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Abstract: The human gut microbiota is vital for maintaining human health in terms of immune system
homeostasis. Perturbations in the composition and function of microbiota have been associated
with several autoimmune disorders, including myasthenia gravis (MG), a neuromuscular condition
associated with varying weakness and rapid fatigue of the skeletal muscles triggered by the host’s
antibodies against the acetylcholine receptor (AChR) in the postsynaptic muscle membrane at the
neuromuscular junction (NMJ). It is hypothesized that perturbation of the gut microbiota is associated
with the pathogenesis of MG. The gut microbiota community profiles are usually generated using
16S rRNA gene sequencing. Compared to healthy individuals, MG participants had an altered
gut microbiota’s relative abundance of bacterial taxa, particularly with a drop in Clostridium. The
microbial diversity related to MG severity and the overall fecal short-chain fatty acids (SCFAs)
were lower in MG subjects. Changes were also found in terms of serum biomarkers and fecal
metabolites. A link was found between the bacterial Operational Taxonomic Unit (OTU), some
metabolite biomarkers, and MG’s clinical symptoms. There were also variations in microbial and
metabolic markers, which, in combination, could be used as an MG diagnostic tool, and interventions
via fecal microbiota transplant (FMT) could affect MG development. Probiotics may influence MG by
restoring the gut microbiome imbalance, aiding the prevention of MG, and lowering the risk of gut
inflammation by normalizing serum biomarkers. Hence, this review will discuss how alterations of
gut microbiome composition and function relate to MG and the benefits of gut modulation.

Keywords: gut microbiota; myasthenia gravis; autoimmune; acetylcholine; probiotics

1. Introduction

Myasthenia gravis (MG) is an autoimmune condition characterized by muscle weak-
ness induced by autoantibodies binding to the postsynaptic region at the neuromuscular
junction (NMJ), impairing the acetylcholine receptor (AChR) function [1]. MG is classified
into five main classes and a few subclasses by the Myasthenia Gravis Foundation of Amer-
ica (MGFA) to detect patients with MG showing similar clinical features and severity for
better therapy choices [2,3]. There are six subtypes of MG, some in which antibodies bind to
different membrane molecules, such as the muscle-specific kinase (MuSK) and lipoprotein
receptor-related protein (LRP4), at the postsynaptic NMJ [4,5]. Nonetheless, all types cause
defective immunomodulatory signaling leading to generalized or focal muscle weakness
and fatigability [6,7]. Other common aspects of MG subgroups are their autoimmune
disease mechanism, muscle weakness, and immunosuppressive treatment [8,9]. However,
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the pathogenesis and therapeutic responses differ, as subtypes are determined by thymus
pathology, autoantibody pattern, localization of muscle weakness, sex, and age-onset [5,10].

Epidemiological studies have shown a rise in incidence and prevalence rate for most
autoimmune diseases over the past decades [9,11]. The prevalence rate is about 20 per
100,000 [12]. A more recent meta-analysis reported a prevalence rate that ranges from
15 to 179 per million [13]. On the other hand, the overall in-hospital mortality rate in a
cohort from the United States was 2.2% [14]. Over the years, there has been an increased
prevalence rate, probably due to the availability of improved diagnostic precision and
treatments, prolonged survival, and an aging population [15]. The exact etiology of MG is
still uncertain, but its development in genetically predisposed patients probably depends
upon environmental factors [16].

At present, MG is effectively managed with therapies individualized according to the
illness’s age, clinical presentation, pathophysiology, and seriousness [3,5,17–22]. Acetyl-
cholinesterase (AChE) inhibitors (neostigmine and pyridostigmine) are used in MG patients’
primary treatment and symptomatic therapy. They increase the level of available acetyl-
choline at the NMJ without changing the development or outcome of the disease [3,23].
Immunosuppressive medications, including corticosteroids and nonsteroidal immunosup-
pressive agents, are administrated as continuing immune treatments. The goal here is to
prompt near or complete remission [3]. Prednisone is the common corticosteroid used
when an AChE inhibitor alone cannot control MG symptoms. In addition, plasmapheresis
(PLEX) and intravenous immunoglobulin therapy (IVIg) are rapid short-term immunomod-
ulating treatments that provide improvement of MG within days [3]. Their application is
in four circumstances: myasthenia crisis, administrated prior to surgery, patients that are
not well-controlled with chronic immunomodulating drugs, and, if needed, to decrease
exacerbations before starting corticosteroids [3,24].

Recent discoveries have revealed that the differences in the gut microflora in myasthe-
nia gravis patients could be a promising avenue to explore new therapies and management
of MG. The findings suggested that gut microflora may contribute to the disease manifesta-
tion and progression. Thus, this review aims to understand how gut microbiome profiles
and function changes relate to myasthenia gravis and the benefits of gut modulation in
MG patients.

2. Myasthenia Gravis—The Pathogenesis, Risk Factors, and Clinical Manifestations
2.1. Pathogenesis of MG

The NMJ of skeletal muscles has nerves innervating from the terminal arborization
of α-motor neurons of the ventral horns of the spinal cord and brainstem. The synaptic
cleft of the NMJ has AChE and supplementary proteins and proteoglycans, whereas on the
postsynaptic membrane, AChR is tightly packed above the deep folds. When a nerve action
potential (AP) reaches the synaptic bouton, depolarization occurs, opening voltage-gated
calcium channels on the presynaptic membrane. Acetylcholine (ACh) is released into
the synaptic cleft and diffuses to reach the postsynaptic membrane, triggering end-plate
potential (EPP). Later, AChE present in the synaptic cleft will hydrolyze ACh [3].

In an average individual, the EPP generated in the NMJ is much greater compared
to the threshold required to a create postsynaptic potential. However, in MG patients, the
“safety factor” is reduced. The decrease in AChR molecules causes EPP to decrease, and
when EPP falls below the threshold needed to trigger an AP, especially after repetitive
activity, symptoms of muscle weakness occur [3,25].

There are four factors contributing to the pathogenesis of MG: First is the effector
mechanism of pathogenic anti-AChR antibodies (Abs), which involves complement binding
and activation at the NMJ, the antigenic modulation, and the functional AChR block [26].
The second is the role of CD4+ T cells in MG. The synthesis of pathogenic anti-AChR Abs
needs activated CD4+ T cells to interact with and stimulate B cells. The third is the role
of CD4+ T cell subtypes and cytokines in MG and experimental autoimmune myasthenia
gravis (EAMG). Th1 and Th2 are the two subtypes of CD4+ T cells with very different
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immune response roles. Th1 cells secrete pro-inflammatory cytokines, whereas Th2 cells
secrete anti-inflammatory cytokines [3,27]. High levels of anti-AChR Th1 cells are present
in the blood of MG patients. They recognize AChR epitopes and induce B cells to produce
anti-AChR Abs [3,28,29]. On the other hand, Th2 cells may be protective, but their cytokines
contribute to EAMG [26]. Low levels of functioning Treg cells are present in MG patients.
Tregs are CD4+ T cells expressing the CD25 marker and Foxp3 transcription factor and are
crucial in maintaining self-tolerance. When combined with natural killer T (NKT) cells,
it regulates the anti-AChR response. In mouse models, EAMG development is inhibited
upon the stimulation of NKT cells [30]. Besides that, antigen-presenting cells (APC) secrete
interleukin (IL) 18, which stimulates natural killer (NK) cells to make interferon-gamma
(IFN-γ), which enhances Th1 cells, inducing EAMG. Lastly, other autoantigens, anti-MuSK
Abs, are present in MG patients lacking anti-AChR Abs. These anti-MuSK Abs affect the
maintenance of agrin-dependent AChR clusters at the NMJ, resulting in AChR reduction [3].

2.2. Infections as a Risk Factor for MG

The cause and induction of autoimmune diseases have been linked to microorganisms
that carry out an unwanted immunological reaction against the self-antigen. This can
be seen in an infection causing local inflammation, which increases molecules related to
antigen recognition [8,9].

Patients stated that besides stress and surgery, infections also trigger MG events. In
Australia, 33.33% of patients reported that infections exacerbated MG, and 50% said the
severity was affected by seasonal changes [31]. The effect of disease on MG can be seen
in studies from different countries, such as in a population-based study in Spain; almost
one-third of MG events were due to infections giving rise to dysphagia and respiratory im-
pairment in MG. In India, it gave rise to MG exacerbations; in a Chinese cohort, it prompted
MG relapse [32,33]. Some case studies have shown the connection between certain infec-
tions and the simultaneous occurrence of antibodies against NMJ debuting MG-human
immunodeficiency virus (HIV), herpes simplex, and hepatitis B and C [31,34–37]. Although
it has been proposed that bystander activation, cryptic antigens, molecular mimicry, epitope
spreading, and polyclonal activation are mechanisms inducing MG by viral agents, their
effect on the concentrations of specific autoantibodies against AChR, MuSK, and LRP4
during infection is unknown [1,38]. Besides that, the particular microorganism causing MG
exacerbations during infection is also unknown, which is likely a broad activation of the
immune system [1].

During infections, the genetic predisposition of autoimmune disorders and thymoma
are factors aiding the development of MG [38]. Even though genetic predisposition has
been verified and linked to human leukocyte antigen (HLA) genes, less than 50% of the
total disease risk is due to genetic factors, as specific HLA associations differ for MG
subgroups [39,40].

On the other hand, thymoma has AChR Abs associated with MG with a thymus
pathology and is responsible for 10% of MG cases, whereas the additional 90% of MG
causes are unknown [1,5,41,42]. Although the risk for some diseases is affected by the gut
microbiome, there is no data available for the risk of MG and the composition and load
of gut bacteria [43]. However, animal models reported that the immune response against
microbes could affect the autoreactive immune response via different mechanisms [44].
Nevertheless, infection is a factor that indirectly induces an autoimmune disease and can
induce a polyclonal activation of immunoactive cells, but they are yet to be proven for MG
etiology [1].

2.3. Clinical Manifestations of MG

The disease manifests with varying skeletal muscle weakness, is aggravated when
exerted, and improves with rest [10,45]. Although it has overlapping diverse clinical
symptoms as with other neurological disorders, the fluctuating feature of MG allows it to
be differentiated [46,47]. MG can be categorized into ocular myasthenia gravis (oMG) and
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generalized myasthenia gravis (gMG) [26]. The oMG symptoms are limited to extrinsic
ocular muscles (EOMs), affecting 10% of MG patients. In contrast, in gMG, the most
common initial symptom often involves the EOMs, which then spreads involving the
bulbar muscle, limb, axial musculature, and respiratory muscles [6,26]. Weakness of the
EOMs present as diplopia, blurry vision, and ptosis (unilateral or bilateral). It occurs in 85%
of MG patients, in which 50% of them progress to gMG in two years [46]. Around 60% of
MG patients presenting bulbar muscle weakness showed fatigable chewing; however, 15%
of MG patients showed dysarthria and painless dysphagia as an initial presentation [48,49].

Generally, arms are more affected than the legs in MG patients, and the involvement
of facial muscles and the neck extensor and flexor leads to an expressionless face and
“dropped head syndrome” [10,50]. Weakness in the respiratory muscles tends to occur only
after two years of onset, leading to a life-threatening myasthenic crisis [50].

3. Human Gut Microbiome and Its Relation with Human Wellbeing

The human microbiome is defined as ‘the ecological community of commensal, symbi-
otic, and pathogenic microorganisms that share our body space and have been ignored as
determinants of health and disease’ by Joshua Lederberg [51]. It is detailed that 1010–1012

live microorganisms per gram are found in the human colon [52]. The microbiota in the
small and large intestine and the stomach are vital for human health, and they consist
mainly of anaerobes living in the large intestine [53]. The human gut microbiome consists
of a huge complex symbiotic microbial ecosystem crucial for developing and maintain-
ing the metabolic and immune system homeostasis, impacting human nutrition and the
gastrointestinal tract’s function and integrity [54–60]. It also includes complementing
the genes to carry out functions in the human intestine that are not encoded in the hu-
man genome [61,62]. Genes encoding functions involved in polysaccharide metabolism,
methanogenic pathways for hydrogen gas removal, and enzymes for detoxification of
xenobiotics have been identified as enriched functional genetic categories within intestinal
microbial communities [62,63].

Dysbiosis refers to alterations in the composition of microbial communities that could
influence the host–microbe interaction [64,65]. These changes may, in turn, add to disease
susceptibility [65]. Intestinal dysbiosis has been linked to chronic low-grade inflamma-
tion [66]; metabolic disorders [67] leading to metabolic syndromes, for example, obesity and
diabetes [60,68,69]; infections in the gastrointestinal tract (GIT); irritable bowel syndrome
(IBS); and inflammatory bowel disease (IBD) [60,70]. Obesity also relates to dysbiosis
and occurs due to the alteration in the microbiota at the phylum level and changes in
the representation of bacterial genes and metabolic pathways, where a set of core micro-
bial biomarkers affect the metabolisms [62]. Recently, more evidence on the effect of the
microbiota–host interaction on the gut environment and distal organs has become available,
with some studies indicating their interaction with the brain and nervous system [71–74].
There have been studies associating diabetes, cancer, and obesity with alterations to gut mi-
crobiome, as well as evidence of the gut microbiome’s implications on the onset of diseases
via the “microbiota–gut–brain” (MGB) axis [75–82]. The MGB axis is a communication
system made up of intricate loops of neurological reflexes which moderate the coordination
between the brain, the intestinal tract, and the endocrine and immune systems involved in
maintaining gut function [83,84]. This further proves the function of the gut microbiome as
the central regulator of the host immune homeostasis [59,85].

Gut microbes are also responsible for intestinal neuroimmunology [64]. The brain has
the most nerve cells, followed by the GIT, which owns an enteric nervous system [86]. Gut
microbiota can produce neuroendocrine and neuroactive molecules, for example, histamine,
adrenaline, noradrenaline, serotonin, and gamma-aminobutyric acid (GABA), which can
communicate through the gut–brain axis [84,87,88]. This, in turn, affects the perception of
pain and behavior [64,89]. Furthermore, it is involved in developing neuro-immunological
disorders [90]. An experiment involving murine with autoimmune encephalomyelitis
(EAE) found that intestinal microbiota caused autoimmunity driven by myelin-specific
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CD4+ T cells [91]. Treatment with either probiotics or antibodies suppressed the IL-17
production and accumulation of regulatory T cells in secondary lymphoid organs, which
improved clinical symptoms and reduced inflammation [92–94]. This proposes that probi-
otics may provide therapeutic benefits for autoimmune diseases by changing the intestinal
microbiome [64].

3.1. The Relationship between MG and the Gut Microbiome

The gut microbiome could be responsible for triggering diseases in genetically vulner-
able individuals [95,96]. MG is an autoimmune disease associated with the dysregulation in
the composition and diversity of gut microbiome [97]. Dysregulation of the gut microbiome
may be involved in the onset of both central and peripheral autoimmune disorders [98,99].
This is consistent with the recent confirmation demonstrating the relationship of intesti-
nal aberrancies and different autoimmune diseases, for example, Type 1 diabetes [100],
IBD [101,102], multiple sclerosis [103,104], and rheumatoid arthritis [103,105], among others.
Nonetheless, the pattern of microbial dysbiosis varies for different autoimmune disorders.
Thus, microbiota alterations in MG subjects cannot be extrapolated based on other autoim-
mune diseases. As the microbial diversity and microbial composition of the gut microbiota
affects the development of MG, this has resulted in studies using 16S ribosomal RNA
(rRNA) gene sequencing and fecal metabolomics being conducted to determine whether
the above statement is true and, if so, how it is associated [97].

The gut microbiota is involved in MG development [16]. Alterations to the microbiota
affect human physiological functions via the immune system regulation [106]. This is
seen in MG disease, where alterations in the gut microbiota affect Foxp3+ CD4+ Treg
cells, contributing to MG pathogenesis. MG’s pathogenesis is linked with high levels of
circulating AChr Abs. Based on several studies, their production has been linked to Th1, B
cells, and Foxp3+ T regulatory (Treg) cells disequilibrium [45,107,108]. The frequency of
Foxp3+ CD4+ Treg cells is significantly reduced in MG patients. This has led to more studies
focusing on the pathogenesis of MG [109–111]. Foxp3+ CD4+ Treg cells are regulatory cells
particularly common in the colonic lamina propria [112]. Both Foxp3+ CD4+ Treg cells and
the T-cell receptor (TCR) repertoire of Foxp3+ CD4+ Treg cells can be affected by the gut
microbiota [113–115]. The TCR repertoire plays a role in increasing the Foxp3+ CD4+ Treg
cells by recognizing subsets of commensal bacteria, inducing the differentiation of naive
CD4+ T cells into antigen-specific Foxp3+ CD4+ Treg cells, resulting in increased Foxp3+
CD4+ Treg cells [114,115]. Foxp3+ CD4+ Treg cells on the other hand, reduce disease
severity and progression by affecting the level of autoreactive T cells and suppressing the
activity of autoreactive B cells, hence regulating AChR Abs production. Therefore, their
function in maintaining self-tolerance and immune homeostasis makes them crucial in
preventing MG development [116]. Currently, the interpretation of the pathogenesis of MG
is targeted at the inadequate frequency of Foxp3+ CD4+ Treg cells. It is hypothesized that
this deficiency in the intestinal bacteria-induced Foxp3+ CD4+ Treg is related to changes
in the composition of the gut microbial community [106]. Further details regarding the
correlation between probiotics, Foxp3+ CD4+ Treg cells, and MG disease is discussed later
in this paper.

3.2. Gut Microbiota Composition between HCs and MG Patients

The microbial composition in both healthy controls (HCs) and MG subjects can be
obtained using 16S rRNA gene sequencing. In contrast, the functional readout of micro-
bial activity can be obtained from fecal metabolomics [117,118]. We can identify the link
between gut microbes and their functional metabolites [118]. In terms of the composition
of gut microbes of HCs and MG subjects, Zheng et al. [97] was able to show that a notable
difference at the Operational Taxonomic Unit (OTU) level was present based on the 3D
principal co-ordinates analysis. Furthermore, control analyses showed that MG subjects’
microbial composition was not notably grouped according to disease subtype, medica-
tion/treatment history, or AChR Ab status. Age and gender were not factors involved in
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clustering HCs and MG subjects. Thus, this suggests that these confounding factors do not
significantly affect the global microbial phenotype.

The linear discriminant analysis effect size was also conducted to identify phylotypes
behind the differences between HCs and MG subjects. Results were presented that some
microbes were abundant in HCs, while some were abundant in MG subjects [106,119]. The
human gut consists of a high diversity of bacterial taxa, mainly belonging to Firmicutes and
Bacteroidetes [120]. Based on the analysis conducted by Zheng et al. [97], 80 differential
OTUs were recognized and held accountable for distinguishing MG subjects from HCs.
These 80 OTUs mainly belonged to the phyla Firmicutes (59/80), Bacteroidetes (14/80),
and Actinobacteria (3/80). In comparison with the HCs, out of the 80 OTUs recognized by
Zheng et al. [97], 34 OTUs belonging to the bacterial taxonomic families (Bacteroidaceae, Lach-
nospiraceae, Prevotellaceae, and Veillonellaceae) increased in abundance, while the remaining
46 OTUs belonging to bacterial families (Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae,
Clostridiaceae, and Peptostreptococcaceae) decreased in abundance in MG subjects. The results
from different studies show that the microbes’ level varied according to different bacterial
genera and families.

Furthermore, Moris et al. [119] and Zheng et al. [97] agreed that at the phyla level,
Firmicutes are the dominant fecal microbes of both HCs and MG subjects and that the level
of Actinobacteria is lower in proportion relative to HCs. Notably, the level of Bacteroidetes,
on the other hand, was found to be in a higher proportion in MG subjects, and this result
was consistent across three studies [97,106,119]. For instance, Moris et al. [119] reported
that there were higher counts (p < 0.05) of total bacteria and of the Desulfovibrio- and
Bacteroides-groups based on a quantitative polymerase chain reaction (qPCR) analysis [119].
There are also findings stating that Firmicutes and Bacteroidetes are the main bacterial
phyla responsible for microbiota alteration. The Firmicutes/Bacteroidetes (F/B) ratio was
lower in MG subjects than HCs. The F/B ratio describes a pro-inflammatory environment.
These inflammatory microbiotas damage the intestinal epithelium and prompt the immune
response, resulting in an immunological imbalance. Thus, this is consistent with the drop in
the F/B ratio in other autoimmune diseases, such as Crohn’s disease and IBD [106,121,122],
demonstrating a correlation between the Firmicutes and Bacteroidetes level and some
autoimmune disorders.

The linear discriminant analysis effect size conducted by Qiu et al. [106] was able to
pinpoint 11 discriminative characteristics (genus level, linear discriminant analyses (LDA)
score >2) with an altered relative abundance. In HCs, the bacteria of genera Clostridium,
Eubacterium, Faecalibacterium, Lactobacillus, etc. were higher in abundance. Conversely, in
MG subjects, the bacteria of genera Streptococcus, Parasutterella, Escherichia, etc. were more
elevated in abundance. In other words, MG subjects had a significant drop in Clostridium
and Lactobacillus levels, with Clostridium (under the phyla Firmicutes) being the most
depleted, with an absolute amount up to three-times less than in HCs. Similarly, Zheng
et al. [97] also reported that the level of Clostridium (under the phyla Firmicutes) was found
to be much greater in the HCs (p < 0.001). MG subjects had a reduced abundance of bacteria
belonging to Lachnospiraceae and Ruminococcaceae families from Clostridiales, which are
vital for maintaining a healthy gut based on the OTU analysis [97,123,124].

Furthermore, Moris et al. [119] found large inter-individual variability for the Bifidobac-
terium population using ITS profiling, which could be the cause for the lack of statistically
significant (p < 0.05) differences among the HCs. However, there were some obvious
differences, as HCs had high populations of Bifidobacterium longum subsp. Longum, fol-
lowed by Bifidobacterium adolescentis, whereas MG subjects had high relative proportions of
Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, and Bifidobacterium dentium [119].
This demonstrates variations in the microbiota profiles and the levels of specific species
of bacterium found in both HCs and MG subjects, not just based on a genus level. These
Bifidobacterium spp. are classified as actinobacteria at the phylum level and are well-known
probiotics living in the stomach and intestine. This shows that dysbiosis of specific species
of the bacterium does relate to MG (Table 1). In conclusion, the microbial composition of
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MG subjects was significantly different from HCs, and it had been correlated to a reduced
α diversity in MG subjects. This proposes an unusual microbial status, suggesting an
association of gut microbiota dysbiosis with MG [97].

Table 1. Gut microbiome findings in myasthenia gravis (MG) patients.

Studies Changes in the Gut Microbiome

Zheng et al. [97]

80 differential a OTUs were recognized and held accountable for distinguishing b MG subjects from c

HCs. These 80 a OTUs mainly belonged to the phyla Firmicutes (59/80), Bacteroidetes (14/80), and
Actinobacteria (3/80). In comparison with the c HCs, out of the 80 a OTUs that were recognized, 34 a

OTUs belonging to the bacterial taxonomic families (Bacteroidaceae, Lachnospiraceae, Prevotellaceae, and
Veillonellaceae) increased in abundance, while the remaining 46 a OTUs belonging to bacterial families
(Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Clostridiaceae, and Peptostreptococcaceae) decreased in
abundance in b MG subjects.

Firmicutes were the dominant fecal microbes of c HCs and b MG subjects.

The level of Clostridium (under the phyla Firmicutes) was much greater in c HCs (p < 0.001). b MG
subjects had a reduced abundance of bacteria belonging to Lachnospiraceae and Ruminococcaceae families
from Clostridiales.

The level of Actinobacteria was lower relative to c HCs.

The level of Bacteroidetes was higher in b MG subjects.

Qiu et al. [106]

In c HCs, the bacteria of genera Clostridium, Eubacterium, Faecalibacterium, Lactobacillus etc. were higher in
abundance. Conversely, in b MG subjects, the bacteria of genera Streptococcus, Parasutterella, Escherichia,
etc. were higher in abundance.
The level of Clostridium (under the phyla Firmicutes) was the most depleted, with an absolute amount up
to three-times less than in c HCs.

The level of Bacteroidetes was higher in b MG subjects.

Moris et al. [119]

Firmicutes were the dominant fecal microbes of c HCs and b MG subjects.

The level of Actinobacteria was lower relative to c HCs.
c HCs had high populations of Bifidobacterium longum subsp. longum followed by Bifidobacterium
adolescentis, whereas b MG subjects had high relative proportions of Bifidobacterium animalis subsp. lactis,
Bifidobacterium breve and Bifidobacterium dentium.

The level of Bacteroidetes was higher in b MG subjects.

Higher counts (p < 0.05) of total bacteria and the Desulfovibrio- and Bacteroides-groups based on a d qPCR
analysis.

a OTU: Operational Taxonomic Unit; b MG: myasthenia gravis; c HCs: healthy controls; d qPCR: quantitative
polymerase chain reaction.

Possible Mechanisms by Which Some Gut Microbiota May Contribute to MG Development

Some human physiological functions could be affected by changes in the microbial
community via the regulation of the immune system. Currently, particular alterations
in the microbial composition, specifically of the Clostridium spp., have been recorded to
influence the amount and TCR repertoire of Foxp3+ CD4+ Treg cells [106]. Clostridia
colonizes the mucus layer near the epithelium and affects the intestinal epithelium cells,
resulting in a rise in the expression of 2, 3-dioxygenase and transforming growth factor-beta
1 (TGF-β1), which are responsible for encouraging the naive CD4+ T cells to differentiate
into antigen-specific colonic Foxp3+ CD4+ Treg cells [112,114,125]. In turn, these differen-
tiated cells curb the production of the anti-AChR auto-antibody and autoreactive B cells,
aiding in suppressing the severity of MG [116]. Clostridium plays a role in regulating B
cells and Foxp3+ CD4+ Treg cells; these Foxp3+ CD4+ Treg cells are responsible for the
overproduction of AChR Ab seen in MG subjects. Hence, replacing the reduced level of
Clostridia led to a surge in Foxp3+ CD4+ Treg cells, which are essential for MG prevention,
and could be a novel strategy against MG [106].
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Even though the exact mechanism through which Clostridia regulates the differentia-
tion and activation of immune cells is uncertain, the possible mechanism is via the joint
production of short-chain fatty acids (SCFAs) [126,127]. Clostridia are microbes that are
recognized to produce SCFAs as the end product of the fermentation of proteins and carbo-
hydrates [128,129]. These SCFAs could affect T cells by regulating their differentiation into
Foxp3+ CD4+ Treg cells [130,131]. This is carried out through at least two separate mecha-
nisms. The first mechanism is that the naive CD4+ T cells are exposed to SCFAs, which will
increase the acetylation status of histone H3 in the promoter and the conserved non-coding
sequence 3 (CNS3) enhancer regions the Foxp3 gene loci, resulting in the Foxp3+ CD4+
Treg cells’ differentiation [132]. The second mechanism is that SCFAs change the phenotype
of dendritic cells (DC), inducing retinal dehydrogenase isoform-1 (Raldh1) expression in
DCs to increase the production of retinoic acid (RA), causing the differentiation of Foxp3+
CD4+ Treg cells [106,131]. Hence, as a specific microbial composition produces specific
microbial metabolites, this could profoundly affect immunity, which possibly affects MG.
Clostridia is the primary producer of SCFAs [128]. Based on Qiu et al. and Moris et al.,
both showed that the commensal microbe-derived SCFA differs in HCs and MG subjects.
The overall SCFA obtained from the fecal contents of MG subjects were lower than HCs
(p < 0.03, Wilcoxon rank-sum test), with propionate and butyrate specifically having a huge
drop (p < 0.05, Wilcoxon rank-sum test) [106,119]. This is because most of the SCFAs are
produced by Clostridia, which are depleted in MG subjects [128]. Propionate and butyrate
are the most abundant SCFAs, whose metabolites are vital in regulating the immune system
and inflammatory responses [133–135]. It is likely that the decrease in Clostridia caused
a drop in microbial metabolites- (SCFAs), which is to a certain extent linked to the lower
levels of Foxp3+ CD4+ Treg cells, and subsequently resulted in MG disease [106].

Besides Clostridium, the other genus belonging to the Firmicutes that was shown to
have altered levels was Streptococcus. A recent study revealed that the level of Streptococcus
was much higher in MG patients when compared to healthy subjects [106], suggesting
that the increased level of Streptococcus could have also impacted the tightly regulated
host mucosal immune system response. It was reported previously that the commensal
bacterium Streptococcus salivarius has direct effects on the activation of transcription factors,
which have important roles in immune functions [136,137]. In an in vitro study, Strepto-
coccus salivarius inhibited the transcriptional activity of peroxisome proliferator-activated
receptor (PPARγ) and the subsequent expression of target genes in intestinal epithelial cells,
although its exact mechanism is still unclear [137]. PPARγ is a member of a nuclear receptor
family that regulates glucose metabolism and lipogenesis as well as immunoregulatory
functions in T cells and macrophages [138,139]. PPARγ activation is known to inhibit T-cell
activation and inflammatory disease Meanwhile, PPARγ deficiency is associated with an
increased disease susceptibility and severity. It was observed that Foxp3+ CD4+ Treg cells
decrease in number, while CD4+ IFN-γ cells increase in number with repressed PPARγ,
showing its role in Treg survival and effector T cell functions [140]. Therefore, the increased
abundance of Streptococcus could exhibit an antagonistic effect toward the differentiation of
Foxp3+ CD4+ Treg cells, resulting in the Foxp3+ CD4+ Treg cell deficiency as a proposed
pathogenesis of MG associated with perturbation of the gut microbiome (Figure 1).
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myasthenia gravis (MG).

4. The Relationship between Gut Microbiome Dysbiosis and Biomarkers in
MG Patients

Dysbiosis possibly contributes to serum biomarkers’ variability and promotes chronic
inflammation in MG subjects, as they have different gut microbiota profiles [141–144].
This, in turn, impacts the systemic immune response, as the perturbations of specific
gut microbial communities are responsible for biomarkers of autoimmune inflamma-
tion [143,144]. Microbe translocation (MT) from an inflamed gut can be used to determine
the pro-inflammation status via the serum concentration of lipopolysaccharide (LPS) and
endotoxin core antibody immunoglobulin M (EndoCAb-IgM), reflecting MT-correlated
immune activation [145]. Previous studies on graft versus host disease [146], IBD/IBS [147],
and HIV disease [148], which all involved an increase in lipopolysaccharide secretion solu-
ble CD14 (LPS-sCD14) and EndoCAb-IgM, have described MT as an exclusive pathogenic
feature. As commensal flora work synergistically with the intestinal barrier and interact
with the innate immune system, changes to the microbial composition enable both mi-
crobes and their metabolites to pass through the intestinal barrier, evading the immune
intervention, and into the circulation, resulting in immune activation and chronic systemic
inflammation [148].

LPS is a crucial outer membrane component of Gram-negative bacteria. It is also a
recognized biomarker. LPS has a central role in the host–pathogen interaction, facilitating
the process of infection. It binds to cell-surface receptors, for instance, cluster of differ-
entiation 14 (CD14)/toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2),
which is present in various types of host cells, including monocytes, macrophages, B
cells, and dendritic cells, and after that, it induces the section of eicosanoids, nitric oxide,
and pro-inflammatory cytokines [149]. Furthermore, it has been demonstrated that LPS
enhances the immune response to antigens and is a B cell-specific mitogen in mice. For
instance, Allman et al. used LPS as an adjuvant to induce an EAMG model and found
that LPS-AChR induced mice showed MG-like symptoms and that anti-AChR Abs were
produced in the sera, with deposits of IgG2 and C3 at the NMJ [150]. In a study by Rose
et al. on the induction of an experimental thyroiditis model using mice, they found that the
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injection of thyroglobulin together with LPS induced thyroglobulin-specific autoantibodies
and lesions in the thyroid [151]. Although some studies also proposed that LPS may be
associated with allergies and autoimmune diseases, including experimental autoimmune
arthritis [149,152], its role in inducing MG needs further investigation.

MG subjects have different gut microbiota profiles, which could be associated with the
variability in serum biomarkers. This led Qiu et al. to assess the gut microbial translocation
using biomarkers EndoCAb-IgM and LPS-sCD14 and also assess the dysbiosis-associated
chronic system inflammation in MG subjects using other biomarkers involving IL-6 and
tumor necrosis factor-alpha (TNF-α). The univariate analyses showed an increase in IL-6,
TNF-α, and secretory Immunoglobulin A (SIgA) serum levels and a drop in EndoCAb-
IgM and LPS-sCD14 serum levels in MG subjects (p < 0.05). The Spearman method was
also conducted to find the correlation between the biomarkers and the altered taxa. Qiu
et al. possibly suggests that there may be only a slight correlation between the related
inflammation and MT. Thus, the rise in systemic inflammation correlates with changes in
the microbial community in MG subjects. However, it is possible that it only promotes the
expression of inflammatory mediators and not the pathogenesis of MG [106].

5. Alterations in Fecal Metabolome of MG Patients

MG is linked with an alteration of the human microbiota, causing an effect on both
body function and metabolism and with some microbes associated with the MG severity.
Some microbes were linked to AChR Ab, an established biomarker for MG and thymic
hyperplasia, affecting the onset of MG. Besides that, alterations in fecal metabolomics also
affect MG [97]. As mentioned earlier, fecal metabolomics is carried out to obtain the micro-
bial activity’s functional readout. Zheng et al. found that the fecal metabolic phenotype of
HCs was different compared to MG subjects. There were 30 fecal metabolites recognized
and held responsible for distinguishing if the subject had MG. Among the 30 metabolites,
the level of 16 metabolites reduced in MG subjects, while the level of the other 14 metabo-
lites increased. Then, a functional clustering analysis that was conducted proved the
consistency that most of those differentially expressed metabolites had a role in amino acid
metabolism (leucine, methylmalonic acid, valine, O-Succinylhomoserine, 5-aminovaleric
acid, cysteinylglycine, and D-Glyceric acid), microbial metabolism in diverse environments
(xanthine, naphthalene, oxalic acid, catechol, D-Glyceric acid, and 4-nitrophenol), and
nucleotide metabolism (cytosine, methylmalonic acid, xanthine, adenine, and oxalic acid),
which, in turn, could affect MG occurrence [97].

The alteration in metabolite biomarkers has been correlated with the dysbiosis of
the gut microbial OTUs and the clinical symptomatology of MG. The disturbance in the
three metabolic pathways mentioned above could potentially be a new complement to the
AChR Ab-mediated pathogenesis and diagnosis of MG. Although it is unclear how these
metabolic pathways are involved in the onset of MG, there are two hypotheses. The first
hypothesis is that the metabolites are associated with the microbial metabolism; thus, the
perturbations in the gut microbiome relate to MG. This is consistent with current findings
that the fecal metabolome is the functional readout of the gut microbiome. The second
hypotheses relate to the metabolism of nucleotides, in which the alterations of cytosine and
methylmalonic acid in MG subjects have proposed a link between pyrimidine metabolism
and MG. It was also found that MG subjects experience a disturbance in purine metabolism
involving xanthine, adenine, and oxalic acid [97]. Thus, it is clear that MG is probably
associated with the disturbance in the nucleotide metabolism by modulating oxidative
stress, which is a theory supported by earlier studies describing the altered antioxidant
status at the protein or metabolite levels [153,154].

6. Link between Gut Microbial OTUs with Metabolites and Some Clinical
Characteristics of MG

The gut microbial OTUs could also be associated with the metabolites and certain
clinical characteristics of MG. Zheng et al. conducted a correlation analysis to explore the re-
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lationship between dysbiosis, fecal metabolome, and MG’s clinical symptomatology. There
were three findings. Firstly, differential bacterial OTUs were associated with differential
metabolites, with 38.75% (31/80) of altered bacterial OTUs having correlations with a range
of metabolite biomarkers (r > ±0.35, p-value < 0.001). This shows that MG was simultane-
ously characterized by dysbiosis and the fecal metabolome. Secondly, some gut microbial
OTUs were linked to some parameters, including thymic hyperplasia, gender, long-term
immune therapies, well-established AChR Abs, and the hamilton anxiety scale (HAMA).
Besides that, some OTUs primarily belonging to Lachnospiraceae, Erysipelotrichaceae, and
Bacteroidaceae were associated with indicators of MG severity [97].

As mentioned above in the findings from the correlation analysis conducted by Zheng
et al., 31 out of 80 microbial OTUs exhibited a link with various metabolite biomarkers;
thus, he then conducted a binary regression analysis to detect and quantify the prospective
diagnosis ability of the newly found microbial and metabolic biomarkers in MG. The results
were that four OTUs, namely Clostridiaceae, Lachnospiraceae, Erysipelotrichaceae, and
Bacteroidaceae, and six correlated metabolites, including cytosine, D-Glyceric acid, leucine,
N-Acetyltryptophan, oxalic acid, and xanthine, had been causing great deviations between
HCs and MG subjects. This led to a huge discovery of combining metabolic biomarkers and
microbial markers to discriminate MG subjects from HCs with 100% accuracy compared
to diagnosing based on the microbial and metabolic biomarkers separately. Identifying
biomarkers for severity is essential, especially for those with a history of a respiratory
crisis that could lead to morbidity and mortality [97]. Unlike using AChR Abs as the
diagnostic biomarker of MG, which does not reflect MG severity, using the combination of
metabolic biomarkers and microbial markers allows for the identification of MG severity;
thus, it is a potential diagnostic biomarker that provides significant clinical value [155].
Besides that, a panel of microbes (Clostridiaceae, Lachnospiraceae, Erysipelotrichaceae,
and Bacteroidaceae) has been linked to MG severity in terms of a history of respiratory
crisis, severity score, and requirement of short-term immune therapies, whereas some
metabolites (cytosine, D-Glyceric acid, leucine, N-Acetyltryptophan, oxalic acid, and xan-
thine) have deviations between HCs and MG subjects. This further implies the potential
advantages and strengths of identifying markers for MG severity via analyzing the fecal
gut metabolomics [97].

7. Insights and Future Perspectives on the Treatment of MG Based on Gut
Microbiome Modulation
7.1. Probiotics

The diet manipulates and shapes the gut microbiota composition and function [64].
Besides supplements, probiotics are readily available through functional foods and drinks.
Probiotics are defined as ‘living microorganisms, which, when administered in adequate
amounts, confer health benefits on the host’ by the Food and Agricultural Organization
of the United Nations and the World Health Organization [156]. Nobel laureate Elie
Metchnikoff introduced the concept of probiotics, and now, probiotics are widely marketed
as functional foods or dietary supplements [64,157].

A huge variety of food and drink products contains probiotic strains [158]. Dairy
products, including cheese, yogurts, and fermented milk, constitute important probiotic
sources in humans, with yoghurt having the highest sales [159–161]. Non-dairy products,
including cereals, soy-based products, nutrition bars, and juices, can be a way for con-
sumers to obtain probiotics [162,163]. However, it is important to consider the product’s
compatibility with the microorganism; safety; efficacy; and the maintenance of its viability
via product processing, packaging, and storage conditions. One of the factors affecting
the growth and survival of the probiotic is pH, which is the reason soft cheeses are better
delivery systems than yoghurt for delivering probiotics to the GIT [164–166].

Probiotics influence the composition and function of gut microbial communities via
the production of growth substrates or inhibitors, competition of nutrients, and modulation
of intestinal immunity [167]. Probiotics also affect the patterns of gene expression. In a
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recent study, duodenal specimens collected before and after a 6-week intervention period
from healthy volunteers taking probiotics showed changes in transcriptional networks
involving mucosal biology and immunity [168]. The mechanisms of probiotics include
suppression of pathogens, manipulation of intestinal microbial communities, immunomod-
ulation, stimulation of epithelial cell proliferation and differentiation, and fortification of
the intestinal barrier [169].

Probiotics use different mechanisms in suppressing bacterial pathogen’s proliferation
and virulence. They can produce metabolic compounds or microbial agents that halt
other microorganisms’ growth or compete for binding sites and receptors with other
intestinal microbes on the intestinal mucosa [170–172]. They can also produce a wide range
of antimicrobial factors, for instance, bacteriocins and non-peptide compounds, which
offer therapeutic alternatives in targeting multidrug-resistant pathogens. For example, in
lactobacilli, lactic acid and reuterin are the recognized antimicrobial effectors, with certain
strains of Lactobacillus reuteri (L. reuteri) secreting bacteriocins, affecting both innate and
adaptive immunity [64,173,174].

Probiotics can manipulate the intestinal microbial community by inducing the produc-
tion of β-defensin and Immunoglobulin A (IgA) [169]. In a study where infants were treated
with daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG), there was a rise in
the evenness index in the fecal microbiota, which indicates ecological stability [175]. This in-
crease in ecological stability has been linked to the diversity in microbial communities [176].
Thus, this proves that probiotics do manipulate the intestinal microbial communities and
stabilize it.

Probiotics could regulate intestinal immunity and change the responsiveness of the in-
testinal epithelia and immune cells to microbes in the intestinal lumen [169,177]. The role of
probiotics in intestinal immunomodulation involves the upregulation of anti-inflammatory
factors and the downregulation of pro-inflammatory factors. In contrast, fortification of the
intestinal barrier involves inducing mucin production and maintaining tight junctions [169].
Thus, enhancing intestinal barrier integrity leads to greater immune tolerance and less
translocation of pathogens across the intestinal mucosa [178]. Probiotics can also use
substrates from the diet to produce secreted soluble factors and metabolites, for instance,
vitamins and SCFAs, via signaling pathways such as mitogen-activated protein kinase
(MAPK) and nuclear factor kappa B (NFκB) [169,179]. These compounds influence the
growth and function of the intestinal epithelium and mucosal immune cells, leading to
cytokine and related factors and B cell activating factors production [179]. For example,
in gnotobiotic pigs, heat-killed L. reuteri 100-23 induces anti-inflammatory cytokine IL-10
production, eliciting an intestinal immune response and regulating the development and
recruitment of regulatory T cells to the GIT epithelium [180]. L. reuteri can produce sol-
uble factors to inhibit pro-inflammatory cytokine production and signaling of immune
cells [181]. Thus, this proves the ability of probiotics in modulating the intestinal immunity
and altering the responsiveness of the intestinal epithelia and immune cells to microbes in
the intestinal lumen [169,177].

Probiotics have been recommended as a therapeutic and preventive measure in restor-
ing the gut microbiome, and their effects on specific diseases have been studied [119].
Probiotics can increase the functionality of existing microbial communities and introduce
advantageous functions into the GIT [64]. Therefore, disease states are possibly related
to the changes in core microbial functions [62]. However, more research using controlled
human studies is needed to establish the safety and limitations of probiotics, the strain
of probiotics, and the dosage required for the greatest efficacy for a particular group of
patients. Besides that, the regulatory status of probiotics as food components needs inter-
national verification, particularly regarding the safety, efficacy, and validation of a food
label’s health claims [158].
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7.2. Prebiotics

The combined use of prebiotics and probiotics may have a synergistic effect [182].
This combination can improve the survival and implantation of live microbial dietary
supplements in the gastrointestinal flora of the host, improve the microbial balance of
the GIT, and modify the composition of colonic microflora by selectively stimulating the
growth or activating the catabolism of a limited number or one of the health-promoting
bacteria in the intestinal tract, leading to the predominance of some of the potentially
health-promoting bacteria, particularly, bifidobacteria and lactobacilli [182,183].

A prebiotic is “a nondigestible food ingredient that beneficially affects the host by
selectively stimulating the growth and/or activity of one or a limited number of bacteria in
the colon” [183]. They can modify the function and composition of the gut microbiota [184].
Gut microbes ferment these prebiotics, and they get their survival energy from degrading
indigestible binds of prebiotics [183,185]. Thus, they selectively influence the gut micro-
biota [186,187]. The two important groups of prebiotics that have advantageous effects on
human health are the galacto-oligosaccharides and fructo-oligosaccharides [188]. Currently,
inulin-type fructans involving native inulin, synthetic fructooligosaccharides (FOS), and
enzymatically hydrolyzed oligofructose or inulin are the only prebiotics with data ade-
quate for possible classification as functional food ingredients [189]. Inulin is defined as a
polydisperse carbohydrate material containing largely β-(2-1) fructosyl-fructose links [190].
Both inulin and oligofructose can be found in large amounts in various vegetables and
fruits, including leeks, wheat, banana, onion, and garlic [191].

The prebiotic inulin-type fructans have an effect on the GIT, possibly providing a
synergistic effect to the use of probiotics. They can avoid digestion in the upper GIT
due to the β-configuration of the anomeric C-2 in their fructose monomers, with further
evidence that they are not significantly absorbed. Therefore, this allows for the greater
survival of bacteria passing through the upper GIT, boosting their effects in the large bowel,
and they have been referred to as a colonic food, which is a food acting as a substrate
for endogenous bacteria after entering the colon, thus directly supplying the host with
metabolic substrates and energy. Many in vivo and in vitro (both microbiological and
analytical) studies have supported the proposal that inulin-type fructans are fermented by
bacteria colonizing the large bowel and confirming that the end products of fermentation
produce SCFAs, including propionic acid, butyric acid, and lactic acid, which have few
effects on the body [183,192,193]. For example, SCFAs decrease the colonic pH, leading
to alterations in the population and composition of the gut microbiota, affecting acid-
sensitive species (Bacteroids) while promoting Firmicutes to produce butyrate (i.e., the
butyrogenic effect), whereas propionate influences dendritic cells in the bone marrow
and influences T helper 2 cells in the macrophages and airways [192–197]. Besides that,
peptidoglycan produced from fermentation could stimulate the innate immune system
against pathogenic microorganisms [192,198]. On top of that, based on human in vivo
studies, this fermentation results in the selective stimulation of growth of the bifidobacteria
population. Thus, this makes inulin-type fructans the prototypes of prebiotics [183]. Even
though many studies have been conducted on prebiotics’ positive effects on human health,
genomic investigations and accurately designed long-term clinical trials need to be carried
out to confirm the health claims [188].

7.3. Intervention of the Gut Microbiome by Fecal Microbiota Transplantation

The fecal microbiota transplant (FMT) is a translational experimental model that is
beneficial in determining if gut microbiome dysbiosis is linked with the development of
different diseases [97]. The transplantation of the MG microbiota can affect the outcome
of MG. This could be seen in an animal experiment conducted by Zheng et al. using mice
under matching immune conditions. The FMT was carried out by colonizing germ-free
(GF) mice with an MG microbiome (MMb) or healthy microbiota (HMb) or both MMb and
HMb (CMb) and then using classic modeling methods to immunize them [97,199,200]. One
month after FMT, an open field test (OFT) was conducted to determine if MMb affects
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MG-related locomotion. Regardless of the sexes of the mice, the total distance traveled by
both MMb and CMb mice dropped more than HMb mice, proving that the colonization of
GF mice with MMb, although under identical immune conditions as the HMb colonized
mice, resulted in impaired locomotion. Besides that, the level of TNF-α, IFN-γ, and IL-10
in both serum and intestinal tissue were much greater in the MMb group than the HMb
group [97]. This is consistent with previous animal and clinical studies showing increased
serum TNF-α and IFN-γ [201,202]. As the level of the three cytokines mentioned above in
the CMb group were comparable to those in the HMb group, thus, by co-administering
HMb into MMb mice, the effect of the increased inflammatory cytokines could be reversed
(Table 2) [97]. This is consistent with another finding stating that the interference of the
cytokines has demonstrated the ability to alleviate MG severity [203].

Table 2. Findings of fecal microbiota transplant (FMT) in relation to myasthenia gravis (MG) us-
ing mice.

Findings

Animal study on a FMT

Using an open field test, 4 weeks after a FMT [97]

- Colonization of b GF mice with c MMb resulted in an impaired locomotion ability.
- The effect may be reversed by colonizing b GF mice with both c MMb and d HMb.
- Levels of e TNF-α, f IFN-γ, and g IL-10 in both serum and intestinal tissue were much

greater in the c MMb group than the d HMb group. The co-administration of d HMb could
reverse the effects of increased cytokines in c MMb mice.

16S rRNA gene sequencing, 4 weeks after a FMT [97]

- Distinct microbial communities of MG patients were reproducible in a FMT, c MMb, and
d HMb mice.

- A total of 98 h OTUs belonging to Firmicutes (49/98), Bacteroides (34/98), and
Actinobacteria (3/98) were identified.

- A total of 54 of the 98 differential h OTUs between c MMb and d HMb were reversed in the
i CMb group

- A total opf 16 of the 54 reversed h OTUs belonging to Lachnospiraceae (7 h OTU),
Bacteroidaceae (4 h OTU), and Ruminococcaceae (2 h OTU) were associated with impaired
locomotion ability and the interference of fecal metabolomics.

a FMT: fecal microbiota transplant; b GF: germ-free; c MMb: myasthenia gravis microbiome; d HMb: healthy
microbiota; e TNF-α: tumor necrosis factor alpha; f IFN-γ: interferon gamma; g IL-10: interleukin 10; h OTU:
Operational Taxonomic Unit; i CMb: both healthy microbiota and myasthenia gravis microbiome.

Alterations in the MG Microbiota of Mice after a Fecal Microbiota Transplant

The 16S rRNA gene sequencing method was also carried out four weeks after FMT,
with results showing that compared to HCs, the distinct microbial communities in MG
patients were reproducible in FMT, MMb, and HMb mice. The results identified 98 OTUs
belonging to Firmicutes (49/98), Bacteroides (34/98), and Actinobacteria (3/98), and these
OTUs were able to differentiate between the MMb and HMb groups. Interestingly, they
were very similar to the differences seen in the gut microbiome between HCs and MG
patients, proposing that the key microbial characteristics seen in MG patients were main-
tained in MMb mice. Furthermore, 54 of the 98 differential OTUs between MMb and HMb
were reversed in the CMb group, in which 16 of the 54 reversed OTUs belonging to Lach-
nospiraceae (7 OTU), Bacteroidaceae (4 OTU), and Ruminococcaceae (2 OTU) were associated
with impaired locomotion ability and interference of fecal metabolomics involving distur-
bances in the nucleotide metabolism, amino acid metabolism, and microbial metabolism
(Table 2) [97].

In a nutshell, the increased level of the inflammatory cytokine, the impairment of
locomotion capability, and the disturbed fecal metabolic pathways were seen in the MMb
colonized mice, as well as the ability of GF mice colonized with MMb to reproduce the
key fecal microbial. The metabolic characteristics of MG patients propose that the gut
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microbiome could modulate the host metabolism and may be involved in the pathogenesis
of MG. Thus, besides providing a better understanding of the pathogenesis of MG, it could
provide opportunities to detect possible markers for MG [97].

8. Conclusions

Gut microbiota dysbiosis could be linked with MG (Figure 2). The decrease in the
Clostridium population could be associated with the imbalance of Foxp3+ CD4+ Treg
cells, which are involved in regulating the amount of AChR Abs [116]. Besides this, the
fermentation product of Clostridia is SCFAs, and it was found that MG is linked with lower
levels of SCFAs, which help regulate the differentiation of Foxp3+CD4+ Treg cells. On the
other hand, the higher level of Streptococcus in MG subjects may impact PPARγ, which
affects transcriptional regulation. However, Bifidobacterium, which belongs to the phylum
actinobacteria, has a large inter-individuality, indicating that MG is related to specific
species of bacterium. Microbial diversity is correlated to MG severity, in which, as the QMG
score increases, the α diversity index drops. A total of 30 metabolites were recognized
to distinguish MG subjects from HCs, and all are involved in amino acid metabolism,
microbial metabolism, and nucleotide metabolism. These changes in metabolite biomarkers
correlate with microbial OTUs and the clinical symptomatology of MG, either due to
the metabolites’ association with microbial metabolism or the disturbance in nucleotide
metabolism involving changes in cytosine and methylmalonic acid or disturbance in
xanthine, adenine, and oxalic acid. Moreover, a huge discovery is that the combination of
microbial and metabolic biomarkers has been demonstrated to be a potential diagnostic
biomarker providing 100% accuracy in discriminating MG subjects from HCs.
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Figure 2. Illustration of how the gut microbiome is associated with the manifestation of myasthenia
gravis (MG). It is known that dysbiosis of the gut microbiome could lead to MG’s clinical manifesta-
tions. Probiotics, prebiotics, and fecal microbiota transplants are potential microbiome therapies that
could be explored and could provide significant benefits to MG patients.

Probiotics have been proposed to be a preventive and therapeutic measure against the
imbalance in the gut microbiome. They may restore the composition and function of the gut
microbiome and stabilize the microbial communities in MG disease, possibly decreasing the
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severity of the MG disease. A diet consisting of prebiotics and probiotics may be beneficial
in improving the survival and implantation of live microbial dietary supplements in the
gastrointestinal flora of the host, improving the microbial balance of the GIT, and modifying
the composition of colonic microflora by selectively stimulating the growth or activating
the catabolism of a limited number or one of the health-promoting bacteria in the intestinal
tract, leading to the predominance of some of the potentially health-promoting bacteria,
particularly Bifidobacteria and Lactobacilli.

Nonetheless, there are limitations to the different types of interventions. For instance,
a probiotics and prebiotics intervention could be limited to the bacterial strain and the
dosage required for the greatest efficacy for a particular group of patients [158,204]. On the
other hand, the limitations of FMT would be that the frequency and duration of the FMT
may differ between patients, the concerns on the safety and quality check of stool samples,
and patients’ acceptance [205]. Significantly, patients’ comorbidities, medications, diet, and
lifestyle may also affect the gut microbiota and, hence, the outcome of these interventions.
In terms of a future perspective, it is likely to see an increase in MG cases worldwide, but
there would be more precise diagnoses and treatments as the aging population increases
along with medical comorbidities [15]. For now, extensive population-based data on
serological and pathological sub-types of MG within whole populations and an accurate
clinical definition over a sufficient time frame in an adequately sized population should be
conducted [13]. The dysbiosis of the gut microbiome possibly contributes to disease onset
and the progression of MG. Although there is evidence proposing that the gut microbiome
plays a role in the pathogenesis of MG, more research needs to be conducted, such as
conducting longitudinal studies to collect samples before and after the use of medications
to confirm if this correlation is incidental or causal. Furthermore, further research is
needed to determine the specific microbial species and their matching metabolite linked to
MG, allowing for more specific novel targets for MG treatment. Additional clinical trials
are also needed to determine if probiotics can produce the same impact on the human
intestinal microbiome and investigate clinical benefits in the host. Lastly, studies need to be
performed to detect specific microbial markers correlated with different MG subtypes in
recurring MG subjects with varied antibody types.
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