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Xeroderma pigmentosum complementation group C (XPC) is a DNA damage recognition
protein essential for initiation of global-genomic nucleotide excision repair (GG-NER).
Humans carrying germline mutations in the XPC gene exhibit strong susceptibility to skin
cancer due to defective removal via GG-NER of genotoxic, solar UV-induced dipyrimidine
photoproducts. However, XPC is increasingly recognized as important for protection
against non-dermatologic cancers, not only through its role in GG-NER, but also by
participating in other DNA repair pathways, in the DNA damage response and in
transcriptional regulation. Additionally, XPC expression levels and polymorphisms likely
impact development and may serve as predictive and therapeutic biomarkers in a number
of these non-dermatologic cancers. Here we review the existing literature, focusing on the
role of XPC in non-dermatologic cancer development, progression, and treatment
response, and highlight possible future applications of XPC as a prognostic and
therapeutic biomarker.

Keywords: nucleotide excision repair (NER), base excision repair (BER), lung cancer, biomarker, bladder cancer,
chemotherapy, xeroderma pigmentosum (XP)
INTRODUCTION

Genomic instability from altered DNA repair processes is a hallmark of cancer, playing an
important role in both tumor development and treatment response (1). Importantly, the
therapeutic efficacy of many chemotherapy drugs and radiation relies on the induction of DNA
damage as a means of selectively eliminating rapidly proliferating tumor cells. (2).

Daily DNA damage comes from a variety of different sources exogenous to the cell, such as
ultraviolet (UV) light, tobacco smoking, and other chemicals, as well as endogenous sources such as
oxidative stress caused by normal cellular metabolism (3). The nucleotide excision repair (NER)
pathway is the primary DNA repair pathway involved in repair of bulky, helix distorting intrastrand
DNA crosslinks caused by UV or platinum chemotherapeutics, as well as bulky monoadducts
induced by environmental carcinogens including B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE) and
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aflatoxin B1 (AFB1). Much of our understanding of NER comes
from studying the repair of UV-induced lesions, such as
pyrimidine-pyrimidone (6-4) photoproduct (6–4PPs) and
cyclobutane pyrimidine dimers (CPDs), for which NER serves
as the primary repair pathway (4). Critical to its role in cancer
therapeutic response, NER is the primary repair pathway for 1,2-
d(GpG) and 1,3-d(GpTpG) intrastrand platinum crosslinking
lesions, the predominant DNA adducts produced by the
commonly used chemotherapeutic drugs cisplatin and
carboplatin (5). The NER pathway consists of 4 essential steps:
recognition, incision/excision, re-synthesis, and ligation (2).
Differing in the mechanism of DNA damage recognition, NER
is divided into two subpathways: global genomic NER (GG-
NER) and transcription-coupled NER (TC-NER). Both NER
subpathways repair helix-destabilizing DNA lesions, with TC-
NER rapidly repairing damage in actively transcribed genes. TC-
NER is initiated when the RNA polymerase II complex is
physically stalled at the site of a DNA damaging lesion; this
subsequently triggers recruitment of CSB and coordinated
recruitment of other TC-NER recognition proteins including
CSA, XAB2, UVSSA, USP7 and others (6, 7). Initiated by the
xeroderma pigmentosum group C (XPC) complex, GG-NER
recognizes helix-distorting lesions anywhere throughout the
genome but is primarily responsible for the slower repair of
damage on non-transcribed portions (8, 9). Following damage
recognition, subsequent NER repair then progresses identically
between both NER subpathways. XPC is critical to damage
recognition and initiation of GG-NER, but dispensable for TC-
NER (9).

There is a clear and established association between defective
NER and tumor development, as illustrated by the rare autosomal
recessive congenital syndrome xeroderma pigmentosum (XP). XP
patients are characterized by defective nucleotide excision repair
(NER) of sunlight-induced dipyrimidine photoproducts (10).
Depending on the mutated NER protein, XP patients present
with a spectrum of disease, which consists of various neurological
degenerative disorders and even developmental defects, but all XP
patients present with extreme photosensitivity and a strong
predisposition to skin cancer (10, 11). Those with a mutation in
XPC (XP-C), a common cause of XP in Europe, the United States
and North Africa, present with classical XP skin manifestations,
including photosensitivity and early dermatologic malignancies,
without neurological or developmental defects (11, 12). Indeed,
both non-melanomatous skin cancers and melanomas develop
more often (10,000 and 2,000-fold increased incidence) and at a
much younger age in XP compared to non-XP populations, with a
median age at diagnosis of 9 and 22 years respectively (13).
Importantly, although XP patients most commonly die of skin
cancers or of progressive neurologic diseases, internalmalignancies
are frequently described in XP patients, with a 39-year prospective
cohort study finding internal cancers as the cause of death in 17%,
highlighting an important role of NER in non-dermatologic
malignancies as well (13, 14).

XPC is increasingly recognized as an important player in solid
organ cancer development and response to cancer therapeutics,
both through its canonical role in GG-NER and through other
Frontiers in Oncology | www.frontiersin.org 2
repair pathways. Here we review the most recent updates on the
role of XPC in non-dermatologic malignancies.
XPC ROLE IN DNA REPAIR

XPC in GG-NER
XPC is essential to GG-NER, serving as the primary initiating
factor. XPC scans the genome in a 5’-to-3’ directionality until it
detects strand distortion caused by DNA damaging lesions,
binding the opposite strand in a sequence-independent
manner (8, 15, 16). The XPC protein in vivo is found in a
heterodimeric form with RAD23B (human orthologue HR23B)
which further stimulates XPC’s role in NER repair (17). Centrin2
forms a heterotrimer with XPC/HR23B, which has been found to
augment binding to DNA damage sites (18). While the XPC
complex is typically sufficient to identify NER-repaired DNA
lesions, some minimally strand-distorting lesions, such as UV-
induced CPD, require recognition by DDB2 and DDB1, which
then recruit XPC to the damage site (7).

After the initial recognition of a helix distorting lesion by either
XPC or RNA polymerase II, NER proceeds in a stepwise sequence
that involves recruitment of several proteins. Transcription factor
IIH complex (TFIIH) partially unwinds the DNA duplex at the site
ofDNAdamage, creating an opened bubble (16, 19). TFIIH further
coordinates repair by interacting with XPA, stabilizing the bubble
along with the single stranded binding protein RPA, and finally
engagingwith the nuclease (XPF/ERCC1) thatmakes an incision 5’
of the lesion. Subsequent repair involves coordination of repair
synthesis by DNA polymerases d, ϵ or k, subsequent incision 3’ of
the DNA lesion by XPG to remove the damaged strand, and finally
repair of the nick by DNA ligases. Several excellent reviews are
available which expand upon and provide excellent graphical
representation of the steps involved in NER (7, 16, 20).

A number of recent studies highlight that post-translational
modifications of XPC, including polyubiquitination, SUMOylation
and phosphorylation, likely impact XPC efficiency to detect DNA
damage and initiate NER (21–25). Polyubiquitination of XPC
appears to aid in repair of UV-damaged DNA, by allowing XPC
to replaceDDB1/DDB2 proteins and in promoting XPC binding to
the site of DNA damage (21, 25). Tight control of XPC
ubiquitination is likely required to ensure DNA repair and may
be dysregulated in human cancers. For instance, overexpression of
ubiquitin ligases, such as Cullin-RING ubiquitin ligase 4 A
(CUL4A), is common in cigarette smoke-related lung cancer, and
inversely correlates to XPC expression (26). SUMOylation of XPC
appears to stabilize the protein, preventing proteasome degradation
and enhancing GG-NER in the setting of UV-induced DNA
damage (22). XPC phosphorylation is closely regulated after
DNA damage, with phosphorylation at serine 982 likely mediated
by the DNA damage response proteins ATM and ATR, and
dephosphorylation mediated by wild-type p53-induced
phosphatase 1 (WIP1) (27, 28). Following UVB exposure, serine/
threonine casein kinase 2 (CK2) phosphorylates XPC at serine 94,
leading to recruitment of ubiquitinatedXPC and downstreamNER
factors toDNAdamage sites (24). PhosphorylationofXPCat serine
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892 seems to decrease repair of UVB-induced DNA damage,
including CPD and 6-4PP, while serine 94 phosphorylation
promotes GG-NER repair (24). However, whether these
modifications impact the role of XPC on other repair pathways,
or how they affect XPC’s role in repair of DNA damage from other
sources, such as cisplatin, is not well-studied. Further, modification
of other proteins may impact XPC function. For instance, histone
acetylationmay decrease NER through attenuated XPC interaction
at sites of DNA damage (23). These modifications, which regulate
XPC function in GG-NER repair and the downstream DNA
damage response, are likely to impact cancer risk and response to
therapy, although this specific link requires more study.

XPC in Other DNA Repair Processes
It is important to note the mounting evidence highlighting an
important link between the role of XPC in DNA repair, DNA
damage response and transcriptional regulation and cancer
Frontiers in Oncology | www.frontiersin.org 3
development. These are summarized in Figure 1. In particular,
the impact of XPC DNA damage repair extends beyond its
canonical role in GG-NER. XPC may play a role as a more global
DNA damage sensor. Recent in vitro studies have elucidated a role
of Rad4, the yeast homolog of XPC, in the recognition and repair of
multiple contiguous mismatched base pairs (29). Specifically, in
vitro binding and conformational studies suggest that Rad4/XPC
interacts with the nucleotides directly across from the mismatched
bases (on the complementary strand), leading to subsequent
unwinding, DNA bending, and flipping out of the mismatched
nucleotides and stabilization of this conformation to allow for
subsequent DNA repair (29, 30). These studies suggest a
mechanism by which XPC acts as a universal DNA damage
sensor, recognizing sites of DNA distortion and binding in a
lesion-agnostic fashion (“non-specific binding”). Indeed, recent
studies suggest that the Rad4/XPC-DNA binding leads to
different conformational changes based on the lesion type, such
that XPC bound at the site of UV-induced DNA damage (“specific
binding”) facilitates recruitment and initiation of NER while “non-
specific” binding to minimally strand-distorting lesions facilitates
non-NER repair (29, 30). Extensive structural analysis has been
done to understand sequence and structural changes of DNA
lesions sensitive and resistant to Rad4/XPC binding and
subsequent GG-NER efficiency (31).

Mounting evidence points to a role of XPC in base excision
repair (BER). BER is the primary repair mechanism of small, base
modifications that do not distort the DNA helical structure.
Fibroblasts obtained from XP-C patients displayed increased
oxidative DNA damage after UVB-irradiation compared to
fibroblasts without an XPC defect. These UV-treated XPC
deficient fibroblasts had decreased gene expression of a number
of factors involved in BER, including OGG1, MYH, APE1, LIG3,
XRCC1, and Polb, and this correlated with decreased protein
expression in three BER-glycosylases: OGG1, MYH, and APE1
(32).Likewise,XPCdeficientfibroblast cell lines showlower levelsof
APE1andOGG1mRNAcompared toXPCproficient cells, however
transiently complementing these cells with XPC only augmented
the level and function of OGG1 but not APE1, suggesting a
differential impact of XPC on OGG1 glycosylase activity (33).
Numerous in vitro studies support a role of XPC in augmenting
BER activity, particularly through augmentation of the glycosylase
activities of OGG1, SMUG1, 3-methyladenine DNA glycosylase
(MPG) and thymine DNA glycosylase (TDG) (34–37). XPC may
alsoaugmentBERthroughDNAdamage recognition. Interestingly,
live cell imaging studies show a rapid recruitment of both cockayne
syndrome protein B (CSB, involved in TC-NER) and XPC to the
BER-repaired 8-dihydro-8-oxodeoxyguanosine (8-OHdG) DNA
lesion, suggesting a role of XPC in early recognition of BER-
repaired lesions, even though these do not cause significant
strand distortion (38). This may be further explained by the
recent finding that DDB2 rapidly localizes to 8-OHdG lesions,
preceding and augmenting XPC and subsequent OGG1
recruitment (39). This role of DDB2 in recruiting XPC to
minimally helix-distorting lesions is similar to that modeled in
GG-NER repair. Interestingly, this recent study suggested a specific
role of XPC andDDB2 in augmentingOGG1-mediated BER repair
FIGURE 1 | Schematic representation of the impact of XPC in dermatologic
and non-dermatologic malignancies. Both XPC mutations and transcriptional
regulation of XPC expression levels are described as impacting risk of the cancer
development and response to treatment. Post-translational modifications of XPC
include ubiquitination, SUMOylation and phosphorylation, which impact XPC
expression levels and XPC function. XPC is a versatile DNA damage sensor,
leading to differing binding affinities and DNA-XPC conformational changes
for UV-induced DNA damage (“specific binding”, in concert with the UV-DDB
complex, leading to GG-NER) and other DNA damage (“non-specific binding”,
leading to other DNA repair pathways). Differential response of XPC to DNA
damage leads to classical GG-NER or alternate DNA repair, altered transcriptional
regulation, and DNA damage response ultimately impacting cancer risk and tumor
cell toxicity. XPC, xeroderma pigmentosum group c; Ub, ubiquitin; SUMO, small
ubiquitin-like modifier; P, phosphorylation site; DDB1, DNA damage-binding 1;
DDB2, DNA damage binding 2; Cen2, centrin 2; HR23B, human UV excision
repair protein RAD23; GG-NER, global genomic nucleotide excision repair; BER,
base excision repair; MMR, mismatch repair; DSB, double strand break; HRR,
homologous recombination repair; DDR, DNA damage response; AML, acute
myeloid leukemia; CML, chronic myeloid leukemia; MM, multiple myeloma.
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of 8-OHdG lesions in non-transcribed, heavily chromatin-bound
genomic regions, which differed from the mechanism observed for
repair of 8-OHdG lesions in actively transcribed regions, which
ultimately involved recruitment of XPA by OGG1 but was
independent of XPC and DDB2 (39). In vivo studies further
support a supportive role of XPC in BER. Xpc deficient mice had
increased oxidative stress and mutation load over time with
treatment with pro-oxidant agents, which was not observed in
Xpa deficient and wild type mice (40). However, there was a
comparable increase of 8-OHdG les ions by l iquid
chromatography electrospray tandem mass spectrometry in the
uterus of bothXpc deficient andXpc proficientmice after treatment
with equine estrogen, suggesting the effect may be specific to the
damaging agent, duration of treatment or tissue-specific (41).
Urethane-treated Xpc-/- mice developed an increase in lung
adenocarcinomas compared to their wild-type counterparts, but
treatment with the anti-oxidant N-acetylcysteine (NAC) decreased
tumor development, further supporting a link between XPC,
oxidative damage and cancer development (42). Although
modified base recognition and augmentation of BER glycosylase
and APE1 endonuclease activity have all been proposed, exactly
how XPC is involved in BER of oxidized DNA lesions and the
subsequent cancer development remain areas of active research.

Mismatched DNA nucleotides, particularly those occurring
during replication, are repaired by DNA mismatch repair
(MMR). In humans, deficient MMR, through both sporadic
and inherited genetic disease, is linked to aging and cancer by
promoting genomic instability (43, 44). In particular, defective
MMR leads to Lynch syndrome, characterized by a high lifetime
risk of colon and other cancer, and MMR defects are associated
with ~10-20% of sporadic colon cancers (45, 46). Increasingly,
cooperative and possibly overlapping roles of both MMR and
NER proteins have been implicated in the recognition and repair
of some DNA interstrand crosslinks (ICLs), one of the most
cytotoxic types of DNA damage. ICLs are caused by a number of
env i ronmenta l tox ins as we l l a s commonly used
chemotherapeutic agents, including cisplatin, carboplatin and
oxaliplatin commonly used to treat solid-organ tumors (47).
Repair of these lesions requires cooperation between different
DNA repair pathways, including the Fanconi anemia (FA), NER,
homologous recombination repair (HRR) and translesion
synthesis (TLS) pathways (47). XPC, along with other NER
proteins, were found to be essential for repair of site-specific
ICLs caused by psoralen and mitomycin C in vitro using a host-
cell reactivation assay (48). Further, both the MMR and NER
pathways have been implicated in the repair of triplex-forming
oligonucleotide (TFO)-directed psoralen ICLs (Tdp-ICLs) (49–
52). Specifically, in MSH2-deficient human cell-free extracts,
both binding by the XPC complex and repair of Tdp-ICLs
were decreased, further highlighting a cooperative role between
NER and MMR ICL repair (53, 54). Additionally, two NER
protein complexes, XPC-Rad23B and XPA-RPA can bind
psoralen ICLs in cells and in vitro, forming a complex with the
MMR complex MutSb, without which cell toxicity to psoralen
increases (55). Further evidence of a connection between XPC
and MMR is evidenced in cisplatin-treated XPC deficient cells, in
Frontiers in Oncology | www.frontiersin.org 4
which altered expression was noted in three MMR genes:MLH1,
MSH2, and MSH6 (56). Cells deficient in Xpa and Msh2 are less
sensitive to UV-induced cellular toxicity compared to Xpa-/-
cells with normalMsh2 expression, suggesting a role of MSH2 in
the DNA damage response but not necessarily in NER repair of
UV-induced DNA damage (57). Finally, combined defects in
NER andMMR have been associated with increased UV-induced
skin cancers. Combined Xpa and Msh2 deficiencies in mice are
associated with an increase in UV-induced skin cancers, and
similarly Xpc-/-; Msh2-/- mice developed UV-induced skin
cancers earlier than their wild-type counterparts or those
deficient in either Xpc or Msh2 alone, suggesting cooperative
but non-overlapping roles in UV-induced DNA damage repair
(57, 58). An XPC-deficient lymphoblastoid cell line modified by
acquired tolerance to the MMR-dependent chemical N-methyl-
N-nitrosourea (MNU) exhibited decreased MSH6 expression
and MMR efficiency (59). These XPC-deficient, MSH6-low
cells effectively repaired UV- and cisplatin-induced lesions by
TC-NER, suggesting that the previously observed MMR-NER
interactions may rest in interactions with proteins involved in
GG-NER, particularly in cancer development. Of interest, the
authors of this study noted unusual difficulty in producing MMR
deficient variants in two XPC-deficient lymphoblastoid cell lines,
further suggesting possible yet still undefined interactions
between XPC and MMR functions. Overall, these findings
suggest that XPC may cooperate with MMR proteins in the
identification and repair of strand-distorting configurations of
mismatched nucleotides and ICLs and may serve a role in
regulation of the MMR pathway for some types of DNA
damage, impacting of mutagenesis.

Additionally, XPC may play a role in DNA double strand
break (DSB) repair. Long-term XPC knock-down in HeLa cells
was associated with increased sensitivity to the chemotherapeutic
drug, etoposide, the cytotoxicity of which is dependent on
replication-induced DSB; gamma-irradiation of these cells lead
to cell cycle alterations without altered clonogenic survival (60).
Furthermore, the increased somatic and germ line mutation
rates, as measured by expanded simple tandem repeat (ESTR),
were increased in Xpc deficient mice exposed to whole body
irradiation (61). More direct evaluation of NHEJ activity in vitro
using Manley extracts from XPC knock-down HeLa cells showed
a capacity of NHEJ rejoining with linear but not circular DNA
(60). XPC deficiency has also been associated with inhibition of
BRCA1 expression on bladder cancer cells treated with cisplatin,
resulting in accumulation of DNA damage and pointing to a
potential indirect role of XPC in homologous recombination or,
more likely, replication-induced double strand breaks (62).
Overall, this suggests a complex, likely indirect role of XPC in
the repair of multiple types of DNA damage.

The impact of XPC in DNA damage is not solely associated
with its roles in DNA repair but has been implicated in altered
downstream DNA damage response (Figure 1). For instance, at
sites of UV-induced DNA damage, XPC attracts and physically
interacts with Ataxia telangiectasia- and Rad3- related (ATR)
and Ataxia telangiectasia mutated (ATM) proteins, two kinases
important in DNA damage- and replication stress-induced
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checkpoint activations. Both DDB2 and XPC facilitate ATR and
ATM phosphorylation and subsequent activation, leading to
phosphoactivation of ATR- and ATM- substrates involved in
cell cycle regulation (including Chk1 and Chk2) (63).
Additionally, XPC facilitates ATR- and ATM- recruitment to
sites of DNA damage as well as two proteins, BRCA1 and
RAD51, known to be involved in replication and HRR (63).
XPC has been implicated in enhancing DNA damage–induced
apoptosis through inhibition of caspase-2 transcription (64), and
both increased apoptosis and altered autophagy are observed in
cells exposed to carcinogenic cigarette smoke and arsenic
trioxide in vitro and in vivo (65, 66). Independent of DNA
damage, XPC silencing and overexpression in mouse and human
embryonic stem cell models support a role of XPC in global DNA
demethylation through augmentation of TDG avidity (37, 67).
XPCmay have an even broader role on transcriptional regulation
through coordination with other transcription factors and has
been linked with regulation of a number of genes, including
tumor suppressor genes, even in the absence of DNA damage
(37, 68, 69). XPC involvement in the DNA damage response may
also impact cell redox homeostasis and also in local
inflammation. For instance, silencing of XPC in arsenic
trioxide-treated human glioma cells was associated with
decreased anti-oxidant factors and subsequent increase in
oxidative damage, including 8-OHdG (65). Melis and
colleagues described the glutathione anti-oxidant response as
deficient in Xpc-/- mice, and most recently, Mori and colleagues
describe a redox imbalance due to compromised mitochondrial
function and reduced glutathione peroxidase activity (70, 71).
Lung fibroblasts exposed to both the carcinogen BPDE and to the
chemotherapeutic drug cisplatin produced higher levels of the
pro-inflammatory, tumor promoting cytokine interleukin-6 (IL-
6) through the p38-SAPK pathway (72). As the local tumor
immune response is increasingly recognized as critical to solid
organ cancer development, the role of XPC in local tumor
microenvironment, including immune escape, warrants
further investigation.
XPC IN HEMATOLOGIC CANCERS

The role of XPC in hematopoietic malignancy has been explored
over the last several years, both in mouse models and
observations in various patient populations. XPC deficient
mice (Xpc-/-) have a significantly higher frequency of
spontaneous mutations in the hprt gene in splenic T
lymphocytes as compared to Xpa-/- and Csb-/- mice; this was
also enhanced with aging (73). Similarly, long-term exposure to
paraquat in Xpc-/- mice leads to an increase in lymphoid
hyperplasia (40). XPC deficient mice had hypocellular bone
marrow associated with a 10-fold increased sensitivity to
carboplatin and decreased cell and overall mouse survival as
compared to wild type mice, suggesting an important role of
XPC in hematopoietic cell response to treatment with platinum-
containing drugs (74). Importantly, these studies suggest that
XPC expression may impact bone marrow suppression and
Frontiers in Oncology | www.frontiersin.org 5
altered hematopoiesis, common treatment-limiting adverse
events associated with platinum-based chemotherapeutic agents.

Alterations in DNA repair processes, including those
associated with XPC deficiency, have been linked to
hematologic malignancies in a human population (75). While
overshadowed by the recognition of skin malignancies early after
identification of the XP phenotype, early case reports include
pediatric and young adult XP-C patients who develop
hematologic malignancies (14). More recent studies have
shown an increased propensity for hematologic malignancies
and sarcomas in populations of individuals with xeroderma
pigmentosum deficient in XPC (XP-C). Individuals with XP-C
are at an increased risk of leukemia and other hematologic
malignancies, as well as alterations in genotoxic effects due to
treatment of these cancers (76, 77). Sarasin et al. examined a
cohort of 161 patients with XP-C and found that 13 of these
individuals developed either overt myelodysplastic syndrome
(MDS) or acute myeloid leukemia (AML) with a median age of
22 years at diagnosis (Table 1). This finding of MDS/AML was
specific for the most common homozygous frameshift XPC
mutation delTG (c.1643_1644delTG; p.Val548Ala>fsX25) and
has not been observed with an increased frequency in other XP
patients (77). Similarly, a cohort of 117 individuals with XP-C
were followed from 1971 to 2018 and four patients were found to
develop hematologic malignancies, including MDS, acute
leukemias and high grade lymphoma (110). More recently, a
shared mutational profile was identified by whole genome
sequencing in leukemias from six XP-C patients, which
differed from the mutational patterns in non-XP-C
spontaneous AML samples and corresponded to a pattern
described with altered GG-NER (111). Single nucleotide
polymorphisms (SNPs) of the XPC gene have been studied in a
number of malignancies, many of which may modify disease risk,
prognosis or alter treatment response (Figure 2). Of these,
several have been studied in leukemias (Table 1). In AML
treated with induction chemotherapy, the XPC Ala499Val SNP
was associated with lower overall disease-free survival,
particularly when combined with an XPD codon 751 AC/CC
polymorphism (78), and two XPC SNPs (Ala499Val and
Lys939Gln) were associated with variable responses to imatinib
in BCR-ABL driven chronic myelogenous leukemia (CML) (79).
In regard to tolerating induction chemotherapy or hematopoietic
stem cell transplantation in the setting of XPC abnormalities,
there is little data.

Recently, the NER pathway has been studied in the setting of
multiple myeloma (MM) due to the reliance on alkylating agents
in the treatment of this malignancy; DNA damage caused by
alkylating agents are typically repaired by NER. Dumontet et al.
found that SNPs in multiple genes, including XPC, were
associated with longer time to progression- in individuals
treated with vincristine-adriamycin-dexamethasone followed
by high dose melphalan and stem cell transplantation (80).
Similarly, inhibition of the NER pathway in multiple myeloma
increases the sensitivity to alkylating agents and overcomes
resistance to these alkylating agents (113). Though XPC has
not been explicitly implicated in these latter studies, it warrants
April 2022 | Volume 12 | Article 846965
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TABLE 1 | Summary of clinical studies evaluating XPC polymorphisms and epigenetic alterations by malignancy.

Malignancy XPCmutation or SNP Clinical association Study name and size

AML
AML/MDS

XPC polymorphism
Ala499Val
(rs2228000)

XPC Ala499Val was associated with lower overall disease-free survival in
AML patient treated with induction chemotherapy

(78)
170 adult de-novo AML patients with
intermediate cytogenetics treated with induction
chemotherapy

c.1643-1644 delTG
XPC mutation

Increased risk for developing MDS or AML (77)
161 patients with XP-C from 142
consanguineous North African families living in
France

CML XPC polymorphisms
499C and 939A

Both 499C and 939A wild-type haplotype associated with improved
response to imatinib.

(79)
92 Caucasian patients with BCR-ABL-positive
CML in five Spanish Institutions.

Multiple
Myeloma

XPC polymorphism
939A>C (Lys939Gln)
(rs2228001)

XPC Lys939Gln was associated with freedom from progression (FFP) in
patients receiving high-dose melphalan (HDM)

(80)
169 MM patients from France and Canada who
underwent treatment with HDM and stem cell
transplant.

Lung cancer XPC polymorphism
PAT+/+ variant

XPC PAT +/+ was associated with an increased risk for lung cancer (81)
Hospital-based case-control study of 359
newly diagnosed lung cancer and matched 375
control subjects in Northern Spain.

XPC Lys939Gln
polymorphisms
(rs2228001)

Heterozygous carriers of the C-allele and homozygous carriers had higher
risk of lung cancer in the youngest available age interval (50–55 years)

(82)
Danish study included 265 lung cancer cases
and 272 control individuals.

XPC Polymorphisms
Lys939Gln and
Ala499Val
(rs2228001,
rs2228000)

XPC 939Gln/Gln and 939Lys/Gln both were associated with increased risk
of lung cancer with low penetrance. XPC 499Val increased total cancer risk
(OR1.15), but not specifically the lung cancer.

(83)
Meta-analysis that included 33 published case–
control studies

XPC Polymorphism
Lys939Gln
(rs2228001)

Females carrying XPC 939Gln/Gln vs. XPC 939Lys/Gln. 939Gln/Gln had
significantly increased risk of lung cancer as well as other females and males
with several combination of polymorphisms in XPC, XPD (Lys751Gln),
hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln)

(84)
Case-Control study of 382 patients with lung
cancer and 379 healthy controls of Caucasian
Slovaks race/ethnicity.

XPC polymorphisms
(Lys939Gln, Ala499Val,
and PAT)
(rs2228001,
rs2228000)

Homozygous Gln939Gln genotype was associated with significantly
increased risk of lung cancer in Asian population
PAT -/- genotype significantly reduced susceptibility to lung cancer in
Caucasian population
XPC Ala499Val polymorphism was not associated with lung cancer risk.

(85)
Meta-analysis of 14 studies including 5647 lung
cancer cases and 6908 controls

XPC Lys939Gln
polymorphism
(rs2228001)

XPC Lys939Gln was associated with higher lung cancer susceptibility (OR
1.28)

(86)
Polymorphism stratified meta-analysis, 16
studies of cancers with 5581 cases and 6351
controls (5 studies specific for lung cancer)

XPC polymorphism
rs2733533

XPC rs2733533 associated with lung cancer susceptibility, the combination
of genotype A carriers and heavy smokers (≥30 pack-year) had a 13.32-fold
risk of lung cancer compared with the C/C genotype and no smoking.

(87)
Case control study of 265 lung cancer patients
and 301 healthy controls

XPC polymorphisms
Lys939Gln, Ala499Val
(rs2228001,
rs2228000)

Neither SNP altered response to platinum-based chemotherapy. (88)
Meta-analysis of 1,615 patients from 10 studies
for the rs2228001 and 858 samples from six
studies for rs2228000.

Prostate
Cancer (PC)

XPC polymorphisms
PAT, Lys939Gln
(rs2228001)

PAT (insertion/insertion) genotype increases the risk of developing PC, XPC
Lys939Gln and XPC-PAT variants (Lys/Gln + PAT D/D) were protected
against PC development compared to controls.

(89)
Study in Tunisian population included 110 PC
patients compared to 266 matched control
men.

XPC PAT
polymorphism

XPC PAT+/+ subjects genotype exhibited a significantly increased risk for
PC, smokers with PAT+/− or PAT+/+ had a higher risk for PC.

(90)
202 subjects with prostate cancer and 221
healthy controls in a Chinese Han population.

NER polymorphisms,
XPC intron 11 C>A
(rs3729587)

XPC intron11 C/A polymorphism was associated with an increased risk of
prostate cancer.

(91)
Hospital-based cohort consisted of 152
patients with prostate cancer and 142 male
controls.
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TABLE 1 | Continued

Malignancy XPCmutation or SNP Clinical association Study name and size

XPC polymorphism
(Lys939Gln, PAT)
(rs2228001)

XPC PAT deletion/insertion (D/I) and insertion/insertion (I/I) could decrease
the risk of PC

(92)
Iranian cohort including 154 prostate cancer
patients and 205 Benign Prostate Hyperplasia
(BPH) controls

Ovarian
Cancer

XPC polymorphisms
Ala299Val and
Lys939Gln (s2228000
and rs2228001)

XPC Ala299Val was associated with reduced risk of ovarian cancer
XPC Lys939Gln increased risk of ovarian cancer

(93)
Chinese cohort, 89 ovarian cancer patients 356
cancer-free women

XPC polymorphisms
rs3731108, rs1124303
and PAT

XPC SNP rs3731108 (AG)/AA versus the GG genotype, SNP rs1124303
(GT)/GG genotype versus TT genotype and PAT (-/+)/(-/-) genotype versus
the (+/+) genotype were associated with a prolonged PFS

(94)
139 patients with stage III and IV papillary
serous ovarian cancer who underwent primary
cytoreductive surgery followed by platinum-
based chemotherapy.

Bladder
Cancer (BC)

XPC Ala499Val
polymorphism
(rs2228000)

Ala499Val showed an increased overall cancer risk (OR 1.15), and
specifically for BC in the simple genetic model

(83)
meta-analysis that included 33 published case–
control studies

XPC polymorphisms
(rs2228000)

XPC Ala499Val associated with increased BC susceptibility (OR 1.33) (86)
Polymorphism stratified meta-analysis, 11
published case-control studies of cancer with
5581 cases and 6351 controls

XPC Ala499Val
polymorphism
(rs2228000)

Associated with risk of XPC Ala499Val associated with increased by 3
different calculations (allelic contrast, OR 1.11; homozygote comparison, OR
1.35; recessive genetic model, OR 1.36)

(95)
Meta-analysis of 13 case-control studies, 4,927
bladder cancer cases and 5185 controls

XPC polymorphisms
Lys939Gln, Ala499Val,
PAT (s2228000,
rs2228001, PAT)

Multiple models showing increased BC susceptibility with XPC Lys939Gln,
Ala499Val and PAT-/+ polymorphisms. Suggested polymorphism risk
stratification may differ based on Asian vs Caucasian populations.

(96)
Meta-analysis, 14 case-control BC studies, 10
Lys939Gln (3,934 cases, 4,269 controls), 5
Ala499Val (2,113 cases, 2,249 controls), 7
PAT-/+ (2,834 cases, 3,048 controls)

XPC polymorphisms
Lys939Gln, Ala499Val,
PAT (s2228000,
rs2228001)

Suggested increased bladder cancer risk with Ala499Val but not Lys939Gln.
Lys939Gln bladder cancer risk appeared related to tobacco smoking or
chewing (OR 2.23 and 2.4)

(97)
Meta-analysis, 18 case-control BC studies, 7
studies Ala499Val (2893 cases, 3056 controls),
11 studies Lys939Gln (5064 cases, 5208
controls)

Rare XPC
polymorphisms
(rs121965091,
rs121965090)

4 of 5 novel XPC variants (Phe302Ser, Arg393Trp, c*156G>A, c.2251-
37C>A) associated with increased BC odds (OR 3.1 for having 1+ variant)

(98)
Case-control, 771 BC cases and 800 controls

XPC mRNA and
protein expression

Low XPC expression associated with increased BC recurrence and
decreased survival

(99)
mRNA: 79 BC patients, IHC: 219 BC patients.
Relapse at 2 years, survival at time of
publication (min-3 years, max 12 years)

Pancreatic
cancer

XPC polymorphism
PAT

PAT +/+ genotype could protect against pancreatic carcinogenesis. (100)
Study included 101 incident cases with
pancreatic cancer and 337 controls

XPC tagging SNPs
rs2470353,
rs2607775,
rs2228000, rs3731114
and rs3729587.

For rs2470353, pancreatic cancer risk was increased in subjects with GC
and GC+CC gene types Compared with the GG gene type.
For rs2607775 the CG and CG+GG gene types were associated with
increased pancreatic cancer risk compared with the CC gene type.
CCC haplotype of rs2228000, rs3731114 and rs3729587 associated with
an increased pancreatic cancer risk

(101)
Study included 205 pancreatic cancer cases
and 230 controls.

Esophageal
cancer

Genetic variants of
XPA in 50UTR and
XPC at K939Q
(rs2228001)

XPA 50UTR A/G and XPC K939Q C/C genotypes associated with a higher
risk of mortality after treatment compared with wild-type homozygous
genotypes especially in the population treated with esophagectomy and
undergoing concurrent neoadjuvant chemoradiotherapy.

(102)
501 patients with esophageal squamous cell
carcinoma (ESCC).

XPC PAT
polymorphism

XPC PAT -/+ genotype associated with decreased esophageal cancer risk (103)
387 White esophageal patients and 462 White
controls matched

Multiple SNP panel,
included XPC
polymorphisms 499CC
and 939AC+CC

5-polymorphism panel (MTHFR 677TT, MDR12677GT, GSTP1 114CC, XPC
499CC, XPC 939AC+CC) that has a 79% sensitivity and 85.4% specificity
of predicting 5 years PFS.
They were associated to shorter RFS and in a univariate analysis.

(104)
124 patients receiving neoadjuvant
chemoradiation treatment for locally advanced
esophageal cancer
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further investigation given the role of the NER pathway and
reliance on alkylating agents in multiple myeloma.
XPC IN SOLID CANCERS

Lung Cancer
Lung cancer is characterized by some of the highest levels of genomic
diversity, and alterations in DNA repair pathways, including NER,
have been proposed to play a role in lung cancer development (114,
115).Althoughdominatedbydermatologicmalignancies, early series
of XP-C patients reveal cases of bronchogenic lung carcinomas (14,
116). Germline mutations causing XP-C are rare, however, more
common XPC polymorphisms and variations in gene expression
have been studied in lung cancer (Table 1). In the most common
subset of lung cancers, non-small cell lung cancer (NSCLC),
decreased tumor XPC mRNA level has been associated with poor
outcomes (117).

Numerous studies associate various XPC SNP polymorphisms
with lung cancer development, which, among other factors, may be
influenced by gender and cigarette smoking status (Table 1) (81–
87), and many XPC polymorphisms have been found to
functionally modulate DNA repair capacity (118). It is likely that
epigenetic regulation leads to decreased XPC gene expression.
Decreased XPC mRNA expression has been identified in human
specimens from lung adenocarcinoma and lung squamous cell
carcinoma, the two most common NSCLC histologic subtypes
(119–121). Pre-clinical studies support epigenetic regulation of
XPC with different environmental exposures, possibly due to
promoter hypermethylation or histone-related transcriptional
regulation (122). For instance, exposure of C57Bl/6 mice to 6
months of cigarette smoke led to decreased Xpc mRNA
expression without altered expression of other studied BER and
NERgenes, includingXpa andOgg1 (66).XPCprotein expression is
decreased in lung fibroblast and bronchial epithelial cell lines
treated in culture with cigarette smoke extract, but not other NER
proteins including XPA, and may be due to protein turnover by
Frontiers in Oncology | www.frontiersin.org 8
ubiquitination (123). Tight control of XPC ubiquitination is likely
required to ensure DNA repair but may be dysregulated in human
cancers, including lung cancers, which have been shown to have
high levels of ubiquitin ligases, such asCullin-RINGubiquitin ligase
4 A (CUL4A), overexpression of which is common in cigarette
smoke-related lung cancer, and which is inversely proportionate to
XPC expression (26). Additionally, murine exposure to side-stream
smoke (up to 4 months) and nicotine-containing e-cigarette vape
(12 weeks) led to increased DNA adduct formation and decreased
Xpc and Ogg1 mRNA expression in the lungs (124, 125).
Importantly, these studies also show decreased in vitro BER and
NER repair using lysates from e-cigarette vape exposed mouse
lungs, correlating decreased gene expression to decreased
repair function.

The strongest evidence supporting a critical role of XPC in lung
cancer comes from translational animal studies. Two mouse
models of global Xpc deficiency have been created, both of
which are associated with complete loss of functional XPC and
cause characteristic skin cancers with exposure to UV light (126,
127). Increased DNA damage has been observed in the lungs of
Xpc deficient mice upon exposure to oxidizing agents, but not in
mice deficient in another NER protein, Xpa, although both show
increased mutational frequency in the liver (40, 128). Exposure to
urban air pollution led to increased lung inflammation and DNA
damage in Xpc deficient mice (129). Mice homozygous deficient in
Xpc develop lung tumors (primarily adenomas) with advanced age
(16-17 months), although development of adenocarcinomas were
rare without a co-existing loss of another tumor suppressor gene
(130). However, exposure of Xpc deficient mice to chronic
cigarette smoke and carcinogens, including urethane, MCA-
BHT, 2-acetylaminofluorene (AAF) and NOH-AAF leads to
lung adenocarcinoma development (42, 131), and with advanced
age and chronic cigarette smoke, Xpc deficient mouse lungs
develop an increase in lung compliance and alveolar rarefication
similar to that seen in emphysema, a lung disease which
predisposes to lung cancer (66). Importantly, mice heterozygous
in Xpc (Xpc+/-) exposed to the carcinogen, urethane, developed an
TABLE 1 | Continued

Malignancy XPCmutation or SNP Clinical association Study name and size

Colorectal
Cancer and
Adenomas
(CRC)

XPC SNPs (various)
(rs2228001)

Haplotype XPC A499V independently protective from smoking-associated
risk of CRC

(105)
772 subjects with left-sided advanced
adenoma vs 777 Controls.

XPC mRNA and
protein expression

High XPC expression might be predictive of survival in CRC (106)
167 patients with colorectal cancer

Breast Cancer XPC polymorphisms
K939Q (rs2228001)
and rs2733532

rs2228001–A > C and rs2733532–C > T are associated with an increased
risk for breast cancer development

(107)
493 breast cancer cases and 387 controls

XPC polymorphisms
Lys939Gln and PAT
(rs2228001)

PAT -/+ is associated with an increased risk of breast cancer
Combined genotypes 939AC/PAT+/+ and 939CC/PAT+/+ are associated
with an increased risk of breast cancer.

(108)
200 women diagnosed with breast cancer as
cases and 200 ethnically matched healthy
controls

Hepatocellular
Carcinoma

XPC polymorphism
Lys939Gln (rs2228001)

Lys939Gln allele differed in HCC risk, with risk of XPC-GG > XPC-LG >
XPC-LL.
Heterozygous XPC 939LG and/or homozygous XPC 939GG, compared to
homozygous XPC 939LL was associated with shorter overall survival

(109)
1156 HCC cases and 1402 controls without
liver disease
RFS, relapse free survival; PFS, progression free survival; PC, prostate cancer; BC, bladder cancer.
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intermediate number of lung tumors when to compared to
urethane-treated Xpc deficient and proficient littermate mice,
suggesting a gene-dose effect and further supporting a role
for intermediate levels of XPC expression, either through
polymorphisms or epigenetic regulation, in lung cancer
development (42).

Other more recently proposed mechanisms for XPC
involvement in NSCLC development include regulation of cell
proliferation and migration, and transcriptional regulation of p53.
For instance, XPC, complexed with HR23B, impacts p53
transcriptional regulation of MMP1, low expression of which
was associated with increased tumor size and metastasis (132).
Cui and colleagues studied the impact of XPC on NSCLC cell
lines in vitro, finding that XPC knock-down led to increased
NSCLC cell growth and migration due to decreased surface
e-cadherin expression through regulation of the SNAIL
pathway (133). Although strong evidence supports an important
role of XPC in lung cancer development, more research is needed
to understand the link between alterations in XPC expression
levels and XPC function on lung carcinogenesis and
oncogenic development of characteristic genomic and
transcriptomic alterations.

Prostate Cancer
Prostate cancer (PC) is the most common malignancy in males
(134), and XPC polymorphisms have been correlated to an
increased risk of PC development in several studies (Table 1).
For instance, the XPC polymorphism, XPC PAT (PAT I/I
genotype) was associated with an increased odds of prostate
cancer, associated with a 3.83-fold increased risk in a Tunisian
population. In contrast, other XPC polymorphisms, including
those heterozygous for Lys939Gln (939Lys/Gln) along with the
PAT D/D haplotype are considered protective of prostate cancer
Frontiers in Oncology | www.frontiersin.org 9
(89). One more study reported an increased risk of developing
PC in those with the XPC PAT polymorphism (PAT +/+ or PAT
+/-) along with tobacco smoking in a Chinese population (90).
Other studies have shown varied increases in PC risk with other
XPC polymorphisms (91, 135) (Table 1). It does not appear that
XPC polymorphisms are associated with more advanced disease
in PC, and similarly, studies did not find an association between
XPC gene polymorphisms and Gleason score (a measure of
histologic PC staging which correlates to prognosis) (89, 92).
However, using TCGA data, low XPC expression was associated
with worse overall survival in PC, similar to analyses in many
other solid organ tumors (135). These studies suggest that XPC
polymorphisms may serve as a tool to identify those at the
highest risk for developing PC, which can help in targeting high
and low-risk individuals to appropriate screening and
clinical evaluations.

Ovarian Cancer
Like other solid organ tumors, XPC polymorphisms have been
identified as one factor that may increase or decrease the risk of
ovarian cancer as summarized in Table 1. Along with SNPs in two
other NER proteins, XRCC1 and XRCC2, the XPC Ala499Val
polymorphism was found to correlate to a decreased odds of
ovarian cancer (OR 0.35) while the XPC Lys939Gln polymorphism
was associatedwith an increased risk of ovarian cancer (OR1.72) in a
dominant geneticmodel (93).XPCpolymorphismsmay also serve as
a biomarker in response to platinum-based chemotherapies as some
specific SNP polymorphisms were associated with prolonged
progression-free survival (PFS) (94). Going further, in ovarian
cancer, overexpression of the eukaryotic translation initiation factor
3a (eIF3a) was associated with decreased response to cisplatin
through downregulating XPC mRNA expression (136). This
further supports an important role of XPC in predicting response
FIGURE 2 | Schematic representation of XPC polymorphisms discussed in this manuscript along with alternate names/identifiers for the XPC polymorphisms most
commonly studied in non-dermatologic cancers. Reference XPC gene (chr 3:p25.1) with polymorphisms was reproduced using the GRCh38 (hg38) sequencing
using the UCSC genome browser tool. [(112) http://genome.ucsc.edu. Accessed 1/30/22]. Red = missense mutations, blue = 5’ or 3’ UTR variants, green =
upstream of transcript variant.
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to platinum-based chemotherapy through its canonical involvement
in GG-NER.

Bladder Cancer
As with several other cancers, DNA damage due to carcinogen
exposure, including cigarette smoking, is strongly associated with
bladder cancer. In this, as in several other cancers, XPC
polymorphisms were associated with low penetrance
susceptibility to bladder cancer (Table 1) (83, 86, 95–97).
Several rare XPC mutations, identified in patients with bladder
cancer, were studied in vitro and were associated with decreased
XPC mRNA and protein expression (98). Supporting their likely
role in bladder cancer development, XPC mRNA and protein
expression is decreased in bladder cancer tumors and may
portend a worse prognosis (99, 137, 138). A variable impact of
factors such as cigarette smoking have been correlated to XPC
expression in bladder cancers, and more recently, studies have
suggested a role of both promoter hypermethylation and histone
deacetylation by HDACs in regulation of XPCmRNA expression
in bladder cancer (138, 139), the latter of which is supported by
previously studies reporting SIRT-1 deacetylase regulation of
XPC expression in other (skin) cancers (140). Overall, these
studies support a role of XPC expression in variable risk and
outcomes of bladder cancer, although the exact mechanisms of
epigenetic regulation, and the specific mechanisms by which risk
is altered in low XPC, remains less clear.

Pancreatic Cancer
XPC may play a role as a risk factor for developing pancreatic
cancer. As summarized in Table 1, some XPC polymorphisms
have been described as increasing pancreatic cancer risk,
particularly in smokers with the rs2470353 and rs2607775
variants (101). However, one study suggested a protective role
of the XPC-PAT polymorphism (PAT +/+) in pancreatic cancer
risk (100). Other studies suggested a role for genetic variants of
other NER associated proteins, including ERCC1, but not
necessarily XPC as a risk factor for developing pancreatic
cancer (141). None-the-less, the specific role of NER, and
specifically of XPC expression and epigenetic regulation, still
need to be further explored in pancreatic cancer development.

Other Solid Organ Cancers
In esophageal cancer XPC may play a role as a risk factor for
developing malignancy. XPC genetic variants, specifically the
XPC K939Q C/C genotypes were found to be associated with a
higher mortality after treatment compared with patients with a
wild-type homozygous genotype; particularly in those who were
post-treatment with esophagectomy or neoadjuvant
chemoradiation (102). Another polymorphism, XPC PAT +/+,
was associated with decreased risk for esophageal cancer (103).
The prognostic value of XPC is further supported by having two
XPC polymorphisms, XPC 499CC and XPC 939AC+CC (939 Lys
and Gln), as part of a 5-polymorphism panel (high risk
genotype) that has a 79% sensitivity and 85.4% specificity of
predicting 5 years progression free survival (104), indicating a
potential prognostic role of XPC polymorphisms in esophageal
cancer risk.
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XPC may also play a role as a risk factor for other cancers
including advanced colorectal cancer. The XPC polymorphism
Ala499Val was found to play a protective role in developing
advanced colorectal adenomas in smokers (105), and others have
suggested a protective role of higher XPC mRNA and protein
expression levels on colorectal survival, possibly related to an
improved response to chemoradiation (106). A recent case-
control association study using tissue from 493 breast cancer and
387 control cases suggested an association between two XPC
polymorphisms, rs2228001-A>C (Lys939Gln) and rs2733532-
C>T, with an increased odds of breast cancer (107), and another
study with 200 cases and controls suggested an association between
the XPC PAT+ allele and higher odds of breast cancer (108).

Finally, some evidence supports a role of XPC in liver
(hepatocellular) carcinoma development. In a case-control
study of hepatocellular carcinoma HCC related to aflatoxin B1
exposure, XPC polymorphism codon 939Gln allele, whether
heterozygous (XPC-LG) or homozygous (XPC-GG), is
associated with increased risk of HCC; these genotype variants
correlated with decreased XPC tumor protein expression by IHC
as well as a shorter overall survival (109).
XPC AS TUMOR SUPPRESSOR AND AN
EMERGING BIOMARKER OF CANCER
DEVELOPMENT

Numerous cancers are associated with decreased XPC expression,
but themechanism bywhich this occurs is less clear. TheXPC gene,
along with several other tumor suppressor genes, is located on
chromosome 3p, a frequently site of chromosomal deletion in
human tumors (130, 142). However, various modes of
transcriptional regulation have been implicated in altered tumor
XPC expression as well, andXPC expressionmay be altered in cells
outside of the tumor itself. While studies have suggested decreased
XPC expression in NSCLC tumor cells compared to surrounding
lung (119), in 21 patients with NSCLC in which blood, tumor and
lung tissue were collected, XPC mRNA expression was found to
strongly correlate between blood and NSCLC tumor tissue,
supporting the potential use of a minimally invasive blood draw
as a prognostic and therapeutic biomarker (143).

The impact of low XPCmRNA expression may extend beyond
alterations inDNAdamage response and repair. Interestingly, XPC
deficiency may also cause a mutational hot spot in the tumor
suppressor p53 when treated with UV light, mediated by non-
dipyrimidine base damage (144). Furthermore, there is evidence
that XPC regulates a p53 post-ubiquitylation event and that XPC
deficiency compromises p53 degradation, which may play a role in
developing malignancy (145). These later two studies were
performed in skin fibroblast cells and in vitro cell culture models,
and whether XPC is involved in p53 regulation and mutations in
othermalignancies has not been well studied. In addition to its role
in a number of DNA repair pathways, XPC has been implicated in
transcriptional regulation both in response and independent of
DNA damage. In the setting of DNA damage, studies have
supported E2F1 transcriptional regulation of XPC expression
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(146). Recently, XPC itself has been implicated in post-translational
histone modification and recruitment of transcription factors such
as E2F1 to gene promoter sites independent of its regulatory role in
DNA repair (69). High expression of miRNA-346, commonly
elevated in NSCLC and other cancers, was associated with lower
XPC mRNA and protein expression, indicating another potential
mechanism for XPC downregulation in human cancers (147).
XPC AS A BIOMARKER OF RESPONSE
TO THERAPY

In addition to XPC polymorphisms and expression levels as
potential biomarkers associated with risk for many malignancies,
XPC may predict disease progression. In patients with NSCLC,
low tumor XPC mRNA expression is associated with advanced
stage at diagnosis and an increased rate of cancer relapse after
treatment in never-smokers (148). Similarly in colorectal cancer,
increased XPC expression was associated with longer 5 year
survival in treated patients compared to patients with low XPC
expression (106). XPC polymorphisms have been described as
predicting response to platinum-based chemotherapy. For
instance, DNA samples from whole blood cells showed that
XPC rs2229090 GC/CC genotypes were associated with longer
progressive free survival compared to the AA and GG genotypes
(149). These findings are consistent with translational and in
vitro studies inversely linking XPC mRNA expression with
response to cisplatin, particularly in lung adenocarcinoma
where cisplatin chemotherapy treatment remains a mainstay in
locally advanced disease (150). However, a link between XPC
polymorphisms and response to cisplatin therapy has not been
clearly shown, with a recent meta-analysis (88). High mutational
burden has been associated with improved response to the
immune checkpoint inhibitors. Typically, angiosarcomas have
poor response to immunotherapy, but a recent report highlights
an angiosarcomas that developed in an XP-C patient which had
the features suggestive of a good response to immunotherapy
and ultimately benefitted from a good response to the immune
checkpoint inhibitor pembrolizumab (151). This report provides
a preliminary but intriguing potential link between XPC, high
tumor mutation burden and response to immunotherapies.

In the last few years, more attention has been paid to targeting
DNA repair as a modality to augment cancer therapy. For instance,
in a micro-RNA (miR) screen of prostate cancer, miR-890, which
directly inhibited transcription of XPC along with other DNA repair
proteins, led to increased sensitivity to ionizing radiation, although
further mechanistic testing indicated that IR-sensitization by miR-
890 persisted in XPC knock-down cells, suggesting an indirect role
of XPC in double-strand break repair and overlapping gene-
functionality in IR-sensitization (152). However, most studies
show a predictive role in response to chemotherapies, especially
platinum-based agents, which cause DNA lesions that are primarily
repaired by NER, requiring XPC for recognition (2). Since increased
NER repair could mean increased resistance to platinum-based
therapy, inhibiting XPC could be a viable option to overcome
platinum resistance in cancer cells. For instance modulation of XPC
Frontiers in Oncology | www.frontiersin.org 11
by hyperthermia or by treatment with sodium arenite was found to
suppress XPC-induced cisplatin toxicity and sensitize tumors to
platinum based therapy in a mouse ovarian cancer xenograft model
(153). However, others have found a seemingly contradictory impact
of histone deacetylase (HDAC) inhibitors in bladder cancer, showing
a correlation between HDAC inhibition, increased XPC expression
and higher cisplatin-induced activation of the pro-apoptotic protein,
caspase 3 (139). Additionally, it is unclear if described decreases in
XPCexpression are in cancer cells aloneor found inother cellswithin
the tumor microenvironment, such as fibroblasts, in which XPC
inhibition could be expected to decrease the tumor promoting
cytokine IL-6 (72). On the other hand, this inhibition may help to
sensitize tumorcells toother therapies due to the involvementofXPC
in other DNA repair pathways and in checkpoint activation. Future
studies should exploreXPCtargetingby smallmolecular inhibitors to
investigate these possibilities, especially given conflicting data
regarding XPC expression levels and therapeutic response to
chemotherapeutic agents.
CONCLUSION

XPC is increasingly recognized as playing an important role in the
development of non-dermatologic malignancies. Decreased XPC
mRNA and protein expression has been described in a number of
cancers, with gene polymorphisms, deletions, and transcriptional
regulation all active areas of research in the regulation of XPC
expression. Additionally, research supports a role of XPC in the
prognosis and treatment response in several of these cancers.
Although XPC’s essential role in the recognition of bulky DNA
lesions and subsequent activation of GG-NER, when altered, is a
leading mechanism for development of UV-induced dermatologic
malignancies and in modifications of cancer response to
chemotherapies including cisplatin, recent data support a non-
canonical role of XPC in DNA damage response and repair
mechanisms, tumor suppressor transcriptional regulation, and in
the development of non-dermatologic malignancies. Future studies
would benefit from studyingXPCas a biomarker of cancer prognosis
and response to treatment in non-dermatologic malignancies.
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