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Protein arginine methylation (PRme), as one post-translational modification,

plays a critical role in numerous cellular processes and regulates critical cellular

functions. Though several in silico models for predicting PRme sites have been

reported, new models may be required to develop due to the significant

increase of identified PRme sites. In this study, we constructed multiple

machine-learning and deep-learning models. The deep-learning model CNN

combined with the One-Hot coding showed the best performance, dubbed

CNNArginineMe. CNNArginineMe performed best in AUC scoring metrics in

comparisons with several reported predictors. Additionally, we employed

CNNArginineMe to predict arginine methylation proteome and performed

functional analysis. The arginine methylated proteome is significantly

enriched in the amyotrophic lateral sclerosis (ALS) pathway. CNNArginineMe

is freely available at https://github.com/guoyangzou/CNNArginineMe.
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1 Introduction

Protein arginine methylation (PRme) is a common post-translational modification

(PTM), which plays a crucial role in pre-mRNA splicing, DNA damage, signaling, mRNA

translation, cell signaling, and cell fate decision (Blanc and Richard, 2017; Kumar et al.,

2017; Wang S. M. et al., 2019; Abe and Tanaka, 2020; Parbin et al., 2021; Scopino et al.,

2021). Arginine contains five potential hydrogen bond donors favourable for interactions

with biological hydrogen bond acceptors (Yang and Bedford, 2013). Types of arginine

methylation include ω-NG-monomethyl arginine (MMA), ω-NG, NG-asymmetric

dimethylarginine (ADMA) and ω-NG, NG-symmetric dimethylarginine (SDMA). A

family of nine protein arginine methyltransferases (PRMTs) catalyzes the formation
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of MMA, ADMA, and SDMA in mammalian cells (Bedford and

Clarke, 2009; Yang and Bedford, 2013; Poulard et al., 2016).

PRMTs are classified into three groups of enzymes (types I, II,

and III) according to their catalyzed types of methylations. All of

them produce MMA, and type I PRMTs (PRMT1, PRMT2,

PRMT3, Carm1/PRMT4, PRMT6, and PRMT8) form ADMA,

while Type II PRMTs (PRMT5 and PRMT9) form SDAM,

whereas PRMT7 is the only Type III enzyme, exclusively

catalyzing the formation of MMA (Poulard et al., 2016).

Arginine methylation has regulatory effects on various

physiological processes and pathological conditions;

dysregulation of the enzymes is associated with several

diseases, such as cancer (Boulanger et al., 2005; Covic et al.,

2005; Ratovitski et al., 2015; Fedoriw et al., 2019; Guccione and

Richard, 2019; Szewczyk et al., 2020). Therefore, it is essential to

accurately predict methylation sites to understand PRme

molecular mechanisms.

Traditional experiments used to identify methylation

sites—such as mass-spectrometry, methylation-specific

antibodies, and ChIP-Chip, are labour-intensive, expensive,

time-consuming, and require a high level of technical

expertise (Wilkins et al., 1999). With the increase of the

identified PRme sites, computational methods have emerged

as an efficient strategy to complement and extend traditional

experimental methods for PRme site identification.

Eleven computational predictors have been built to predict

arginine methylation, including nine machine-learning models

and two deep-learning models. In the machine-learning models,

MeMo was constructed using sequential features (Chen et al.,

2006). Shao et al. incorporated a support vector machine (SVM)

algorithm with a Bi-profile Bayes feature extraction method

(Shao et al., 2009). The model MASA combined the SVM

algorithm with protein sequences and structural characteristics

(Shien et al., 2009). The model PMeS was based on an enhanced

feature encoding scheme (Shi et al., 2012). The predictor

iMethyl-PseAAC was formed by incorporating the

physicochemical features, sequence evolution, biochemical,

and structural disorder information into the general form of

pseudo amino acid composition (Qiu et al., 2014). The model

PSSMe was based on the information gain optimization method

for species-specific methylation site prediction (Wen et al., 2016).

The predictor GPS-MSP was developed to predict different

PRme types, the first model for predicting each PRme type

(Deng et al., 2017). The model MePred-RF integrated the

random-forest algorithm with a sequence-based feature

selection technique (Wei et al., 2019). Hou and coworkers

built a model to predict PRme sites based on composition-

transition-distribution features (Hou et al., 2020). In the deep-

learning-based models, CapsNet contained a multi-layer CNN

for predicting PRme sites, which outperformed other well-known

tools in most cases (Wang D. et al., 2019). The deep-learning

model DeepRMethylSite was constructed with the integration of

One-Hot and embedding integer encodings (Chaudhari et al.,

2020). The development of these models has contributed

significantly to the discovery of PRme sites.

The limitation of experimentally verified PTM data is often

the main reason for inaccurate prediction. With the increase of

PRme sites, it is necessary to re-investigate the predictors for

PRme sites. We developed and compared several prediction

models with the reported predictors in this study. We found

that our deep-learning model CNNArginineMe had the best

performance. Moreover, we used CNNArginneMe to predict

human proteins that contained PRme sites and performed

biological function enrichment analysis for these proteins

using Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG).

2 Material and methods

2.1 Dataset preparation

Figure 1A shows the construction procedure of the dataset.

Specifically, we extracted the human PRme-containing proteins

from phosphositePlus v6.5.9.3 (Hornbeck et al., 2015) and

UniProt (Consortium, 2017). For each arginine of these

proteins, we generated the 51-aa long sequence fragment with

the central arginine. It is worth noting that if the central arginine

is located at the N-terminus or C-terminus of the protein, the

truncated sequence fragment will be padded with “_” to a length

of 51 amino acid residues. The related sequence is defined as a

positive sample if the central arginine is annotated as

methylation. Otherwise, it is defined as a negative sample. We

deduplicated the collected fragments. Accordingly, we collected

188,930 Arginine sites, including 9138 PRme sites and

179,792 non-PRme sites (Figure 1A). Because the number of

PRme sites is only 5% of non-PRme sites, we randomly extracted

40,000 non-PRme sites as negative samples and considered the

9,138 PRme sites as positive and. We separated the dataset into a

ten-fold cross-validation dataset (~90%) and an independent test

dataset (~10%). The cross-validation dataset consisted of

8245 positive samples and 35,972 negative samples, and the

independent test dataset included 893 positive samples and

4028 negative samples.

2.2 Feature encoding schemes

To create a methylated arginine predictor with high

performance, we employ 19 feature encoding schemes,

introduced below.

In the one-Hot encoding scheme (Wang et al., 2017), each

amino acid is defined as a 20n length vector. Since only one of the

20 bits is 1, it uniquely represents the twenty amino acids. The

rest feature encoding approaches (Chen et al., 2018b) include

Dipeptide deviation from the expected mean (DDE), dipeptide
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composition (DPC), Enhanced Amino Acid Composition

(EAAC), Composition of k-spaced Amino Acid Pairs

(CKSAAP), Distribution (CTDD); Enhanced GAAC

(EGAAC), Transition (CTDT), Composition of k-Spaced

Amino Acid Group Pairs (CKSAAGP), Conjoint Triad

(CTriad), k-Spaced Conjoint Triad (KSCTriad), binary

encoding (BINA), grouped tripeptide composition (GTPC),

BLOSUM62, Composition (CTDC), grouped dipeptide

composition (GDPC), Z-Scale (ZSCALE), amino acid

composition (AAC) and Grouped Amino Acid Composition

(GAAC).

2.3 Model construction

We constructed machine-learning models using seven

algorithms such as Decision Tree Classifier (Strobl et al.,

2009), Gaussian NB (Huang and Hsu, 2002), k-nearest

neighbours (Gil-Pita and Yao, 2008), Bagging Classifier (Dong

et al., 2006), Random Forest (Pang et al., 2006) (Pang et al., 2006),

Logistic Regression (Sperandei, 2014), and SVC (Cai et al., 2003).

Their default parameters were used for development, using the

corresponding packages in the sklearn of python3

(Supplementary Table S1). We also used Convolutional

Neural Network (CNN) algorithm to build deep-learning

models (parameters listed in Supplementary Table S2). Each

algorithm is described briefly below.

2.3.1 Random forest
The Random Forest classifier is an ensemble of multiple

decision tree classifiers, each of which is trained from a different

training set and features (Pang et al., 2006).

2.3.2 Support vector classifier (SVC)
SVM is one of the most robust prediction methods based on

statistical learning frameworks or VC theory (Cai et al., 2003).

Given a set of training examples, each marked as belonging to

one of two categories, and an SVM training algorithm builds a

model that assigns new examples to one category or the other,

making it a non-probabilistic binary linear classifier (although

methods such as Platt scaling exist to use SVM in a probabilistic

classification setting). An SVMmaps training examples to points

in space to maximize the width of the gap between the two

categories. New examples are then mapped into the same space

and predicted to belong to a category based on which side of the

gap they fall.

FIGURE 1
Roadmap of this study. (A) Flow diagram depicting data pre-processing. (B) The algorithms selected for model construction.
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FIGURE 2
The framework of the CNNmodel. It includes input, convolution, and output layers, where the convolution layer extracts the features from the
peptide sequence.

TABLE 1 Prediction Performances of different models integrating the One-Hot encoding approach.

Performances in ten-fold cross-validation

AUC Sn (Sp = 0.9) Sn (Sp = 0.95) Sn (Sp = 0.99)

Gaussian NB 0.6884 0.4579 0 0

Decision Tree Classifier 0.6383 0.4143 0 0

K-nearest Neighbors 0.7047 0.3149 0.3149 0.1061

Bagging Classifier 0.7678 0.5049 0.3845 0.1554

Random Forest Classifier 0.8167 0.5538 0.4234 0.2144

Logistic Regression 0.8189 0.5332 0.3925 0.1706

SVC 0.8367 0.5812 0.4355 0.2085

CNN 0.8708 0.6642 0.5174 0.2231

Performances in the independent test

AUC Sn (Sp = 0.9) Sn (Sp = 0.95) Sn (Sp = 0.99)

Gaussian NB 0.6891 0.4528 0 0

Decision Tree Classifier 0.6347 0.409 0 0

K-nearest Neighbors 0.7029 0.314 0.314 0.1136

Bagging Classifier 0.7583 0.4943 0.3567 0.1477

Random Forest Classifier 0.8121 0.5345 0.4131 0.2165

Logistic Regression 0.8199 0.5255 0.3757 0.1409

SVC 0.8365 0.5756 0.4206 0.1929

CNN 0.8671 0.6538 0.5025 0.1902
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2.3.3 K-Nearest Neighbours algorithm
K-Nearest Neighbours algorithm is a statistical classifier that

calculates the distance between the data features to be classified

and the training data features and sorts them, takes out the K

training data features with the closest distance; then determines

the new sample category according to the category of the K

similar training data features: if they all belong to the same

category, then the new sample also belongs to this category;

otherwise, each candidate category is scored, and the category of

the new sample is determined according to a specific rule (Gil-

Pita and Yao, 2008).

2.3.4 Gaussian NB
Bayes Theorem describes the probability of an event based on

prior knowledge of conditions related to the event. Gaussian

Naive Bayes is one classifier model that assumes that the prior

probability of a feature is usually distributed (Huang and Hsu,

2002).

2.3.5 Decision tree classifier
The decision tree model is a tree structure; each internal node

represents a test on an attribute, each branch represents a test

output, and each leaf node represents a category. When running,

using training data to establish a decision tree model based on the

principle of minimizing the loss function; and when predicting,

using the decision tree model to classify new data. It includes

three steps: feature selection, decision tree generation, and

decision tree pruning (Strobl et al., 2009).

2.3.6 Bagging classifier
The bagging algorithm is representative of parallel integrated

learning, which is mainly divided into four steps 1) cleaning the

data according to the actual situation; 2) random sampling: repeat

T times and randomly select T sub-samples from the sample each

time; 3) individual training: Put each sub-sample into individual

learner training; 4) classification decision: Use voting method

integration to make the classification decision (Dong et al., 2006).

2.3.7 Logistic regression
It is the preferred method for binary classification tasks

(Sperandei, 2014). It outputs a discrete binary result between

0 and 1. Moreover, logistic regression measures the relationship

between the dependent variable (the label we want to predict) and

one or more independent variables (features) by using its inherent

logistic function to estimate probability. These probabilities need

to be binarized. The task of the logistic function is also known as

the sigmoid function, which is an S-shaped curve. It can map any

real value to a value between 0 and 1, but it cannot be 0 or 1. Then

use a threshold classifier to convert values between 0 and 1 to 0 or

1. Maximum likelihood estimation is a general method for

estimating parameters in statistical models.

2.3.8 The deep-learning CNN algorithm
Deep learning is a sub-discipline of machine learning. Deep

learning is based on artificial neural networks with representation

learning that aim to mimic the human brain. The key difference

between deep learning and traditional machine learning

algorithms such as support vector machine (SVM) and

random forests (RF) is that deep learning can automatically

learn features and patterns from data without handcrafted

feature engineering (Wen et al., 2020). We took the 1D-CNN

Model with One-Hot encoding (CNNOH) as an example to

FIGURE 3
Performances of different models with the One-Hot feature
for predicting PRme sites. (A) The AUC values of different models
in ten-fold cross-validation. (B) The AUC values of different
models in the independent test.
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illustrate the deep-learning network framework. This model

contains four layers, listed below (Figure 2).

1. Input layer. The One-Hot encoding encodes each input

sequence of 51 amino acids to a 51 × 21 binary matrix.

2. Convolution layer. It consisted of two convolution sublayers,

each followed by a max-pooling sublayer. The first convolution

sublayer includes 256 different convolution kernels with a size

of 9 × 21. Each kernel is applied to the 51 × 21 matrix and

results in a feature vector with the size of 43 (= 51–9+1). Thus,

the 256 kernels output a 43 × 256matrix. Next, a pooling kernel

with the size of 2 is applied to the feature matrix and produces a

21 × 256 matrix. In the second convolution sublayer,

32 different convolution kernels with the size 7 × 256 are

applied to generate a 15 × 32 matrix, followed by a pooling

kernel with size two that produces a 7 × 32 data matrix.

3. Fully connected layer. The 7 × 32 data matrix generated from

the convolution layer is nonlinearly transformed to

128 representative features.

4. Output layer. The modification score is calculated based on

the 128 features using the “Sigmoid” function.

2.4 Model training

To avoid overfitting, we use early stopping, a widely used

method to screen the better models, and use the cross-validation

method to get the best prediction model by integrating all the

better models.

2.5 Performance evaluation

To evaluate the performance of models, we used Sensitivity

(Sn), Specificity (Sp), and the area under the Receiver Operating

Characteristic (AUC) as the performance metrics. Sn defines the

model’s ability to identify positive residues from actual positive

residues; the Sp measures the model’s ability to identify the

negative samples from the actual negative samples; AUC

measures the comprehensive performance of the model.

2.6 Statistical methods

The paired student’s t-test was used to test the significant

difference between the mean values of the two paired

populations. The threshold is set to 0.05.

2.7 GO and KEGG analysis

Gene Ontology (GO) analysis for enriched “biological

process” terms and enriched genes in KEGG pathways were

performed using R (v4.0.4), including clusterProfiler, topGO,

TABLE 2 Prediction performances of the models integrating different algorithms and various feature encoding approaches in ten-fold cross-
validation.

Random forest SVC Logistic regression CNN

GAAC 0.606 0.609 0.566

GDPC 0.71 0.658 0.635

GTPC 0.736 0.667 0.693

CTDD 0.718 0.693 0.692

CKSAAGP 0.737 0.676 0.699

CTDT 0.734 0.709 0.696

KSCTriad 0.74 0.699 0.726

CTriad 0.745 0.699 0.726

EGAAC 0.736 0.713 0.731

CTDC 0.756 0.72 0.704

AAC 0.775 0.725 0.701

ZSCALE 0.805 0.738 0.772

DPC 0.804 0.759 0.798

DDE 0.801 0.766 0.798

CKSAAP 0.8 0.78 0.801

BLOSUM62 0.807 0.821 0.834 0.848

One-Hot 0.813 0.839 0.822 0.871

EAAC 0.82 0.819 0.841 0.859
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org. Hs.eg.db, AnnotationDbi, stats4, BiocGenerics, Iranges, and

enrichplot packages.

3 Results

3.1 The CNN-based model performed
better than traditional machine-learning-
based models

We constructed eight prediction models by integrating seven

machine-learning algorithms and the CNN algorithm with the

simple One-Hot encoding approach and compared their

performances. The seven machine-learning algorithms

included Random Forest, SVC, K-nearest Neighbors Classifier,

Gaussian NB, Decision Tree Classifier, Bagging Classifier, and

Logistic Regression. The result metrics (AUC, Sn (Sp = 0.9), Sn

(Sp = 0.95), Sn (Sp = 0.99)) were used for evaluation in the ten-

fold cross-validation and the independent test (Table 1 and

Figure 3). The average AUC value and the Sn values of

CNNOH model were the largest among the eight models.

Therefore, CNNOH is the best model and has excellent

predictive ability. Additionally, among the machine-learning

models, the average AUC values of SVC, Logistic Regression

and Random Forest algorithms were 0.8367, 0.8189, and 0.8167,

respectively, which were the three best machine-learning models.

FIGURE 4
Performances of the CNN models with different features for
predicting PRme sites. (A) The AUC values of different models
using ten-fold cross-validation. (B) The AUC values of different
models in the independent test.

FIGURE 5
The comparison of CNNArginineMe and reported classifiers.
(A) AUC values of reconstructed CNNArginineMe and
DeepRMethylSite. (B) The comparison between CNNArginineMe
and two reported online prediction models, i.e., GPS-MSP
and PRmePRed.
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FIGURE 6
GO and KEGG analysis of human arginine methylated proteome. (A) GO enrichment analysis of arginine methylated proteome predicted by
CNNArginineMe. (B)GOEnrichment analysis of known argininemethylated proteins. (C) KEGG enrichment analysis of argininemethylated proteome
predicted by CNNArginineMe. (D) KEGG enrichment analysis of known arginine methylated proteins. (E) Venn Diagram of reported and predicted
arginine methylated proteins involved in the ALS.
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3.2 Performance comparison of models
with different encoding approaches

With the One-Hot encoding approach, we found that the

CNN algorithm and three machine-learning algorithms

(i.e., SVC, Logistic Regression and Random Forest) had the

highest performances compared to others. To evaluate the

effect of encoding approaches on the prediction performance,

we collected 17 other encoding approaches and compared them

with the One-Hot approach, integrated with the three best

machine-learning algorithms (see methods for details). Table 2

summarizes the AUC values of these models in terms of ten-fold

cross-validation. It can be seen that the machine-learning models

with three encoding approaches (i.e., BLOSUM62, One-Hot and

EAAC) achieved the largest AUC values. Accordingly, we

constructed CNN models using the three encoding

approaches. Figure 4 shows that the average AUC value of

CNNOH is statistically larger than those of CNNEAAC and

CNNBLOSUM62 in the independent test, although CNNOH and

CNNBLOSUM62 had similar AUC values in ten-fold cross-

validation. Based on these observations, we chose CNNOH as

the predictor of arginine methylation and named it

CNNArginineMe.

3.3 Comparison of CNNOH with reported
predictors

To examine the predictive quality of the proposed

CNNArginineMe, we compare it with reported PRme site

predictors. DeepRMethylSite is the latest deep-learning

predictor with the best performance compared to other

reported ones (Chaudhari et al., 2020). To fairly compare

CNNArginineMe and DeepRMethylSite, we used the dataset

to construct DeepRMethylSite to rebuild CNNArginineMe

and employed its independent test set for evaluation.

Figure 5A shows that the AUC value of CNNArginineMe is

0.847, which is higher than that (0.821) of DeepRMethylSite.

Furthermore, we selected two more reported predictors

developed recently that provide available online prediction

websites for comparison, i.e. PRmePRed (Kumar et al., 2017)

and GPS-MSP (Deng et al., 2017). Due to the upload limit of

the online websites, we randomly 100 sequences from our

independent dataset, where the proportion of positive

samples was the same as that in the independent test set.

We used these 100 sequences to benchmark the three

classifiers. Figure 5B shows that CNNArginineMe had the

best performance among these models. Therefore,

CNNArginineMe has outstanding performance for

predicting PRme sites.

3.4 Prediction and functional analysis of
arginine methylated proteome

We used CNNArginineMe to predict PRme sites from

human proteome with the threshold value corresponding to

the specificity of 0.95. We predicted 47888 PRme sites from

19023 proteins, most of which have not been reported. We

performed functional analysis of the predicted arginine

TABLE 3 Number of PRme sites in the ALS-related proteins.

Uniprot ID Protein name Number of predicted
PRme sites

Number of known PRme
sites

Q9Z269 VAPB 2 0

P09651 ROA1 11 8

P12036 NFH 5 0

P22626 ROA2 12 0

P35637 FUS 29 22

P41219 PERI 10 0

P50995 ANX11 3 0

P68366 TBA4A 2 0

Q13148 TADBP 2 1

Q14203 DCTN1 17 0

Q15303 ERBB4 3 0

Q53GS7 GLE1 1 0

Q96CV9 OPTN 3 0

Q96JI7 SPTCS 1 0

Q99700 ATX2 26 1

Q9UMX0 UBQL1 9 0
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methylated proteome using Gene Ontology and the KEGG

pathway. The GO enrichment analysis showed that arginine

methylated proteome is enriched in RNA splicing, RNA

catabolic process, mRNA splicing, mRNA catabolic

process, and regulation of mRNA metabolic process

(Figure 6A). It is similar to the enrichment of known

PRme-containing proteins (Figure 6B). Moreover, based on

the KEGG pathway, the predicted arginine methylated

proteome is significantly enriched in amyotrophic lateral

sclerosis (ALS) (Figure 6C). This same observation could

be made for reported PRme-containing proteins (Figure 6D).

The ALS pathway contains 244 proteins, of which

106 without methylation annotation were predicted by

CNNArginineMe (Figure 6E). According to the

Amyotrophic Lateral Sclerosis Online Database,

154 proteins are linked to ALS, and 16 of them are

predicted to be arginine methylated (Table 3) (Abel et al.,

2012; Yun and Ha, 2020). Out of the 16 proteins, four

(i.e., ATX2, FUS, ROA1, and TADBP) contain known

PRme sites (Rappsilber et al., 2003; Ong et al., 2004; Guo

et al., 2014). Moreover, six of the 16 proteins (i.e., ANXA11,

FUS, HNRNPA2B1, HNRNPA1, TARDBP, and VAPB) have

common genetic mutations in ALS, suggesting that these

mutations may affect arginine methylation (Kabashi et al.,

2008; Kim et al., 2013; Picchiarelli et al., 2019; Cadoni et al.,

2020; Nahm et al., 2020). In summary, the arginine

methylated proteome predicted by CNNArginineMe has

similar enrichment features to the known arginine

methylated proteins, which may assist the understanding

of the functions of arginine methylation.

4 Discussion and conclusion

Many classifiers for predicting various types of PTM sites have

been developed by integrating machine-learning or deep-learning

algorithms with different encoding features (Chen et al., 2018a;

Huang et al., 2018; Chen et al., 2019; Lyu et al., 2020; Zhang

et al., 2020; Zhao et al., 2020; Sha et al., 2021; Wei et al., 2021;

Zhu et al., 2022). It has been found that the models based on deep-

learning algorithms have better prediction performances than those

based on traditional machine-learning algorithms. The same

observation is also made in this study (Table 2). The

CNNArginineMe model integrating the CNN algorithm and the

One-Hot encoding approach compares favourably to the machine-

learningmodels integrating distinct algorithms and various encoding

features (Table 2). These observations indicate that deep-learning

algorithms must be prioritized during model construction to predict

PTM sites. In this study, we compared CNNArginineMe with three

reported classifiers for predicting PRme sites, i.e., DeepRMethylSite,

GPS-MSP and PRmePRed. CNNArginineMe shows superior

performance. It may be due to several reasons. Firstly, our dataset

for model construction is relatively large, and a deep-learning model

with excellent performance requires big data. Secondly, the early stop

strategy is used for model construction to avoid overfitting.

Nevertheless, CNNArginineMe fails to distinguish between

different PRme types. Shortly, we will develop new models for

predicting PTM sites with different PRme types.

We used CNNArginineMe to predict arginine methylated

proteome and performed GO and KEGG analyses to understand

the role of arginine methylation. Our results show that critical

proteins of ALS are highly arginine methylated, implying that

ALS is related to arginine methylation. Besides, arginine

methylation is related to RNA splicing. This observation is

consistent with the reports that gene expression is activated or

repressed by arginine methylation (Fulton et al., 2019), and

splicing fidelity is reduced by inhibiting symmetric or

asymmetric demethylation of arginine, mediated by

PRMT5 or type I PRMTs (Fong et al., 2019).

In summary, accurate identification of PRme sites could be

effective in deciphering the functional and structural characteristics

of protein methylation that plays an essential role in cell biology and

disease mechanisms, and it will help understand transcriptional

regulation, RNA splicing, DNA damage repair, cell differentiation,

and apoptosis (Al-Hamashi et al., 2020).
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