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Abstract

Innate immunity plays a crucial role in the pathogenesis of type 2 diabetes and
related complications. Since the toll-like receptors (TLRs) are central to innate
immunity, it appears that they are important participants in the development and
pathogenesis of the disease. Previous investigations demonstrated that TLR2
homodimers and TLR2 heterodimers with TLR1 or TLR6 activate innate immunity
upon recognition of damage-associated molecular patterns (DAMPs). Several DAMPs
are released during type 2 diabetes, so it may be hypothesized that TLR2 is
significantly involved in its progression. Here, we review recent data on the
important roles and status of TLR2 in type 2 diabetes and related complications.
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Background
Type 2 diabetes, also referred to as adult-onset diabetes or as non-insulin-dependent

diabetes mellitus (NIDDM) is increasingly common [1, 2]. The heightened levels of blood

glucose are associated with several complications, including nerve damage (neuropathy),

which is caused by injury to the walls of the capillaries that nourish the nerves and results in

tingling, numbness, burning or pain [3, 4]. Nephropathy is also associated with injuries to

the glomeruli [5]. Eye damage or retinopathy is induced by glucose-related damage to the

blood vessels of the retina [6–8]. Type 2 diabetes correlates significantly with cardiovascular

disease, including heart attack, angina, stroke and atherosclerosis. Moreover, investigations

have shown a link between type 2 diabetes and brain diseases, such as mild cognitive impair-

ment, Alzheimer’s disease and vascular dementia [9]. Other complications include periodon-

titis [10, 11], cystic fibrosis [12], hypertension [13] and hearing impairment [14].

The parameters of innate immunity are associated with type 2 diabetes and its com-

plications [15, 16]. Therefore, it has been hypothesized that the disease is immune

dependent [16, 17]. For instance, in cases of type 2 diabetes, immune cells produce

inappropriate levels of inflammatory cytokines, which may have a deleterious effect on

the pathogenesis of type 2 diabetes [18]. Elevated serum levels of innate immunity infla-

mmatory cytokines such as IL-6 [19], IL-18 [20] and TNF-α [19] have been reported for

subjects with type 2 diabetes and related complications.

Several cross-sectional studies also confirmed the relationship between innate immunity

and type 2 diabetes. For instance, studies were made of non-diabetic subjects and patients

with type 2 diabetes determined as impaired glucose tolerance or impaired fasting glucose.

They identified that innate immunity soluble molecules, such as C-reactive protein (CRP)
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and its related cytokines, are: positively associated with insulin resistance, plasma insulin

concentration, circulating triglyceride level, and BMI and waist circumference measure-

ments; and negatively correlated with HDL concentration [21]. Additionally, it has been

documented that exercise can improve type 2 diabetes complications through its immuno-

modulatory effects [22].

Although a significant relationship between innate immunity and type 2 diabetes has

been confirmed, it has yet to be clarified if innate immunity activation is a major mech-

anism in the induction of type 2 diabetes or if the disease activates innate immunity. It

seems that it is mutual (Fig. 1), so evaluation of innate immunity receptors and their

signaling molecules should our knowledge of the condition and relationship.

Toll-like receptors (TLRs) are the innate immune cell receptors. They play pivotal roles

in the recognition of damage-associated molecular patterns (DAMPs), which occur during

type 2 diabetes. Their recognition leads to several functions of innate immune cells,

including phagocytosis [23], cytokine production [24], and expression of co-stimulatory

molecules [25] and adhesion molecules [26, 27].

Toll-like receptor 2 (TLR2) plays significant roles in the induction of innate immune

cells through a MYD88-dependent pathway [28, 29]. Interestingly, there is some evidence

that confirms the suppressive roles of TLR2 and ligand interactions on immune responses
Fig. 1 There is a mutual avenue between type 2 diabetes and innate immunity. Type 2 diabetes can
activate innate immunity and its pathogenesis can be accelerated by activated innate immunity.
CRP: C-reactive protein, SAP: Serum amyloid protein
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[30]. Therefore, TLR2 may participate in the development and pathogenesis of immune-

related diseases, including type 2 diabetes. Accordingly, the altered expression and

functions of TLR2 and its intracellular molecular signaling may be associated with the

mechanisms that result in the progression and pathogenesis of type 2 diabetes and its

related complications.
Toll-Like Receptor 2

TLR2 (TIL4, CD282) was identified and characterized in 1998 [31]. It is an innate

immune cell receptor that recognizes several pathogen-associated molecular patterns

(PAMPs) and DAMPs and subsequently activates MYD88-dependent intracellular

signaling [29]. Chromosome 4 (4p32) is the location of the TLR2 gene. This molecule

is a type I transmembrane protein that has a similar structure to other TLRs, consist-

ing of the following domains from N-terminal to C-terminal: extracellular leucine-rich

repeat (LRR) domains; a transmembrane domain; and a toll/interleukin-1 receptor

(TIR) domain. TLR2 is expressed in several immune cell types, including macrophages

and dendritic cells, and non-immune cell types, including endothelial cells, epithelial

cell lines and hepatocytes [32, 33].

TLR2 recognizes its ligands in both homodimer and heterodimer (with TLR1 or 6) forms

[34]. In its homodimer form, it recognizes lipopolysacharide (LPS), porins, lipoprotein,

lipoteichoic acid, bacterial peptidoglycan, viral hemagglutinin and glycoproteins. In its

TLR2/1 heterodimer form, it recognizes bacterial triacylated lipopeptides and synthetic

triacylated lipopeptide (Pam3CSK4) [35], and in its TLR2/6 heterodimer, it recognizes

bacterial diacylated lipopeptides and lipoteichoic acid [36]. As mentioned previously, TLR2

also recognizes some DAMPs as endogenous ligands, including human glycosaminoglycan

hyaluronan [37], β-defensin-3, heat shock proteins and high mobility group box 1 protein,

some of which are released during inflammatory diseases like type 2 diabetes [30, 38–40].

TLR2–ligand interactions lead to the activation of MAPK and MYD88-dependent

signaling pathways (Fig. 2) [41, 42]. Although MYD88-dependent signaling pathway ac-

tivation results in the phosphorylation and activation of pro-inflammatory transcription

factors, such as IRF3, IRF7, AP-1 and NF-kB, it also induces the PI3K/AKT pathway,

which leads to upregulation of IL-10, and activates SOCS proteins [43]. IL-10 is a major

anti-inflammatory cytokine [44]. SOCS proteins also suppress MAPK and JAK–STAT

signaling pathways [45]. Therefore, it appears that TLR2-ligand interaction leads to

either activation or suppression of immune responses [46, 47].

The principal mechanisms causing the activation or suppression of immune

responses by TLR2 are unclear, but it has been hypothesized that the TLR2 ligand con-

centration may be the determining factor.
Type 2 Diabetes And TLR2

DAMPs are endogenous molecules that are produced and released by several cell

systems during inflammation or infection [48, 49]. They can also be released during

type 2 diabetes [50]. Both can be recognized by TLR2, leading to the either activation

or suppression of immune cells. It has been documented that inflammation is a major

cause of pancreatic beta cell dysfunction in type 2 diabetes [51, 52]. Therefore, the

inflammatory effects of TLR2-ligand interaction may be an important factor in type 2



Fig. 2 Following TLR2-ligand interaction a signaling pathway is started using MYD88 as an adaptor
molecule. The signaling pathway leads to the activation of several transcription factors, including NF-kB,
MAPK and AP-1, and subsequently cell activation. Adapted from Bagheri et al. [29]
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diabetes progression. Nackiewicz et al. showed that interaction between TLR2/6 and its

related ligands results in the activation of macrophages and the production of IL-1 and

IL-6 as pro-inflammatory cytokines that contribute to islet inflammation [51].

Several studies confirmed the important roles played by reactive oxygen species (ROS) in

the pathogenesis of type 2 diabetes. Interestingly, activation of TLR2 by zymosan leads to

ROS production by neutrophils in a manner dependent on TLR2 NADPH oxidase but not

dependent on MAPK [53]. Hyperglycemia and chronic periodontitis also lead to upregula-

tion of TLR2 in the gingival tissue of type 2 diabetes patients [54]. Interestingly, it has been

demonstrated that insulin suppresses the expression of TLR2 at the mRNA level, possibly

via downregulation of PU.1 [55]. Kuzmicki et al. revealed that the gestational diabetes

patients had significantly higher TLR2 expression than pregnant women with normal
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glucose tolerance [56]. Interestingly, TLR2 was found to be upregulated in women who

exhibited normal glucose tolerance but later developed gestational diabetes when compared

to the women who remained normoglycemic [56]. Ahmad et al. demonstrated that the

expression levels of TLR2 were upregulated in obese individuals [57]. Additionally, they

showed that obese type 2 diabetes patients had higher expressions of TLR2 in comparison

to obese patients without type 2 diabetes [57]. The phagocytic cells of type 2 diabetes

patients have also upregulated TLR2 [58].

Another study also identified that TLR2 not only participates in the development of

type 2 diabetes but is also involved in the pathogenesis of related vascular complications

[59]. Moreover, via upregulation of IL-6 and osteopontin, TLR2 causes impaired insulin-

mediated brain activities, which are an early step in the development toward type 2 dia-

betes [60]. Duarte et al. revealed higher mRNA levels of TLR2 in gingival biopsies from

type 2 diabetes patients with chronic periodontitis in comparison to periodontally healthy

patients [61]. Thus, it appears that the upregulation of TLR2 is a marker of type 2 diabetes

rather than a marker of periodontitis. Rojo-Botello et al. also confirmed this result [62].

Another study identified that free fatty acids and high glucose levels upregulate the

expression of TLR2 and TLR6, which resulted in increased activity of monocytes and

increased production of superoxides, which are released in an NF-kB-dependent manner

[63]. Ehses et al. also reported that a high-fat diet was unable to induce insulin resistance

and beta cell dysfunction in TLR2-deficient mice [64]. Free fatty acids also play important

roles in the induction of inflammation in pancreatic beta cells via TLR2 [65]. Interestingly,

another study showed that not only TLR2 has been more highly expressed on the immune

cells of type 2 diabetes patients than on those of healthy subjects, but also the levels of

TLR2 ligands, including hyaluronan, HSP60, HSP70, HMGB1 and endotoxin, were higher

[66]. TLR2 inhibition using a TLR2 antisense oligonucleotide (ASON) leads to recovery of

insulin sensitivity and signaling in muscle and white adipose tissue of mice that were fed a

high-fat diet [67]. It has also been documented that oxidized LDL, which is produced dur-

ing type 2 diabetes, induced expression of TLR2 in macrophages [68]. The expression of

TLR2 on the monocytes of obese women is also higher [68].

TLR2 also recognizes PAMPs such as exogenous microbial ligands, so it may be hypo-

thesized that microbial infections could be important factors in the development of type 2

diabetes and may also participate in the pathogenesis of the disease. Interestingly, a study by

Ajuwon et al. revealed that peptidoglycan derived from Staphylococcus aureus resulted in

elevated TLR2 expression on the 3 T3-L1 adipocytes cell lines [69]. Chen et al. identified

that treatments with agents that improve glycemic control are associated with decreased

expressions of TLR2 and its related intracellular signaling molecules [70]. Previous studies

demonstrated that decreased methylation is associated with higher expression of the genes

[71]. Accordingly, CpGs methylation in the promoter of the TLR2 gene was significantly

decreased in type 2 diabetes patients in comparison to the levels for the controls [72].

As mentioned in the previous section, TLR2 is also able to suppress immune cells through

unknown mechanisms. A few studies demonstrated that TLR2 expression decreased during

type 2 diabetes. For instance, a study by Cortez-Espinosa et al. showed that the percentage of

TLR2-positive monocytes decreased in type 2 diabetes patients with poor glycemic control

when compared to patients with appropriate glycemic control [73]. Another study revealed

that although type 2 diabetes patients had higher serum levels of IL-6, the mRNA levels of

TLR2 were lower than in healthy subjects [74]. Interestingly, their results, which were
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obtained under in vitro conditions, demonstrate that high glucose levels lead to reduced ex-

pression of TLR2 [74]. High doses of insulin (100 IU/ml), such as those seen in cases of type

2 diabetes, also increased IL-6 and decreased TLR2 expression [74]. In an in vitro study, it

was shown that TLR4 but not TLR2 interaction with corresponded ligands leads to pancre-

atic beta cell apoptosis [75]. S6K1 plays key roles in driving insulin resistance and the induc-

tion of type 2 diabetes [76]. Kim et al. found that upregulation of S6K1 causes a significant

reduction in NF-kB and AP-1 activities, which are induced by TLR2–ligand interactions [77].

Since more than 90 % of studies reported that TLR2 is positively associated with type 2

diabetes and its complications, it seems that the inflammatory effects of TLR2 during the

condition are predominant. Collectively, it appears that TLR2 plays remarkable roles in

the development of type 2 diabetes and related complications. Therapeutic approaches

involving modulation of the expression of TLR2 and related signaling molecules could be

considered as novel approaches for the treatment of type 2 diabetes.

There have not been many studies on the variation of the TLR2 gene in type 2

diabetes are rare. Liu et al. reported on the low frequency of TLR2 Arg677Trp and

Arg753Gln polymorphisms in type 2 diabetes patients in the Chinese Han population

[78]. Another study showed that the TLR2 R753Q polymorphism was not associated

with type 2 diabetes in Mexican population [79]. Further studies need to be done to

find the relationship between genetic variations and the diseases.

Other TLRs like TLR3 and 4 also play key roles in the induction of this disease. We

discussed the roles played by TLR3 in its development in our previous review [80]. Our

research confirmed that TLR4 can also participate in its pathogenesis [81]. TLR3 and

TLR4 use another signaling pathway, the TRIF-dependent pathway, which may be im-

portant in the development of type 2 diabetes. Thus, it seems that TLR2 is not a unique

innate immunity receptor involved in the development of the disease.

Conclusion
TLR2 plays crucial roles in the initiation and pathogenesis of type 2 diabetes and related

complications. Downregulation of TLR2 can be considered as a novel approach for the

treatment of these conditions. Of particular interest in such research are these points:

TLR2 is upregulated in several tissues that are affected by adult-onset type 2 diabetes

and the gestational version of the disease.

1. TLR2 induces the production of several molecules including ROS and pro-inflammatory

cytokines, which contribute to the worsening type 2 diabetes and related complications.

2. The expression of TLR2 positively correlates with elevated serum levels of free fatty

acids and glucose as well as obesity.

3. Several exogenous and endogenous ligands induce the activation of immune cells and

the dysfunction of pancreatic beta cells in a TLR2-initiated pathway-dependent manner.

4. Different genetic variations and methylation may play key roles in the upregulation

of TLR2 in type 2 diabetes patients.

5. PAMPs participate in the activation of TLR2-initiated pathways, so it may be

hypothesized that infection can be considered a crucial candidate for the

development of type 2 diabetes and related complications.

6. Upregulation of insulin is an important mechanism that suppresses the expression

of TLR2.
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