage (Xu et al., 2005; Conti et 
al., 2007; Cooney et al., 2014). Early upregulation of nNOS 
after SCI has been suggested to be detrimental by increas-
ing the oxidative stress in the injured spinal cord (Conti et 
al., 2007). Studies have shown that inhibition of nNOS may 
promote neuroprotection after SCI (Sharma et al., 2005; 
Sharma, 2010). In addition, inhibition of nNOS expression 
in motoneurons has been shown to increase their survival 
after spinal root avulsion (Wu et al., 2003; Sim et al., 2015). 
Additional sources of reactive species following SCI include 
glutamate-induced mitochondrial dysfunction, increased 
oxygen consumption and superoxide production by phago-
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cytic cells, as well as release of cytosolic oxidases, lysosomes, 
peroxisomes, and other cell constituents from necrotic cells 
(Jia et al., 2012). As a result, ROS/RNS production increases 
significantly, contributing to inflammation and resulting in 
widespread damage to both the cells producing free radicals 
and surrounding tissue (Visavadiya et al., 2016). MH can 
reduce reactive species production from activated microglia 
and macrophages via previously discussed anti-inflammato-
ry mechanisms. In addition, MH has been shown to inhibit 
thrombin and Zinc-induced activation of NADPH oxidase 
from reactive microglia, as evidenced by reduced translo-
cation of NADPH oxidase subunit p67phox, an indicator of 
active NADPH oxidase assembly required for superoxide 
radical production (Kumar et al., 2015). However, the mech-
anism of this inhibition was not reported. Additionally, MH 
can attenuate glutamate-induced free radical production via 
its neuroprotective effects (Garcia-Martinez et al., 2010), 
which will be discussed in the neuroprotection section. 
Moreover, MH can directly scavenge free radicals, which will 
be discussed in this section. The anti-oxidative activity is an 
important mechanism by which MH can mitigate secondary 
injury progression.

Direct free radical scavenging activity
In addition to inhibiting free radical production via its an-
ti-inflammatory and neuroprotective effects, MH can act as a 
phenolic antioxidant to directly eliminate free radicals in the 
post-injury microenvironment. It has been shown to exhibit 
powerful free-radical scavenging activity (Kraus et al., 2005) 
due to its phenol ring structure (Figure 2, red box). Free 
radicals can remove the hydrogen atom from the phenolic 
hydroxyl group in MH molecules, resulting in a phenol-de-
rived free radical that is far less reactive due to resonance 
stabilization and steric hindrance around the phenol group 
(Kraus et al., 2005). MH was found to directly scavenge free 
radicals including DPPH (2,2-diphenyl-1-picrylhydrazyl) 
and ABTS [2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid) diammoniumsalt], reduce deoxyribose degradation 
by Fe2+/ascorbic acid/H2O2, and inhibit iron-induced lipid 
peroxidation (Kraus et al., 2005). Furthermore, studies have 
shown that MH can significantly inhibit lipid peroxidation 
after SCI (Sonmez et al., 2013; Aras et al., 2015). Treatment 
with MH resulted in decreased levels of malondialdehyde 
(MDA) (Sonmez et al., 2013; Aras et al., 2015), a byproduct 
of lipid peroxidation, and increased levels of glutathione 
(GSH), an endogenous antioxidant that neutralizes reactive 
species (Sonmez et al., 2013). MH treatment after SCI also 
led to increased activity of superoxide dismutase (SOD) 
and glutathione peroxidase (GSH-Px), enzymes responsible 
for neutralizing free radicals (Aras et al., 2015). GSH-Px 
catalyzes the neutralizing reaction between reactive species 
and GSH, yielding a glutathione disulfide species. Thus, 
decreases in GSH suggest increases in reactive species con-
centration and subsequent GSH consumption. Similarly, 
increases in GSH-Px and SOD activity could suggest the 
presence of free enzymes not actively catalyzing neutraliza-
tion reactions, because of reduced levels of reactive species. 

In addition to SCI, MH has been shown to reduce gluta-
mate-induced oxidative stress in neuronal cultures (Kraus 
et al., 2005), attenuate oxidative stress in a model of isch-
emia (Morimoto et al., 2005), and protect against oxidative 
damage in the brains of animals challenged with chronic 
mild stress (Réus et al., 2015). Taken together, these data 
illustrate powerful anti-oxidative mechanisms by which 
MH can reduce secondary injury after SCI, likely through 
both reduced free radical production and direct free-radical 
scavenging. Further investigation is warranted to determine 
the relative contributions of each aspect of anti-oxidative 
activity.

Mechanisms of Neuroprotection
As we have discussed, MH can reduce the toxicity of the 
post-SCI environment by inhibiting the production of 
neurotoxic molecules through modulating inflammation 
and scavenging free radicals. In addition, MH can directly 
protect neurons and glial cells from the neurotoxic environ-
ment after SCI (Elewa et al., 2006; Plane et al., 2010). In this 
section, we discuss the potential mechanisms of its direct 
neuroprotective effects. 

Protection against glutamate excitotoxicity
Glutamate excitotoxicity is one of the major secondary inju-
ry mechanisms. A number of factors contribute to elevated 
glutamate levels in the injured spinal cord, including en-
hanced presynaptic glutamate efflux from injured neurons, 
reduction of glutamate uptake by astrocytes, and reverse 
Na+/glutamate transporter activity due to excess Na+ ion 
buildup downstream of ATP synthase failure (Nishizawa, 
2001; Park, 2004). Excessive glutamate activates ionotropic 
glutamate receptors, triggering the opening of associated ion 
channels and subsequent Ca2+ influx (Park, 2004). Activation 
of glutamate receptor also results in suppression of PI3K/
Akt activation and subsequent p38 MAPK phosphorylation 
in cerebellar granule neurons (Pi et al., 2004), and increas-
es downstream neuronal expression and activation of p38 
MAPK pathway-associated pro-inflammatory and ROS-gen-
erating genes implicated in excitotoxic injury progression, 
including cPLA2, NO synthase, and NADPH oxidase (Dugan 
et al., 1995; Mark et al., 2001; Shen et al., 2007; Demaurex 
and Scorrano, 2009). Excessive Ca2+ influx also results in 
mitochondrial Ca2+ overload and has direct consequences 
on mitochondrial function, including uncoupling of electron 
transfer from ATP synthesis and resultant energy failure 
(Schinder et al., 1995; Kanki et al., 2004). When mitochon-
dria become overloaded with Ca2+ ions, the mitochondrial 
permeability transition pore (mPTP) opens (Ankarcrona et 
al., 1995), which subsequently triggers massive depolariza-
tion of mitochondrial membranes. This results in ATP de-
ficiency and cytosolic release of mitochondrial contents in-
cluding CytC (Norenberg and Rao, 2007), a crucial mediator 
of both apoptotic and necrotic cell death pathways (Bobba et 
al., 2002; Rasola and Bernardi, 2011). In addition, increased 
intracellular Ca2+ activates calpains, a family of Ca2+-depen-
dent cysteine proteases following SCI (Ray et al., 1999, 2003, 
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2011). Overactivation of calpains degrades cytoskeletal and 
membrane proteins, resulting in both necrotic and apoptotic 
death after neuronal injury (Vosler et al., 2008; Ray et al., 
2011). Additionally, calpains have been suggested to act syn-
ergistically with caspase-3 activation to promote apoptosis 
(Ray et al., 2001; Wingrave et al., 2003). Calpains can also 
promote cell death through an alternative caspase-indepen-
dent mechanism mediated by mitochondrial release of CytC 
and apoptosis-inducing factor (Lankiewicz et al., 1999; Vol-
bracht et al., 2005). 

MH has been shown to protect cultured spinal cord- and 
brain-derived neurons from excitotoxic insult (Tikka et al., 

2001; Tikka and Koistinaho, 2001; Gonzalez et al., 2007; 
Garcia-Martinez et al., 2010). Multiple mechanisms of pro-
tection have been suggested and a detailed illustration of 
neuroprotective mechanisms of MH against excitotoxicity 
is presented in Figure 3. MH has been shown to inhibit 
Ca2+ influx through NMDA-responsive glutamate receptors 
(Garcia-Martinez et al., 2010). MH can chelate divalent and 
trivalent metal ions such as Ca2+, Mg2+, Zn2+, Fe2+ and Fe3+ 
(Figure 2) (Lambs et al., 1984; Grenier et al., 2000; Bauer et 
al., 2004; Chen-Roetling et al., 2009; Huang et al., 2012; Ven-
kat et al., 2013; Wang et al., 2017). This property can theo-
retically reduce extracellular Ca2+ concentration and thereby 
Ca2+ influx. However, when cerebellar granule neurons were 
challenged with NMDA, MH was found to significantly re-
duce Ca2+ influx; but when cells were challenged with high 
K+ medium triggering voltage-gated Ca2+ channels, no effect 
from MH treatment was observed (Garcia-Martinez et al., 
2010). Because MH chelation occurred in both contexts, this 
illustrates that metal ion chelation is insufficient to reduce 
Ca2+ influx. Instead, MH is likely interacting specifically with 
NMDA receptors. MH has been described as an NMDA 
receptor modulator (Chaves et al., 2009), and shown to 
modulate NMDA receptor signaling in hippocampal neu-
rons (Gonzalez et al., 2007), but the exact nature of MH in-
teraction with NMDA receptors remains poorly understood. 
Further investigation is warranted to elucidate a clear mech-
anism of action.

In addition to inhibiting Ca2+ influx through the cell 
membrane, MH was found to reduce mitochondrial Ca2+ 

uptake by slightly depolarizing mitochondria, reducing the 

Figure 1 Inflammatory pathways 
involved in the anti-inflammatory action 
of MH. 
Red x indicates direct inhibitory effect of 
MH. Purple x indicates that it is uncertain 
whether the inhibitory effect of MH is di-
rect or indirect or both. 5-LOX: 5-Lipox-
ygenase; AP-1: activator protein 1; ATF2: 
activating transcription factor 2; COX2: 
cyclooxygenase-2; cPLA2: cytosolic phos-
pholipases A2; IL-1β: interleukin-1β; 
iNOS: inducible nitric oxide synthase; 
LITAF: lipopolysaccharide-induced tu-
mor necrosis factor-alpha factor; MCP-
1: monocyte-chemoattractant protein-1; 
MH: minocycline hydrochloride; NA-
DPH: nicotinamide adenine dinucleotide 
phosphate; NF-κB: nuclear factor kap-
paB; Nur77: nerve growth factor IB; p38 
MAPK: p38 mitogen-activated protein 
kinases; PI3K: phosphoinositide 3-kinase; 
proNGF: proNerve Growth Factor; ROS: 
reactive oxygen species; TNFα: tumor ne-
crosis factor α; sPLA2: secretory phospho-
lipases A2.

Figure 2 Chemical structure of minocycline hydrochloride (MH). 
The blue box indicates metal ion chelating sites, the red box indicates the 
site with direct anti-oxidative activity, and the green box indicates the 
site with poly(ADP-ribose) polymerase-1 (PARP-1) inhibitory activity.

.
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Figure 3 MH inhibits glutamate 
excitotoxicity in neurons. 
Red x indicates direct inhibitory effect of 
MH. Purple x indicates that it is uncertain 
whether the inhibitory effect of MH is 
direct or indirect or both. AIF: Apop-
tosis inducing factor; cPLA2: cytosolic 
phospholipases A2; CytC: cytochrome c; 
MH: minocycline hydrochloride; mPTP: 
mitochondrial permeability transition 
pore; NMDA: N-methyl-D-aspartate; p38 
MAPK: p38 mitogen-activated protein 
kinases; PARP-1: poly(ADP-ribose) poly-
merase-1; PI3K: phosphoinositide 3-ki-
nase; ROS: reactive oxygen species.

electrochemical gradient required for mitochondrial Ca2+ 

uptake (Garcia-Martinez et al., 2010). The authors attribut-
ed this function to selective partial inhibition of electron 
transport chain complexes I and IV and modulation of the 
voltage-dependent anion channel (VDAC) (Garcia-Marti-
nez et al., 2010). In addition, MH can inhibit the mitochon-
drial permeability transition. It is likely a result of its inhi-
bition of mitochondrial Ca2+ overload and oxidative stress, 
prerequisites for mPTP opening (Norenberg and Rao, 
2007; Webster, 2012). MH has also been shown to inhibit 
mitochondrial Ca2+ uptake in liver cells following ischemic 
insult (Theruvath et al., 2008; Schwartz et al., 2013), indi-
cating a conserved mechanism of action across multiple cell 
types. 

MH has been shown to inhibit the opening of the mPTP 
(Gieseler et al., 2009) and mitochondrial CytC release in 
vivo (Zhu et al., 2002; Teng et al., 2004). Although mito-
chondrial release of CytC is often associated with increased 
mitochondrial permeability, it can also occur through other 
mechanisms (Bossy-Wetzel et al., 1998). For example, ac-
tivation of upstream proapoptotic factors also causes CytC 
release (Stirling et al., 2005). When CytC is released from 
mitochondria, it initiates pro-apoptotic caspase signaling 
cascades, resulting in cell death (Cai et al., 1998). MH has 
been shown to inhibit CytC release and improve functional 
outcomes in rodent models of SCI and amyotrophic lateral 
sclerosis (Zhu et al., 2002; Teng et al., 2004). In addition, 
MH has been shown to attenuate increases in caspase-1 and 
3 expression in vivo (Chen et al., 2000; Festoff et al., 2006). 
Although the mechanism is not well understood, reduction 
in CytC release is likely a result of previously described 
MH activity in mitochondria, while inhibition of caspase 
expression could be a downstream effect of reduced CytC 
release.

MH can also inhibit NMDA-induced ROS production in 
cultured neurons (Garcia-Martinez et al., 2010). In addition 

to damaging proteins, lipids, and nucleic acids, ROS can di-
rectly damage mitochondria and induce mPTP opening as 
well (Dong et al., 2009). Reduced ROS production is likely a 
result of inhibition of p38 MAPK pathways, since upregula-
tion of ROS-producing enzymes was previously shown to be 
dependent on p38 MAPK activation in other cell types. MH 
has been shown to inhibit p38 MAPK activation in neurons 
challenged with glutamate (Pi et al., 2004). 

MH may also protect against excitotoxicity through mod-
ulation of PLA2 expression and activity, as cPLA2 has been 
implicated in excitotoxic progression in cultured neurons 
(Shen et al., 2007; Zhao et al., 2011b). In addition, activated 
cPLA2 was found in neurons following SCI, and implicated 
in injury progression (Liu et al., 2014). In neuronal cultures, 
cPLA2 activation has been shown to be regulated by p38 
MAPK (Kriem et al., 2005), a known target of MH treatment 
in neurons (Pi et al., 2004). It follows that MH treatment 
likely reduces cPLA2 activation in neurons through inhibi-
tion of p38 MAPK pathway.

Enzymatic inhibition of PARP-1
Cell death following SCI is also associated with overactiva-
tion of poly(ADP-ribose) polymerase-1 (PARP-1) (Genovese 
and Cuzzocrea, 2008). PARP-1 is a nuclear enzyme impli-
cated in DNA repair in healthy tissue, but can play a patho-
genic role in response to excitotoxic insult and oxidative 
stress (Mandir et al., 2000; Ying et al., 2001; Du et al., 2003). 
PARP-1 activation is triggered by DNA damage (D’Amours 
et al., 1999). When the damage is mild, PARP-1 facilitates 
cell survival. However, severe DNA damage can induce 
excessive activation of PARP-1 (Wu et al., 2015), which de-
pletes cytosolic nicotinamide adenine dinucleotide (NAD+), 
resulting in ATP-deficient energy failure and massive mito-
chondrial depolarization (Baxter et al., 2014). PARP-1 also 
induces mitochondrial release of apoptosis inducing factor 
(AIF), which translocates to the nucleus, leading to cell death 
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(Wang et al., 2009). In addition, PARP-1 activation has been 
implicated in astrocyte activation—treatment of bacteria-stim-
ulated astrocytes with a synthetic PARP-1 inhibitor resulted in 
reduced expression of IL-1β, TNFα, NO, and MCP-1 (Phul-
wani and Kielian, 2008). MH has been shown to effectively 
inhibit PARP-1 enzymatic activity under cell-free conditions 
in a dose-dependent manner, and to protect neurons against 
PARP-1 mediated death (Alano et al., 2006). The authors noted 
that the carboxyamide functional groups attached to aromatic 
rings are conserved among multiple known PARP inhibitors, 
and are present in MH’s chemical structure, indicating a pos-
sible structural basis for its activity to inhibit PARP-1 (Figure 
2). Additionally, MH treatment was found to reduce abnormal 
PARP-1 activation in a rodent diabetic retinopathy model (Wu 
et al., 2015). PARP-1 inhibition is one of the major neuropro-
tective targets in therapeutic applications. Further studies are 
warranted to elucidate the role of MH-mediated PARP-1 inhi-
bition following SCI and other neurological deficits.

Inhibition of MMPs
MH has been shown to inhibit MMPs, a class of metal-ion 
dependent enzymes capable of digesting extracellular 
matrix proteins. Multiple MMPs are rapidly upregulated 
following SCI, and are involved in both injury and recov-
ery processes (Zhang et al., 2011). MMP-9, one of the key 
MMPs involved in secondary injury progression, plays an 
important role in breakdown of blood-spinal cord barrier, 
resulting in edema and invasion of peripheral immune 
cells and blood-derived components. MMP-related infil-
tration of blood-derived factors and immune cells results 
in increased inflammation, oxidative stress and apoptosis 
after SCI (Noble et al., 2002; Zhang et al., 2011). In rat 
models of SCI, infiltrating leukocytes were found to be the 
predominant source of MMP-9 activity (de Castro et al., 
2000), while treatment with an MMP-2/MMP-9 inhibitor 
was shown to significantly reduce barrier disruption and 
apoptotic cell death (Yu et al., 2008). MH has been shown 
to inhibit both MMP-2 and MMP-9 activities in vitro, 
with a more potent effect on MMP-9 (Paemen et al., 1996; 
Machado et al., 2006; Modheji et al., 2016). MH inhibition 
of MMP-9 has also been illustrated in animal models of 
stroke, cardiomyopathy, cerebral ischemia, and fragile-X 
syndrome (Koistinaho et al., 2005; Machado et al., 2006; 
Bilousova et al., 2009; Matsumoto et al., 2009). MH has 
been found to inhibit MMP-9 activity under cell free con-
ditions (Paemen et al., 1996), indicating that it can directly 
inhibit the enzymatic activities of MMPs. It has been sug-
gested that MH could inhibit MMP activity by interacting 
with Zn2+ ions that are critical for enzymatic activity (Gol-
ub et al., 1991; Griffin et al., 2010; Modheji et al., 2016). In 
a study involving multiple tetracycline derivatives, a posi-
tive correlation has been reported between tetracycline de-
rivative affinity for Zn2+ ions and MMP inhibition, whereas 
addition of excess Zn2+ ions was shown to partially reverse 
inhibition of MMPs (Ryan et al., 2001). Thus, MH likely 
inhibits MMP activity via direct inhibition of the enzyme, 
by interacting with metal ion moieties.

Protection against blood-derived iron toxicity
Following SCI, blood-derived factors and cells infiltrate the 
spinal cord tissue via the disrupted blood-spinal cord barrier. 
Iron, a key blood component, has been shown to exert neu-
rotoxic effects by catalyzing the formation of free radicals via 
the Fenton reaction (Winterbourn, 1995), resulting in subse-
quent lipid peroxidation and nucleic acid damage (Salvador 
et al., 2010; Núñez et al., 2012). In addition to mitigating the 
extent of disruption to the blood-brain barrier, MH has been 
shown to reduce iron neurotoxicity both in vitro and in vivo 
(Kraus et al., 2005; Chen-Roetling et al., 2009; Zhao et al., 
2011a). MH can reduce lipid peroxidation initiated by both 
Fe2+ and Fe3+ which can be found in the blood (Hall, 2011; 
Ebrahimi et al., 2013), via its anti-oxidative activity (Kraus 
et al., 2005). In this study, MH reduced lipid peroxidation 
through a chelation-independent, free-radical scavenging 
mechanism (Kraus et al., 2005). MH has also been shown 
to inhibit iron neurotoxicity in cultured cortical neurons 
(Chen-Roetling et al., 2009). In this study, the protective 
effect was attributed to iron chelation, increased ferritin 
expression, and decreased iron-catalyzed lipid peroxidation 
(Chen-Roetling et al., 2009). Ferritin produced in response 
to iron overload can attenuate toxic iron levels, resulting in a 
protective reduction of iron concentration (Salvador, 2010).

Systemic administration of MH in a stroke model was 
shown to attenuate total serum iron levels, mitigate blood-
brain barrier disruption, reduce iron-overload in the brain, 
and attenuate neuronal death (Zhao et al., 2011a). In this 
study, MH actually reduced ferritin expression in the brain, 
likely a result of decreased serum iron levels, BBB disruption 
and iron infiltration into the CNS (Zhao et al., 2011a). Be-
cause MH can chelate both Fe2+ and Fe3+ (Bauer et al., 2004; 
Chen-Roetling et al., 2009; Huang et al., 2012), it is possible 
that MH can inhibit iron-mediated toxicity partially through 
iron chelation in vivo. Primary mechanisms of direct neu-
roprotective action against iron toxicity, however, are likely 
scavenging of iron-initiated free radicals and increased fer-
ritin expression. While in the absence of irons MH did not 
significantly alter ferritin production in cortical neurons, 
exposure to irons induced a 10-fold increase in ferritin ex-
pression, and MH and iron co-treatment induced a 17-fold 
increase in ferritin expression (Chen-Roetling et al., 2009). 
This illustrates a potential antioxidant-independent mech-
anism by which MH alters the neuronal response to neuro-
toxic iron. Further investigation is warranted to determine 
the mechanism by which MH can induce upregulation of 
neuronal ferritin expression following iron insult.

Conclusions
Minocycline exhibits potent anti-inflammatory, anti-oxida-
tive, and neuroprotective activities after SCI. Its anti-inflam-
matory and neuroprotective activities are partially achieved 
through conserved mechanisms such as modulation of p38 
MAPK and PI3K/Akt signaling pathways and inhibition of 
MMPs. In addition, MH directly inhibits sPLA2, which is 
involved in conversion of AA into prostaglandins and leu-
kotrienes. Both lipids are potent mediators of inflammation 
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and secondary injury after SCI. The neuroprotective effects 
of MH are achieved through multiple mechanisms. Besides 
targeting p38 MAPK and PI3K/Akt signaling as well as 
MMPs, MH can also protect against glutamate exitotoxici-
ty by diminishing Ca2+ influx through the NMDA receptor 
into neurons and reducing mitochondrial Ca2+ uptake. In 
addition, MH can exert neuroprotective effects by directly 
inhibiting the activities of neurotoxic molecules. For ex-
ample, MH can inhibit PARP-1 enzymatic activity via the 
carboxyamide functional groups attached to its aromatic 
rings. Furthermore, MH is a potent antioxidant. It can di-
rectly scavenge free radicals through the phenolic hydroxyl 
group. Because it can target many secondary injury mech-
anisms, MH holds great promise for the development of 
an effective therapy for SCI. Further research is warranted 
to determine the therapeutic window, as well as optimal 
dose, duration, and route of MH administration to achieve 
maximal benefit. 
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