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Abstract: A novel form-stable phase-change material (PCM) based on facing bricks was developed by
incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene
glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form
(sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation
time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption
curves of the sol into bricks having different porosities as well as maximum adsorption capacities
were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second
law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity
and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their
thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor
temperature during an entire operational day

Keywords: facing bricks; shape-stabilized PCMs; polyethylene glycol; diffusion coefficient; sol-gel;
thermal energy storage

1. Introduction

Building energy efficiency is becoming a priority for global sustainable development
since they represent 40% of the European Union’s final energy consumption [1]. Most of
their energy expenditure can be reduced by applying thermal energy storage (TES) systems.
Latent heat thermal energy storage system (LHTES) is one of the TES methods that has
raised more interest in the last decades [2]. LHTES is carried out by using a convenient
phase-change material (PCM). Three different types of PCMs are currently known: liquid–
gas [3], liquid–solid [4], and solid–solid [5,6] PCMs, absorbing and releasing a large amount
of heat during their phase-change process [7]. LHTES exhibits a higher energy density
compared to any other thermal energy storage method at the time that reduces the energy
losses derived from the temperature variation [8].

Different strategies have been studied for the application of PCMs for LHTES in build-
ings, since they are easily adsorbed into porous concrete, gypsum, or in the polyurethane
foams matrix, thus achieving successful LHTES systems suitable for building facades [9–12].
However, despite bricks being one of the oldest and most used building materials in his-
tory [13], there is a lack of studies for improving their thermal storage capacity. To date, one
of the main current approaches focuses on the use of PCMs in filling the voids of hollow
bricks [14,15]. This approach demonstrated that the PCMs addition reduced the temper-
ature fluctuations and the speed of the temperature change in the indoor space [16,17].
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Nevertheless, the loss of lightness (main characteristic of hollow bricks) and the use of
complementary elements to avoid the leakage of the PCM, which increases the cost of the
material, could limit its implementation.

The second most common method to combine PCMs with bricks is based on the
use of additional layers added onto the outer brick face of the walls or as a middle layer,
mainly by means of shape-stabilized phase-change materials (ssPCMs) [18–22]. Zhou
et al. [23] numerically studied the combination of an inner layer of ssPCM with night
ventilation. This additional coating was formed by the dispersion of PCM in high-density
polyethylene (HDPE). Their results indicated that the use of both systems, PCM and
night ventilation, could save 76% of cooling energy consumption. Despite the achieved
improvements, the use of additional layers increases the wall thickness, and it could bring
negative consequences like overly high airtightness, over-heating, poor ventilation, and
loss of space [24].

With these premises, the use of facing bricks containing PCMs applied in the façade of
buildings is an alternative option to enhance their energy efficiency. Due to the brick-firing
process, PCM must be added once the bricks are completely manufactured. The small
pore size of the facing bricks requires the addition of PCM in liquid state, by immersion or
vacuum impregnation techniques. These methods are accomplished by the submersion of
porous building elements (concrete, gypsum panels, wood, porous aggregates, etc.) into
molten PCM, which is adsorbed by capillary action [25].

The materials produced by these techniques are known as form-stable PCMs. In
contrast to ssPCMs, the production of form-stable PCMs does not require the melting or
blending of the supporting material [26–28].

Most of the reported studies related to form-stable PCMs are mainly carried out
using powder as supporting matrix instead of building blocks. Silica fume (particle
size < 0.1 µm) [29], diatomite or expanded perlite (particle size < 150 µm) [30–32], ex-
panded graphite (particle size between 50 and 500 µm), and gypsum or cement (particle
size < 150 mm) [33] are some of the supporting matrices studied to date.

The use of porous facing bricks could be affected by the leakage of the common
solid–liquid PCM from the brick when it turns into liquid. In order to solve these problems,
a previously developed PEG-SiO2 ssPCM by sol-gel is proposed to be incorporated in
bricks [34]. A similar strategy has been previously employed by Xu et al. (2020) [35]
focused on porous wood matrices. In their work, they used a commercial silica sol with a
solid content of 30%, an average particle size of 15 nm, and a pH value of 10 to stabilize the
polyethylene glycol into the porous wood. The incorporation of the PEG was carried out
by using a vacuum-pressure process at −0.1 MPa. Once impregnated, the samples were
cured in an oven at 60 ◦C for 2 days.

Nevertheless, to date there are no studies that apply this approach to facing bricks
production containing PCMs, despite the great advantages of combining the thermal
properties of these two materials. Likewise, the adsorption of sol materials into porous
bricks for further synthesis of ssPCMs by sol-gel method has not previously been addressed.
Thus, there is a lack of knowledge about the effect of the viscosity increase with time in the
adsorption process (kinetic and distribution) and about its possible theoretical modelling.

In this work, the stabilizer material of the ssPCM is based on our own development of
PEG-SiO2. In this case, the silica network is in situ synthesized from an alkoxide precursor,
tetraethyl orthosilicate (TEOS), during its mixture with the PCM (PEG) in the sol formation
step. This sol can be turned into gel, controlling the pH value of the medium as described in
the previous work [34]. Hence, the PEG-SiO2 mixture can be incorporated into the porous
ceramic material in its sol state by capillary action, before being stabilized by controlling its
gelation time.

The PEG-SiO2 rheology is analyzed by studying the evolution of the sol viscosity
with time and determining the point in which the sol rheological behavior starts to change
significantly. This point is interesting for designing the immersion experiments. Bricks
with porosities between 0.44 and 0.77 were used to study the influence of porosity in



Materials 2021, 14, 1395 3 of 20

the adsorption kinetic and in the maximum adsorption capacity at 50 ◦C. The unknown
effective diffusion coefficient of PEG-SiO2 into the porous bricks was estimated by means
of Fick´s second law, using the orthogonal collocation as strategy for solving the partial
differential equation. The use of a unique free diffusion coefficient for modelling the
diffusion process for the different studied porosities was also considered.

2. Experimental
2.1. Materials

Polyethylene glycol of molecular weight 950–1050 g/mol (PEG1000), tetraethyl or-
thosilicate (TEOS) (98%), and sulfuric acid (95–97%) were purchased from Sigma Aldrich
(Madrid, Spain). Ethanol (EtOH) (96%) and sodium hydroxide (NaOH) (98%) were sup-
plied by PANREAC. Common clays from Santa Cruz de Mudela, Spain, traditionally used
for the industrial production of bricks and roof tiles, have been provided by Rústicos La
Mancha S.L., Santa Cruz de Mudela, Spain, and used for the brick production.

2.2. Bricks and Porosity

Five bricks were manufactured, controlling their porosity by adding specific percent-
ages of biomass from the wood industry together with clay, resulting in a homogenous
paste. This paste was molded and baked at 940 ◦C, obtaining bricks of 10 × 6 × 3 cm3 with
a porosity related to the quantity of added biomass [36]. Table 1 shows the final porosity
(ε) of the bricks, obtained by helium pycnometry.

Table 1. Porosity of the different brick samples.

Sample A B C D E

ε 0.440 0.603 0.673 0.735 0.769

2.3. PEG-SiO2 Synthesis

PEG-SiO2 was synthesized by sol-gel method. PEG1000 exhibits a melting point of
35 ◦C, crystallization temperature of 27 ◦C, and a latent heat of 145 J/g. In a first step, the
polyol was melted and heated up to 50 ◦C, the rest of the compounds were subsequently
added to the liquid polyol setting a molar ratio H2O:EtOH:H2SO4:PEG1000:TEOS of
2:0.34:0.021:0.50:1 and stirred for 30 min. The temperature was controlled at 50 ◦C in
a constant temperature bath. The mixture obtained using the commented procedure is
denominated as sol. To obtain the final PEG-SiO2, the sol will need to be gelled by changing
the pH of the medium once it is inside the porous matrix of the brick. Thermal properties of
the synthesized PEG-SiO2 when it is gelled in absence of the brick are a melting temperature
of 35.22 ◦C and latent heat of fusion (∆Hm) of 113.80 J/g, crystallization temperature of
22.94 ◦C, and crystallization heat (∆Hc) of 105.60 J/g.

2.4. Form-Stable PCM Synthesis

Figure 1 shows the immersion device for accomplishing the incorporation of PEG-SiO2
in bricks. The setup consists of a methacrylate container with dimensions 60 × 50 × 10 cm3

equipped with a thermostatic bath (Mervilab, Madrid, Spain) and a stirrer (Mervilab,
Madrid, Spain)). A metal mesh was installed at the bottom of the container to avoid contact
of the bricks with the methacrylate.
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Figure 1. Scheme of the immersion system for the preparation of the form-stable phase-change material (PCMs).

During the immersion process, the temperature was set at 50 ◦C. The high specific
heat of the water/PEG mixture (sol) ensured a constant temperature during the whole
process. In addition, the low water concentration in the mixture (≈7 wt.% with respect
to PEG) combined with the hygroscopic properties of PEG prevented water loss during
the test.

The bricks were immersed in the sol mixture and taken out at the desired times. After
this process, by means of a brush, the samples were smeared with a NaOH solution (5 M)
to promote the gelation of the sol inside the porous matrix of the bricks. With this brushing,
we obtained an excess of NaOH that promoted a fast gelation (the increase of viscosity
was evident at simple sight). Finally, once this fast gelation had occurred, the aging of
the gel was carried out in an oven for 24 h at 50 ◦C, the moment in which the gel dried by
shrinkage and the PEG-SiO2 was adsorbed by the brick structure.

2.5. Characterization
2.5.1. Sol Viscosity (Rheology)

The evolution of the sol viscosity with time was followed through a rheological study.
The viscosity was obtained in a Bohlin Gemini rheometer (Malvern, Worcestershire, UK) at
50 ◦C, using a cone (CP 1◦/60) with 60 mm of diameter and a share rate from 15 to 1570
s−1, recording the data every 10 s.

2.5.2. Adsorption Curves and Maximum Adsorption Capacity

The kinetic adsorption curves and the maximum adsorption capacity (Ce) of the
bricks by immersion technique were studied. During the form-stable PCM production the
different porous bricks were removed from the sol mixture at different times. Each sample
was weighted before and after the PEG-SiO2 incorporation, once the drying stage was
finished. In addition, three bricks were spent for each adsorption time. For the maximum
adsorption capacity the samples were immersed in the sol mixture until their mass was
constant (around 72 h). This time was long enough to reach the filling of the porous brick
with the sol without any significant change in the external sol viscosity.

2.5.3. Bulk Density, True Density, and Porosity

The bulk density of the composites, ρbulk, was quantified by weighing and sizing the
test prisms. The matrix density or true density, ρcomp, was determined by helium pycnom-
etry (Micromeritics Accupyc 1330). The porosity of the brick and gypsum composites, ε,
(Equation (1)) was estimated from the bulk density, the matrix density, and assuming that
their pores are filled with air. The air density (ρair) was assumed to be 1.186 kg/m3 at
normal conditions.

ε =
ρcomp − ρbulk

ρcomp − ρair
(1)



Materials 2021, 14, 1395 5 of 20

2.5.4. Scanning Electron Microscopy Analysis

The inner structure of the obtained composites was analyzed by means of scanning
electron microscopy (SEM, FEI Company, Madrid, Spain) by using a FEI QUANTA 200.
Large-field low-vacuum detector (LFD, FEI Company, Madrid, Spain) was used to avoid
the melting of the PCM during the study. In order to have a better representation of the
PCM distribution within the structure itself, the samples were sectioned, studying the
central part of their cross-section.

2.5.5. Experimental Equipment for Thermal Behavior Tests

The thermal behavior of the composites has been studied using a homemade equip-
ment composed of a hollow metallic box of aluminum through which a liquid coming from
a thermostatic bath (Mervilab, Madrid, Spain) was flowing by means of a peristaltic pump.
The temperature of this liquid allowed us to control the temperature on the aluminum
cell. The sample blocks were placed on the upper surface of the cell and further insulated
with foam boards of 3.9 cm in thickness. A more exhaustive description of the set-up
and of its performance for the thermal characterization of materials containing PCMs was
provided in previous works [37]. Tests were carried out applying a thermostatic bath
set-point step change from 15 to 42 ◦C while temperatures at different sample locations
and the inlet and outlet heat fluxes were registered with time. The dimensions of the sam-
ples were 10 × 6 × 3 cm3. Six thermocouples (TC Direct, Madrid, Spain) of K-type were
located across the probe thickness: two in the external sample surface (Tup), which would
correspond to the building indoor temperature; two in the middle (Tmiddle); and the other
two on the aluminum cell (Tdown), which would correspond to the external temperature.
The heat fluxes were measured by using gSKIN®-XI and gSKIN®-XP heat flow sensors
(gSKIN, Rümlang, Switzerland) for monitoring the inlet and outlet heat fluxes. Using these
signals and Equation (2), it is possible to quantify the TES capacity per cubic meter.

TES =
qacc

msample
× ρbulk

3.6 × 106 (2)

3. Calculations
3.1. Problem Definition for Diffusion Coefficients Calculation

To estimate the effective diffusion coefficients of the obtained composites, the diffusion
process of the PEG-SiO2 (or sol) inside the porous bricks was thoroughly studied; for
that purpose, the amount of total accumulated PEG-SiO2 was measured over time. The
brick under discussion has a cubic geometry with xo (10 cm), yo (3 cm), and zo (6 cm) as
dimensions.

For the problem resolution of this three-dimensional coordinate system, some assump-
tions have been taken into consideration: (a) homogeneous distribution of the pores and
their size through the whole brick; (b) the sol viscosity remains constant until the complete
sol adsorption. This last assumption is corroborated by Figure 2, where the viscosity is
observed with no significant changes for times shorter than 72 h.

Then, when the whole slab is immersed into the invariable sol, applying the mass
balance across the volume control which is built around a set of three axes, with neither
convection flux nor chemical reaction, Fick’s second law (Equation (3)) can be derived. This
equation is frequently found in literature applied for the diffusion through solids when the
diffusivity is independent of the concentration [38].

ε∂CA

∂t
= Deff ×

(
∂2CA

∂x2 +
∂2CA

∂y2 +
∂2CA

∂z2

)
(3)

where ε is the solid porosity, Deff is the effective diffusion coefficient of A through the solid,
and CA is the concentration of the compound A inside the solid.
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Dimensionless variables (Equation (4)) based on the maximum adsorption capacity
(Ce) and dimensions of the bricks can be defined in order to normalize the problem in the
range from 0 to 1, turning Equation (3) into Equation (5).

CA

Ce
= C;

x
xo

= X;
y
yo

= Y;
z

Zo
= Z; τ =

t × Deff

ε × x2
0

(4)

∂C
∂τ

=

(
∂2C
∂X2 +

(
x0

y0

)2
× ∂2C

∂Y2 +

(
x0

z0

)2
× ∂2C

∂Z2

)
(5)

3.2. Orthogonal Collocation Method in Fick´s Second Law

Orthogonal collocation method can be used to solve the above partial differential
equation since this method is applied for problems whose solutions are regular and with
absence of sharp changes. In the orthogonal collocation method, the exact solution is
estimated through a trial function Ỹ. In that way, the solution is represented as a polynomial,
P(x), with unknown coefficients, b, which are determined at certain points where the trial
function satisfies the process equation (Fick´s second law in this case), as well as the
boundary and initial conditions (Equation (6)) [39]. The selected points, denominated as
collocation points, minimize the estimation error.

trial f unction = Ỹ =
N

∑
i=1

bi × Pi(x) (6)

where N is the number of interior collocation points, which are the roots to PN(x) = 0. Some
of the most typical roots for different number of collocation points and polynomials were
listed by Finlayson (1972) [40].

For solving Equation (5), the second derivative of the trial function depending on the
coordinate system and considering the geometry is required. This second derivative can be
written as shown in Equation (7).

x1−a d
dx

(
xa−1 dỸ

dx

)
=

d2Ỹ
dx2 ; being a = 1 f or planar geometry (7)

Considering Equations (6) and (7), deriving and evaluating in each collocation point,
the above equation can be expressed as:

d2Ỹ
dx2

∣∣∣∣∣
xj

=
N+1

∑
i=0

Bm j,i × Ỹi; j = 0, . . . , N (8)

where Bm matrix represents the Laplacian at the collocation points.
The first boundary condition is defined at the center of the object,

d2Ỹ
dx2

∣∣∣∣∣
xj

=
N+1

∑
i=0

Bm j,i × Ỹi; j = 0, . . . , N (9)

where the Am matrix represents the first derivative at the collocation points.
The second boundary condition is defined at the external surface of the object,

dỸ
dx

∣∣∣∣∣
x=1

= −
N+1

∑
i=0

Am N+1,i × Ỹi = Bim
(

Y∗ − ỸN+1

)
(10)



Materials 2021, 14, 1395 7 of 20

where Y* is the solid concentration at the equilibrium with the concentration of the bulk
solution and Bim is a Biot number for mass transfer which is defined by:

Bim =
k × x0

De f f
(11)

where k is the constant of mass transfer and x0 is the size of the object in the x dimension.
For an unsteady-state problem, as the current case, the expression 5 is solved at any

time t in three dimensions, Ỹi(t) = Ỹ(xi, yi, zi, t) and at any collocation points xi, yi, zi [41].
Therefore, the diffusion of the sol through the brick expressed by the partial differential

equation, Equation (5), having the Laplacian form for each dimension X, Y, Z can be
transformed into a set of (NxNxN) total differential ordinary equations from τ.

∂Ci,k,l

∂τ
=

(
N+1

∑
j=0

Bm i,jCj,k,l +

(
x0

y0

)2
×

N+1

∑
j=0

Bm k,jCi,j,l +

(
x0

z0

)2
×

N+1

∑
j=0

Bm l,jCi,k,j

)
i = 1, . . . N
k = 1, . . . N
l = 1, . . . N

(12)

Using asymmetric geometry, and defining orthogonal points within 0.0–1.0, it is possi-
ble to avoid the use of the first boundary condition at the center of the block (X = Y = Z = 0.5)
(dC/dX = dC/dY = dC/dZ = 0) which is required when the symmetry geometry is considered.
Attending to the sol characteristics, its composition in the liquid phase does not change
over time, the tank is perfectly agitated during the mass transfer limiting step located
inside the brick, it being possible to assume that the external slab face is instantaneously
saturated with sol (Y* ∼= Y0 = YN + 1). Hence, the above set of differential equations can be
solved considering that at the boundary points X, Y, or Z having values of 0 or 1.0 (being
the counter j equal to 0 or N + 1 for each summation term) the dependent variables C are
equal to 1.0. This is,

Cj,k,l = 1.0


j = 0 or N + 1
k = 0, . . . , N + 1
l = 0, . . . , N + 1

 ; X = 0.0 or X = 1.0 (13)

Ci,j,l = 1.0


j = 0 or N + 1
i = 0, . . . , N + 1
l = 0, . . . , N + 1

 ; Y = 0.0 or Y = 1.0 (14)

Ci,k,j = 1.0


j = 0 or N + 1
i = 0, . . . , N + 1
k = 0, . . . , N + 1

 ; Z = 0.0 or Z = 1.0 (15)

Considering the above boundary conditions, it is possible to obtain the variation of
the sol concentration into the internal nodes by using Rosenbrock method as standard
technique for leading the numerical integration of the above set of (N × N × N) total
differential ordinary equations. The integration begins with considering the brick initially
free of sol which implies that C is equal to zero for each internal node and Deff/ε being the
unique unknown parameter.

Hence, the derivative expression 10 becomes a constraint that must be satisfied by the
solution of Equation (12) at each τ units, in order to reach the proper quantification.

dC
dX

∣∣∣∣
X=0.0

=
dC
dY

∣∣∣∣
Y=0.0

=
dC
dZ

∣∣∣∣
Z=0.0

= 0 = −
N+1

∑
i=0

A0,iCi (16)

dC
dX

∣∣∣∣
X=1.0

=
dC
dY

∣∣∣∣
Y=1.0

=
dC
dZ

∣∣∣∣
Z=1.0

= 0 = −
N+1

∑
i=0

AN+1,iCi (17)
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Figure 2. Evolution of the sol viscosity with time.

4. Results and Discussion
4.1. PEG-SiO2 sol Rheology

The adsorption of a liquid by a porous matrix is promoted by the fluidity of the com-
pound through the supporting material. In that way, the viscosity of the liquid compound
plays a crucial role in its incorporation into the matrix by capillary forces. Figure 2 shows
the evolution of the sol viscosity with time.

As can be observed, the viscosity of the sol shows the typical exponential growth
with time presented by sol-gel products. This growth is due to the internal condensation
that takes place between the polymers formed during the first step of the sol-gel process,
finishing when they form a rigid gel structure, a moment known as gelation time [42].
The derivative with respect to the time of the viscosity growth expression (Equation (18))
provides information on the rate of change of viscosity with time.

dµ
dt

= A × B × eB×t (18)

In that way, according to Figure 2, the viscosity change is not very significant until
about 72 h after its synthesis, having the sol display the same rheological behavior during
that time. The final gelation time is higher than 200 h. Moreover, by changing the pH of the
medium the gelation time can be controlled, since it has an inverse dependence with the
reaction rate of the condensation step [43]. The control of the sol gelation time and the long
period with constant rheological properties allow its incorporation into different porous
materials. The sol can be adsorbed by the porous slabs (concrete, gypsum, bricks, wood,
etc.) and further gelled in their inner structure. In addition, the infiltration of the young
sol into the porous material is favored by its lower initial viscosity with respect to pure
PEG1000, 0.06 Pa·s instead of 0.18 Pa·s, respectively, both measured at 50 ◦C.
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4.2. Adsorption Capacity

The maximum adsorption capacity (Ce) of the bricks by immersion technique was
studied as a function of their porosity. It was found that an equilibrium time of 72 h was
long enough to reach the full filling of the porous brick with the sol without any significant
change in the external sol viscosity. Figure 3 displays the maximum adsorption capacity
as function of the porosity, since the external concentration does not change during the
adsorption process. As expected, the higher the bricks’ porosity, the higher the adsorption
capacity of the material. The equilibrium data can be fitted using different functions that
relate Ce with the ε [44], being the curve perfectly fitted by an exponential function. The
obtained equation can be used to predict the maximum amount of PEG-SiO2 that the brick
is able to adsorb according to its porosity or for optimization tasks to calculate the required
porosity of a tailored brick. It should be noted that the brick with the highest porosity can
adsorb more than 110% of its dried mass, whereas the densest brick is only able to adsorb
20% of its weight. According to the figure, by changing the porosity it is possible to sharply
increase the uptake of PEG-SiO2 by this clay.
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Figure 3. Maximum adsorption capacity for each porosity.

4.3. Bulk Density

Figure 4 presents the evolution of the bulk density (ρbulk) with the amount of incorpo-
rated PEG-SiO2 for the obtained composites. To obtain the different PEG-SiO2 additions,
composites were taken out from the immersion bath at different times. As is evident
from the results, the higher the PEG-SiO2 content, the higher the density of the composite,
following a linear trend and without crossing between them, being practically parallel.
These increments in the density are a consequence of the replacement of air by PEG-SiO2
after the immersion process. The composites containing the maximum amount of PCM do
not exceed the density of the standard facing brick with no special treatment for increasing
its porosity (brick type A).
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Figure 4. Bulk density of the composites as a function of the PEG-SiO2 content.

4.4. SEM Analysis

Figure 5 exposes the visual appearance and the SEM images at different magnifications
of the inner structure of D brick before and after the described immersion process. The
brick after immersion was cut to show its inner visual appearance (Figure 5b).

As can be seen in Figure 5b, the bricks after the immersion process presented darker
color due to the presence of the PEG-SiO2. In addition, this darker color can be seen along
the whole brick section.

The typical shape of the inner structure of a brick can be seen in Figure 5c, whose
elemental composition was analyzed by EDAX. O (32.2 wt.%), Si (20.7 wt.%), Ca (14.3 wt.%),
Fe (13.6 wt.%), Al (12.4 wt.%), Mg (5.2 wt.%), and K (1.6 wt.%) were the main elements
present in the structure, ordered according to their amount in the brick. This composition
is attributed to minerals such as dolomite, calcite, quartz, and feldspars, as well as clay
minerals like illite or kaolinite, which are normally present in the bricks formed with the
current type of clays [45]. In Figure 5d, PEG-SiO2 can be seen highlighted in yellow. As
is evident from the picture, PEG-SiO2 is perfectly integrated in the internal structure of
the brick, filling its pores and fissures and adopting the shape of its inner framework. In
this case, the EDAX showed that the most common compound on the inner surface of
the composite was carbon (C) (39.4 wt.%), followed by O (37.0 wt.%), Si (12.0 wt.%), Al
(3.9 wt.%), Ca (3.7 wt.%), Fe (2.1 wt.%), Mg (1.2 wt.%), and K (0.7 wt.%). The emergence of
C and its high presence together with O atoms confirm the distribution of the PEG-SiO2 in
the whole composite.
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4.5. Effective Diffusion Coefficients

After verifying the presence of PEG-SiO2 inside the bricks, the estimation of the
effective diffusion coefficient for each sol-brick system can be carried out according to
Equation (12) and the conditions previously described (Calculations). For the resolution of
the above partial differential equation, 3 internal collocation points were chosen (N = 3)
for reducing the computation time. The distribution of some of the collocation points in
the selected quadrant of the brick is represented in Figure 6 colored in green, whereas the
boundary layer, N + 1, is represented in red color. Table 2 shows the value of Bm matrix
related with the 3 collocation points for a planar geometry and the considered polynomial,
which can be found using the algorithm described by Villadsen and Stewart [41,46].
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Figure 6. Distribution of some of the N internal collocation points and N + 1 boundary nodes.

Table 2. Array of orthogonal collocation points and Matrix Bm for an asymmetric planar geometry,
j and i being counters that indicate the contribution from each collocation point to a specific one,
respectively.

Roots of Polynomials Bm ij

0.0000 84.0000 −122.0631 58.6666 −44.6035 24.0000
0.1127 53.2379 −73.3333 26.6667 13.3333 6.7621
0.5000 −6.0000 16.6667 −21.3333 16.6667 −6.0000
0.8872 6.7621 −13.3333 26.6666 73.3333 53.2379
1.0000 24.0000 −44.6035 58.6666 −122.0632 84.0000

With the described equations, initial and boundary conditions, and assuming a value
for the unknown parameter Deff/ε, the concentration (Ci,k,l) of the sol in the brick on a
scale from 0 to 1 can be calculated for each collocation point at different times, where 1
corresponds to the maximum adsorption capacity of the composite under consideration.
As previously commented, the Rosenbrock method was used to numerically integrate the
set of ordinary differential equations due to the few steps of integration required to achieve
the solution [47]. Once all the Ci,k,l values are obtained, the average theoretical value of
sol concentration charged by the brick (C) is calculated by means of Equation (12) at each
time (s1).

Cs1 =

∫ ∫ ∫ 1
0Ci,k,ldXdYdZ∫ ∫ ∫ 1

0dXdYdZ
(19)

In order to theoretically predict the value of the average concentration at each time
(Cs1) it is necessary to find the proper unknown parameter Deff/ε for each kind of brick
that has perfect fit between the experimental (Cexp (s1)) and the theoretical values (Cs1). To
this purpose, Marquardt’s algorithm was used [48]. This method can be summarized by
Equation (20).

Φ =
(

Cexp (s) − C(s)

)T(
Cexp (s) − C(s)

)
(20)
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where Φ is the weighted sum of squared residuals, s is a counter from 1 to the number
of experimental data, indicating the number of the sample taken out during the kinetic
experiment at each time, and T is the transpose of the residual array.

A Visual Basic application was developed for solving this model.
Figure 7 shows the kinetic experimental and modelled curves of the adsorbed PEG-

SiO2 into dried bricks as a function of the porosity.
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Figure 7. Experimental and modelled kinetic curves of PEG-SiO2 uptake by bricks having different
porosities.

According to Figure 7, a good agreement between the experimental sol adsorption by
the bricks and the modelled values was obtained. In addition, it is clear from the slope of
the adsorption profiles that the higher the brick porosity, the faster the uptake of the sol
by the brick. The obtained fitting parameter (Deff/ε) and their corresponding confidence
intervals, using a confidential level of 95% (α = 0.05), are gathered in Table 3. As expected,
bricks with the faster sol adsorption present the higher Deff/ε values.

Table 3. Effective diffusion coefficients of the sol per porosity of each type of brick (95 per cent
confidence interval).

Sample Deff/ε (m2/s)

A 6.086 × 10−9 ± 2.343 × 10−9

B 1.030 × 10−8 ± 4.314 × 10−9

C 1.109 × 10−8 ± 5.165 × 10−9

D 2.887 × 10−8 ± 8.359 × 10−9

E 5.609 × 10−8 ± 2.202 × 10−8

Once the proper Deff/ε coefficients have been estimated, the concentration (Ci,k,l)
distribution of the sol in the brick in a scale from 0 to 1 can be calculated for each collocation
point at different times. As an example, Figure 8 displays the sol distribution on the XZ
plane for the bricks of type A and E at some representative times. As shown in this figure,
whereas in composite A, there predominates a sol concentration distribution lower than
0.5 at 10,000 s, the composite E needs half of that time (5000 s) to be totally saturated. It
is evident that the sol distribution profiles decrease from the surface of the composites to
their center, this point being the latest to be filled. In that way, in order to compare the
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filling of the different porous bricks, the evolution of the concentration in the center of the
brick (C0,0,0) with time is displayed in Figure 9. From this figure, a delay in the filling of the
center along with the decrease of the porosity is appreciable. Whereas the charge of A brick
(the least porous matrix) starts at 3000 s, the most porous brick, E, starts at 300 s. Moreover,
once the charge of the sol has begun, the slope of the concentration profile increases with
the porosity. It can be observed that D and E bricks are able to have their center saturated
below 20,000 s, a time when A brick has achieved only 40% of its maximum adsorption
capacity. B and C bricks show similar C0,0,0 due to their similar values of Deff/ε.
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Figure 9. C0,0,0 profile for the studied porous bricks.

It can be concluded that the proposed model perfectly fits the experimental data.
Therefore, by knowing the optimal or required amount of PCM into the brick with a
specific porosity, the model will allow us to calculate the immersion time needed to achieve
the target.

4.5.1. Influence of Porosity on Deff

The effective diffusion coefficient of a porous media can also be estimated as a function
of the porosity according to Archie´s law [49]:

De f f = Do × εm (21)

where Do is the free diffusion coefficient, ε is the effective porosity, meaning all porosity
that is connected and available for fluid transport, and m is the cementation exponent.
Considering the previous expression and the known brick porosities and Deff/ε, the pa-
rameters Do and m were estimated. Figure 10 depicts the Deff values derived from Archie´s
law, obtaining 1.424 × 10−7 m2/s as Do and 5.48 for the cementation exponent (value of
the cementation exponent which is in agreement with literature for diffusive transport of
water in clays, 5.4) [50].

It is plain to see that the higher the porosity, the higher the Deff, this increment being
more abrupt for composite porosities larger than 0.7. According to the results, only one
Do parameter can be used to predict the value of Deff as function of the porosity by means
of the commented expression. The obtained Deff are lower than the diffusion coefficients
of water in bricks previously reported by van der Zanden [51] as a result of the higher
viscosity of the sol compared to water. However, the m and Do values indicated that the
fluidity of the sol into the porous brick is very high and comparable to that of water and
that the gelling step does not take place during the time required for the kinetic adsorption.
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Figure 10. Diffusion coefficients (Deff) as a function of ε and their comparison to those obtained based
on Archie´s law.

4.5.2. Influence of the PEG-SiO2 Incorporation on the Composite Thermal Behavior

The thermal behavior of the empty and saturated bricks was studied to confirm the
improvement of their TES capacities with the PEG-SiO2 incorporation. Bricks A and E
were selected for this study since they presented the lowest and the highest porosities and,
thus, the influence of the porosity on the TES capacity can also be analyzed.

As an example, Figure 11 shows the indoor temperature (Tup) and the accumulated
heat of brick type E, which presented the highest porosity, for the empty and saturated
conditions when it is subjected to a thermal change from 15 to 42 ◦C, considering the 42 ◦C
as the outdoor temperature. The accumulated heat (Figure 11b) is obtained by making an
energy balance between the inlet and outlet heat flows.
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Figure 11. Indoor temperature (Tup) (a) and accumulated heat (b) of brick type E for the empty and saturated conditions
when it is subjected to a thermal change from 15 to 42 ◦C.
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As can be observed in Figure 11a, the PEG-SiO2 incorporation caused a reduction of
the slope of the Tup profile at the transient state, since the energy is being accumulated by
the melting of the active PEG from the PEG-SiO2. This slope decrease is more abrupt in
the case of the brick E. This way, the indoor temperature of the saturated samples remains
below that of the empty one for 4 and 7.4 h for the bricks A and E, respectively. This
time is long enough to maintain a soft temperature for a whole operational day in the
case of the brick E, since this comfort time is dependent on the total accumulated heat,
as shown in Figure 11b. In this figure, it is observed that the minimum thermal energy
storage (TES) capacity is exhibited by the empty brick E. Nevertheless, this brick becomes
the most energetic one when it is filled with the PEG-SiO2. Thus, the prepared PEG-SiO2-
saturated brick E with a thickness of 3 cm would be able to maintain the indoor temperature
of the building below 30 ◦C for more than 7 h when the outdoor temperature is 42 ◦C,
while the empty brick would reach that temperature in just one hour. In addition, it is
observed how the indoor temperature of empty bricks reach the steady state faster whereas
the indoor temperatures of both filled bricks require a long time to achieve the steady
state. On the other hand, they overpass the temperatures of the empty ones, indicating
that the substitution of air by PEG-SiO2 into the porous matrix of the bricks enlarges the
thermal conductivity of the bricks, favoring the further energy release for restoring the
accumulating energy capacity.

Figure 12 shows the TES capacity of all bricks, determined from the accumulated heat
fluxes and using Equation (2).
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Figure 12. Influence of porosity on the thermal energy storage (TES) capacity of empty and satu-
rated bricks.

As expected, the higher the porosity, the lower the TES capacity of the conventional
bricks (empty bricks). However, the higher the porosity, the higher the amount of the
PEG-SiO2 in the bricks, thus increasing the TES capacity. It can also be stated that the
relationship of both properties was lineal. On the other hand, comparing the improvement
of the TES capacity of bricks A and E, corresponding with the lowest and the highest
porosity, the increase of TES capacity was 34% and 338%, respectively. Hence, the thermal
comfort of a house can be improved by using facing bricks containing shape-stabilized
PEG-SiO2 and this comfort is strongly dependent on the initial porosity of the brick.
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5. Conclusions

The long gelation time and low initial viscosity of the proposed PEG-SiO2 in the sol
form allowed the preparation of new form-stable PCMs. Form-stable PCMs containing
within 15–110 wt.% of PEG-SiO2 with respect to the initial dried mass of brick have been
obtained depending on the brick porosity.

The kinetic adsorption studies of PEG-SiO2 on bricks were perfectly reproduced
by means of Fick´s second law. The numerical method strategy for solving the partial
differential equation problem allowed us to obtain a good fitting between experimental
and theoretical data, founding Deff as the unique unknow fitting parameter. Moreover, it
is possible to use only one Do coefficient to characterize the diffusion phenomena. The
obtained values of the parameters Deff and m are compatible with those of water adsorption,
indicating that this is an easy way to produce form-stable PCMs using this PEG-SiO2 and
bricks without requiring any mechanical energy.

Contrary to empty bricks, the TES capacity of saturated bricks increased linearly with
the porosity, observing a total increment of 34% and 338%, for the TES capacity of bricks A
and E, respectively. The improvement in the TES capacity allowed us to maintain indoor
temperatures lower than those reached by the conventional ones over a long time but as a
function of the PEG-SiO2 content. The saturated brick E having a thickness of 3 cm kept
the indoor temperature below 30 ◦C for more than 7 h when the outdoor temperature was
42 ◦C, while the empty brick reached the steady state in just one hour.
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