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A model based on immunogenic cell death-related genes predicts 
prognosis and response to immunotherapy in kidney renal clear 
cell carcinoma
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Background: The prognosis of patients with kidney renal clear cell carcinoma (KIRC), a life-threatening 
condition, is poor. Immunogenic cell death (ICD) induces regulated cell death via immunogenic signal 
secretion and exposure. ICD induces regulated cell death through immunogenic signal secretion and 
exposure. ICD plays an essential role in tumorigenesis, however, the role of ICD in KIRC remains unclear.
Methods: This study examined the expression levels of 34 ICD-related genes in The Cancer Genome 
Atlas (TCGA) data set. Signature genes linked to KIRC survival were identified using Cox regression. Next, 
a prognostic risk model (RM) was built. Subsequently, the KIRC patients were divided into low- and high-
risk groups. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were plotted. Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were carried out to investigate the 
possible role of differential gene expression between the two groups. The immune microenvironment (IME) 
was assessed using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression, 
CIBERSORT, and single-sample gene-set enrichment analysis algorithms. An enrichment analysis was 
used to determine the biological significance of these regulatory networks we conducted. The relationship 
between immune checkpoint gene expression and risk score, and the relationship between treatment 
outcome and gene expression were assessed using correlation analyses.
Results: We developed a KIRC RM based on five ICD-related genes (i.e., FOXP3, IFNB1, IL6, LY96, and 
TLR4), which were identified as the prognostic signature genes. Using the TCGA data set, we conducted a 
survival analysis and found that the 3-year RM had an area under the curve (AUC) of 0.735, which validated 
the reliability of the signature. Similarly, using the International Cancer Genome Consortium (ICGC) data 
set, we found that the 3-year RM had an AUC of 0.732.
Conclusions: A RM based on five ICD-related genes was built to predict the prognosis of KIRC patients. 
This RM predicted patient prognosis and reflected the tumor IME of KIRC patients. Thus, this RM could 
be used to promote individualized treatments and provide potential novel targets for immunotherapy.
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Introduction

Renal cell carcinoma (RCC) is one of the most common 
malignancies of the urinary system. RCC accounts for 
2–3% of adult malignancies, and its incidence continues 
to increase (1). Currently, the incidence and mortality of 
RCC patients, particularly those with kidney renal clear 
cell carcinoma (KIRC), which represents 75% of all kidney 
cancers, has steadily improved (2). As the most common 
histological subtype of RCC, KIRC is known for its 
significant tumor heterogeneity, different clinical courses, 
and uncertainty in specific treatments (2,3).

With advances in medicine and surgery, cure rates and 
survival rates have improved greatly. Surgical resection 
remains the most common method for treating KIRC 
and cannot be replaced (4). By combining radiotherapy, 
chemotherapy, targeted therapy, and immunotherapy, 
many patients have been able to achieve longer survival 
rates (5,6). However, the molecular characteristics of KIRC 
have not yet been closely examined. To improve patient 
prognosis, the construction of reliable prognostic models 
might help guide clinical decisions in the treatment of 
KIRC patients. Previously, Chen et al. used three immune 
relative genes (IRGs) to develop a Cox regression model to 
predict the prognosis of patients with KIRC, and found that 

the model could accurately stratify patients with different 
survival outcomes (7). Wan et al. constructed a prognostic 
risk model (RM) using seven IRGs in renal papillary cell 
carcinoma and found that the model could independently 
distinguish between patients with different risks of death (8). 
However, few studies examining immunogenic cell death 
(ICD) in KIRC have been performed.

ICD can modulate cell death and activate the adaptive 
immune response of immunocompetent hosts (9). ICD 
includes the release of damage-associated molecular 
patterns (DAMPs), such as type-I interferons (IFNs), 
extracellular adenosine triphosphate (ATP), high-mobility 
group box-1 (HMGB1), heat shock proteins (e.g., HSP70 
and HSP90), and the cell surface exposure of calreticulin 
(CRT). All ICDs originate from dying tumor cells and 
lead to the activation of tumor-specific immune responses 
(10,11). Using the immune system to trigger an anti-tumor 
immune response is a cancer immunotherapy concept. 
Numerous studies have shown the ability of ICDs to trigger 
certain anti-cancer immune response (12).

ICDs can activate tumor-specific immune responses 
through certain chemotherapeutic agents, oncolytic viruses, 
photodynamic therapy, and radiation therapy that stimulate 
the long-term therapeutic effects of anti-tumor drugs 
through a combination of direct cancer cell killing and 
anti-tumor immunity (12). For example, previous research 
has shown that radiotherapy and a few chemotherapeutic 
agents (including oxaliplatin and adriamycin) can cause the 
induction of ICD in vitro and in vivo and can also stimulate 
a tumor cell-specific immune response (13,14).

In light of the critical role that ICD plays in tumor 
progression, recent research has identified new ICD-
related genetic signatures for the diagnosis or prognosis 
of cutaneous melanoma, head and neck squamous cell 
carcinoma, low-grade glioma, and breast cancer (11,15-17). 
In recent years, various pre-clinical studies have explored 
the molecular mechanism of ICD, but few studies have 
examined patients in a clinical context to evaluate the 
meanings of ICD (e.g., few studies have sought to identify 
biomarkers to classify patients according to their responses 
to ICD immunotherapy) (18). However, such research 
would be extremely beneficial. Thus, we first conducted 
a bioinformatics analysis to compare the expression levels 
of ICD-related genes between KIRC and adjacent normal 
tissues. We then assessed the prognostic value of the genes 
and analyzed the association between ICD and immune 
responses in the tumor microenvironment. We present 

Highlight box

Key findings
•	 A bioinformatics analysis was conducted to compare the 

expression levels of immunogenic cell death (ICD)-related genes 
between kidney renal clear cell carcinoma (KIRC) and adjacent 
normal tissues. A five-gene risk model (RM) was developed, and 
nomograms for predicting KIRC results in clinical practice were 
built.

What is known, and what is new?
•	 Previously, scholars constructed a prognostic RM using seven 

immune relative genes in renal papillary cell carcinoma and found 
that the model could independently distinguish between patients 
with different risks of death.

•	 This study developed a five-gene RM that distinguish between 
high- and low-risk populations. The correlation of immune 
infiltration levels, immune response levels, and pharmacologic 
therapy levels at both risk levels were investigated and a 
preliminary analysis of the signaling pathways was performed.
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according to their responses to ICD immunotherapy) would be 
extremely beneficial.
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this article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-214/rc).

Methods

Data source

On October 1, 2022, the clinical parameters and RNA-
sequencing (RNA-seq) data of 541 KIRC tissues and 72 
adjacent normal tissues were retrieved from The Cancer 
Genome Atlas (TCGA) database. For the evaluation, we 
used the data provided by the International Cancer Genome 
Consortium (ICGC) project, specifically the Renal Cell 
Cancer-European Union (RECA-EU) data set, comprising 
91 KIRC samples (https://dcc.icgc.org/projects/RECA-
EU) with available RNA-seq data and clinical data. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

The differential expression profiles of the ICD-related 
genes

A total of 34 ICD-related genes were extracted from 
previous studies (19). Using the “limma” package, we 
identified the ICD-related genes that were differently 
expressed in the KIRC and the adjacent normal tissues (20).  
The identified protein names were uploaded to the 
functional protein association network, and protein-protein 
interaction (PPI) mapping was performed.

Formulation and verification of prognostic features

Univariate and multivariate Cox regression analyses were 
conducted to identify the prognosis-associated genes. 
Subsequently, we calculated the risk score using the 
following equation: risk score = Coef1 × Exp1 (Gene1) + 
Coef2 × Exp2 (Gene2) +... CoefN × ExpN (GeneN), where 
“coef” represents coefficient, and “exp” represents gene 
expression level.

Using the calculated median risk score as the cut-off 
value, 541 patients with KIRC from TCGA data set were 
allocated to the high- and low-risk groups. Next, using a 
Kaplan-Meier (K-M) analysis, we built the overall survival 
(OS) curves for the two groups. A receiver operating 
characteristic (ROC) analysis dependent on time was also 
conducted to examine survival. The predictive power of 
the model was assessed based on the area under the curve 

(AUC) of the ROC curve. Using risk scores and clinical 
data (e.g., age, sex, grade, and stage), nomogram models 
were constructed to predict the OS of KIRC patients. 
RECA-EU data were downloaded from the ICGC database 
for verification, and the survival differences between the 
different risk groups and the constructed prognosis model 
were verified.

Independent prognostic analysis of risk score

We downloaded patients’ clinical data (e.g., age, sex, grade, 
and stage) from TCGA data set, and we then constructed 
a univariate and multivariable Cox regression model to 
analyze the independent prognostic characteristics and risk 
scores of these variables.

Functional enrichment analysis

Initially, 956 differentially expressed genes (DEGs) 
between the high- and low-risk groups were identified in 
accordance with the following criteria: |log 2 fold change| 
>1.5 and false discovery rate <0.05). Subsequently, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Geno 
Ontology (GO) analyses were conducted.

Immune infiltration, gene variation, and drug-sensitivity 
analysis

We used the Estimation of STromal and Immune cells 
in MAlignant Tumors using Expression (ESTIMATE) 
algorithm to estimate the stromal and immune cells in 
the malignant tumor tissues and analyze the immune 
component and overall stromal component in the high- 
and low-risk subgroups of TCGA data set (21). The 
CIBERSORT algorithm was employed to evaluate the 
abundance of 22 immune cell types (22). A correlation 
analysis was also conducted to investigate the association 
between prognostic ICD-related genes and the immune 
infiltration landscape. Subsequently, the Wilcoxon test was 
used to compare the proportions of immune cells between 
the two groups. The Genomics of Drug Sensitivity in 
Cancer (GDSC) database was used to analyze the drug 
sensitivity of the ICD-related risk genes (23). Somatic 
mutation data of the KIRC samples in the “maf” format 
were obtained from TCGA GDC information portal. 
Next, using the “Maftools” (a package of R) in R software, 
waterfall plots were created to facilitate the visualization 
and aggregation of the mutated genes.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-214/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-214/rc
https://dcc.icgc.org/projects/RECA-EU
https://dcc.icgc.org/projects/RECA-EU
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Statistical analysis

R software (version 4.1.3) was used to perform all the 
statistical analyses, and a P value <0.05 was considered 
statistically significant. The rank correlations among 
the different variables were assessed using the Pearson 
correlation coefficient test. Differences between the 
variables were assessed using the independent t-test.

K-M curves and log-rank tests were used to analyze the 
survival data, and a univariate Cox regression analysis was 
used to identify the factors affecting the survival of patients 
diagnosed with Clear cell renal cell carcinoma (ccRCC). A 
multivariate Cox regression analysis was used to identify the 
independent prognostic factors. A time-dependent ROC 
analysis was used to evaluate the accuracy of the prognostic 
prediction model. The model can be predicted according to 
this standard: low accuracy: 0.5< AUC-ROC ≤0.7, moderate 
accuracy: 0.7< AUC-ROC ≤0.9, and high accuracy: 0.9< 
AUC-ROC ≤1 (24).

Results

Identification of 2 ICD-related subtypes using a consensus 
clustering technique

Garg et al. conducted a comprehensive meta-analysis and 
summarized 34 ICD-related genes (19). The STRING 
database was used to analyze the PPI network to ascertain 
the correlations among the discovered ICD-related 
genes (Figure 1A). Subsequently, to better elucidate the 
relationships between these ICD-related genes, we built 
a co-expression network and investigated the associated 
functions (Figure 1B). ICD gene expression differed widely 
between the normal and KIRC samples (Figure 1C).  
Next, we used consensus clustering to identify two clusters 
in TCGA data set (Figure 1D-1F). A comparison of the 
majority of the expression levels of the ICD-related gene 
between clusters 1 and 2 revealed that the genes in cluster 
1 were more highly expressed than those in cluster 2  
(Figure 1G). Thus, we defined clusters 1 and 2 as the high- 
and low-ICD subtypes, respectively. The survival analysis 
revealed that the low-ICD subtype had a better prognosis 
than the high-ICD subtype (Figure 1H).

RM construction of ICD-related genes

The univariate Cox regression analysis revealed that 10 
ICD-related genes were linked to OS (Figure 2A). The 
ICD-related genes were further examined based on 

multivariate Cox regression analysis to build a RM. The 
formula for the risk score was expressed as follows: risk 
score = (0.17350 × LY96 exp.) + (0.11091 × FOXP3 exp.) + 
(−0.30199 × TLR4 exp.) + (0.27993 × IFNB1 exp.) + (0.09888 
× IL6 exp.) (Figure 2B). After computing the risk scores for 
the KIRC patients, the median risk score was used as the 
threshold. The patients were then divided into high- and 
low-risk groups (Figure 2C).

We also focused on the relationship between survival 
statuses and risk scores. According to our findings, the 
low-risk group had a significant survival rate than the 
high-risk group (Figure 2D). Further, a K-M analysis was 
conducted to evaluate the prognostic significance of risk 
status in KIRC (Figure 2E). High-risk scores were found 
to be correlated with poor OS in TCGA cohort. A heat 
map of the results was generated and revealed distinctions 
in the expression of the five ICD-related genes between 
the high- and low-risk groups (Figure 2F). In the low-risk 
group, TLR4 was highly expressed, while LY96, FOXP3, 
IFNB1, and IL6 were lowly expressed. The survival rates 
of the ICD-related genes in the high- and low-expression 
groups were also used to construct K-M curves. Notably, 
low survival rates were observed, when LY96, FOXP3, 
IFNB1, and IL6 were highly expressed, or TLR4 was lowly 
expressed (Figure S1).

ICD risk score could be an independent predictor of OS

We conducted univariate and multivariate Cox regression 
analyses to demonstrate that the risk score obtained from 
the five-gene signature model might be an independent 
factor in prognosis. Both analyses confirmed that risk 
score was an independent prognostic factor that predicted 
poor survival in KIRC patients [univariate analysis hazard 
ratio (HR) =1.629 and multivariate analysis HR =1.626]  
(Figure 3A,3B). In addition, the ROC curves were plotted 
to validate the prognostic significance of the risk score  
(Figure 3C-3E). The AUC values were 0.725 for a 1-year 
period, 0.735 for a 3-year period, and 0.73 for a 5-year 
period, which shows that the risk score variable had a higher 
predictive value than the clinical variables. The RECA-EU 
data were downloaded from the ICGC database to verify 
these results, and the differences between the different risk 
groups and the constructed prognosis model was verified 
(Figure S2A-S2C). Additionally, using gene expression and 
the corresponding KIRC clinical data, we analyzed the 
correlations between the clinical variables and risk scores 
of the five ICD-related genes (i.e., LY96, FOXP3, IFNB1, 

https://cdn.amegroups.cn/static/public/TCR-23-214-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-23-214-Supplementary.pdf
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Figure 1 Determination of ICD-related subtypes through consensus clustering. (A) PPIs between ICD-related genes using the STRING 
database. (B) Analysis of DEGs and their co-expressed genes via GeneMANIA. (C) Heatmap of consensus clustering solutions (k =2) for 34 
genes in 541 KIRC samples. (D-F) The delta area curves for the consensus clustering represent the comparative change in the area under 
the curve for the CDF curve for k =2 to 7. (G) Heatmap of the expression of the 34 ICD-related genes in distinct subtypes. Blue signifies 
lower expression, while red signifies higher expression. (H) Kaplan-Meier curves of overall survival in the cluster 1 and 2 subtypes. CDF, 
cumulative distribution function; ICD, immunogenic cell death; PPIs, protein-protein interactions; DEGs, differentially expressed genes; 
KIRC, kidney renal clear cell carcinoma. 
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IL10	 0.043	 1.119 (1.003–1.247) 
TLR4	 0.002	 0.825 (0.728–0.934) 
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Figure 2 Development and evaluation of prognostic features using ICD-related genes in TCGA data set. (A,B) Univariate Cox regression 
analysis to assess the prognostic significance of the ICD-related genes for overall survival. Distribution of risk scores from TCGA database. *, 
P<0.05; **, P<0.01; ***, P<0.001. (C) Each patient’s survival status and (D) Kaplan-Meier curve plots for high- and low-risk subgroups. (E,F) 
Heatmap of the prognostic five-gene profile. CI, confidence interval; ICD, immunogenic cell death; TCGA, The Cancer Genome Atlas. 

IL6, and TLR4). Risk scores and FOXP3 were correlated 
with tumor grade, Metastasized stage (M stage), Regional 
Lymph Nodes stage (N stage), Tumor stage (T stage), and 
comprehensive stage. IFNB1 was associated with grade, M 
stage, T stage, and comprehensive stage; IL6 was associated 
with grade, T stage, and comprehensive stage. LY96 was 
associated with T stage and comprehensive stage; while TLR4 
was associated with comprehensive stage (Figure S3A-S3T).  

In addition, we built a nomogram using the risk scores and 
clinical features to more precisely predict the prognosis of 
KIRC patients (Figure 4A,4B). Based on the ROC curve 
results, the nomogram was more accurate at predicting 
patient survival than the risk score alone (Figure 4C-4E). The 
results of both the univariate and multivariate Cox regression 
analyses showed that the nomogram was also an independent 
predictor of OS in KIRC patients (Figure 4F,4G).

https://cdn.amegroups.cn/static/public/TCR-23-214-Supplementary.pdf
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Figure 3 Independent prognostic analysis of risk scores. (A) Prognostic impact analysis of KIRC risk scores and clinical characteristics 
using a univariate Cox regression analysis. (B) Independent prognostic impact analysis of risk scores and conventional prognostic clinical 
characteristics in KIRC using a multivariate Cox regression analysis. (C-E) Receiver operating characteristic analysis of KIRC risk scores 
and other prognostic clinical characteristics to predict the 1-, 3-, and 5-year survival rate of KIRC patients. CI, confidence interval; AUC, 
area under the curve; KIRC, kidney renal clear cell carcinoma.

Identification of DEGs and signaling pathways in the low- 
and high-risk groups

To analyze the distinct mechanisms that influence the 
survival status of patients, we first identified 956 genes 
in TCGA data set that were differentially expressed 
between the two groups. We then conducted GO and 
KEGG functional enrichment analyses (Figure 5A,5B). 
We discovered that immunity and immune responses 
were differentially correlated with the low- and high-risk 
subgroups. Notably, according to the GO enrichment 
analysis results, the DEGs were enriched in immune-
associated mechanisms, including the humoral immune 
response, immunoglobulin complex, and antigen binding 
(Figure 5C). The KEGG enrichment analysis demonstrated 
that the DEGs were significantly enriched in cytokine-

cytokine receptor interactions, complement and coagulation 
cascades, and the IL-17 signaling pathways (Figure 5D).

Somatic mutations in the high- and low-risk groups

We first analyzed the genetic mutations in the high- and 
low-risk groups. The top five mutated genes in the low-risk 
group were von Hippel-Lindau (VHL) (46%), Polybromo 
1 (PBRM1) (42%), Titin (TTN) (13%), SET domain 
containing 2 (SETD2) (9%), and mucin 16 (MUC16) 
(7%) (Figure 6A). The top five mutated genes in the high-
risk group were VHL (46%), PBRM1 (39%), TTN (18%), 
SETD2 (16%), and BAP1 (15%) (Figure 6B). Compared 
to the low-risk group, the high-risk group had a higher 
incidence of TTN, SETD2, and BAP1 mutation rates.
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Figure 4 Predictive nomogram creation. (A) Nomogram predicting the 1-, 2-, 3-, 4- and 5-year survival rates for KIRC patients. (B) 
Calibration curves for the nomogram prediction validation cohort of KIRC patient survival (x-axis: the predicted survival probability; y-axis: 
the actually observed survival probability). (C-E) Receiver operating characteristic analysis of the KIRC nomogram and other prognostic 
clinical characteristics to predict the 1-, 3-, and 5-year survival rates of KIRC patients. (F) Assessing the relationship between risk scores and 
clinical factors with OS using a forest plot of the univariate Cox test results. (G) The independent risk factors for OS were determined using 
a forest plot of the multivariate Cox analysis results. OS, overall survival; AUC, area under the curve; CI, confidence interval; KIRC, kidney 
renal clear cell carcinoma. 
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Figure 5 Analysis of DEGs and analysis of enriched functions in distinct ICD risk scores. (A) Volcano map of DEG distribution in TCGA 
cohort’s ICD high- and low-risk groups. Red indicates that the ICD-related gene expression in the high-risk groups is higher than that in 
the low-risk groups. Green indicates that the ICD-related gene expression in the high-risk groups is lower than that in the low-risk groups. 
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Tumor microenvironment landscape in the high- and low-
risk groups

Various immune estimation algorithms were used to further 
investigate the immune infiltration of patients with KIRC 
in the high- and low-risk groups. The findings of the 
ESTIMATE algorithm demonstrated that the high-risk 
group had decreased tumor purity, and improved immune 
scores, ESTIMATE scores, and stromal scores than the 
low-risk group (Figure 7A-7D). Subsequently, we used the 
“CIBERSORT” algorithm to assess the relative proportion 
of immune infiltration in 22 immune cell types and 
summarized the results of the KIRC patients from TCGA 
data sets (Figure 7E). The CIBERSORT algorithm results 
showed that the low-risk group had higher proportions 
of cluster of differentiation CD4+ resting memory T 
cells, resting natural killer (NK) cells, monocytes, M1 
macrophages, M2 macrophages, resting dendritic cells, 
resting mast cells, activated mast cells, and eosinophils. 
Patients in the high-risk group had higher proportions 
of plasma cells, CD8+ T cells, activated memory CD4+ T 
cells, follicular helper T cells, regulatory T cells (Tregs), 
and M0 macrophages (Figure 7F). The single-sample 
gene-set enrichment analysis (ssGSEA) algorithm results 
revealed that 24 immune cells in the high-risk group 
scored significantly lower than those in the low-risk group, 
demonstrating that the immune status of patients with low-

risk scores was better than that of patients with high-risk 
scores (Figure 7G). Collectively, these results suggest that 
the immune infiltration landscape is associated with the RM 
of the ICD-related genes.

Finally, we also explored the relevance of the 28 
different immune cells (Figure 7H). A correlation analysis 
was conducted to investigate the association between the 
prognostic ICD-related genes and the immune infiltration 
landscape. The results showed a remarkable association 
between the prognostic ICD-related genes and 22 types of 
immune cells as calculated by CIBERSORT; for example, 
FOXP3 was positively correlated with resting mast cells, 
and TLR4 was positively correlated with Tregs (Figure 8A). 
The results also revealed significant associations between 
the prognostic ICD-related genes. The ssGSEA, showed 
that 28 types of immune cells, such as LY96, were negatively 
correlated with macrophages (Figure 8B).

Given the signif icance of checkpoint inhibitor 
immunotherapy, we examined the expression of immune 
checkpoints in the two groups. Specifically, we evaluated 
the expression of 24 human leukocyte antigen (HLA) genes 
and 47 infected cell protein (ICP) genes in the two groups. 
The findings revealed that nearly all the ICP and HLA 
genes were significantly upregulated in the high-risk group, 
which suggested an association between this group and an 
immune hot phenotype. Conversely, the low-risk group 
was associated with an immune cold phenotype. Notably, 
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Figure 7 The immune landscape between the ICD high- and low-risk groups. (A-D) Violin plots of the stromal score, immune score, 
ESTIMATE score, and tumor purity between the ICD high- and low-risk groups. (E) Proportion of 22 types of immune cells infiltrated 
between the ICD high- and low-risk groups. (F) Scores of the 22 immune cells in the high- and low-risk groups computed by the 
CIBERSORT algorithm. (G) Fraction of the 28 immune cells in the low- and high-risk groups computed by the ssGSEA algorithm. (H) 
Heatmap of the correlations among different immune cells. Blue and red illustrate positive and negative associations, respectively. ns, 
P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor microenvironment; NK, natural killer; MDSC, myeloid-derived suppressor cell; 
ICD, immunogenic cell death; ssGSEA, single-sample gene-set enrichment analysis. 

the high-risk group had significantly elevated expression 
levels of molecules, such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), programmed cell death-1 
(PDCD1), and Recombinant Human CD27 Ligand (CD70)  
(Figure 9A,9B). These findings suggest that the upregulation 
of immune checkpoints and immunosuppressive cytokines 
may suppress the immune microenvironment (IME) in 
high-risk patients.

Prediction of risk score and drug sensitivity

To analyze the relationship between risk score and small-
molecule drug resistance due to the half-maximal inhibitory 
concentration (IC50) value, the pRRophetic algorithm 
was employed to calculate the chemotherapeutic effect of 
10 commonly used small-molecule drugs (i.e., bosutinib, 
cisplatin, paclitaxel, cytarabine, imatinib, gefitinib, 
lenalidomide, pyrimethamine, rapamycin, and sunitinib) 
in patients with KIRC. As Figure 9 shows, the IC50s 

of paclitaxel, pyrimethamine, cytarabine, lenalidomide, 
rapamycin, cisplatin, gefitinib, sunitinib, and bosutinib were 
considerably more improved in the low-risk group than the 
high-risk group; however, the IC50 of imatinib was low in 
the low-risk group (Figure 10A-10J). These results illustrate 
the different responses to anti-tumor drugs in patients with 
KIRC in distinct risk subgroups and suggest the potential 
benefits of personalized targeted treatments for patients 
with KIRC.

As Figure 11 shows, the correlation analysis results 
revealed a significant association between the ICD-related 
genes and 12 IC50 drugs; for example, LY96 was positively 
correlated with cisplatin, while TLR4 was negatively 
correlated with paclitaxel.

Discussion

KIRC is the most prevalent primary malignancy in adult 
RCC (25). As it can be challenging to recognize the 
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Figure 8 The association between the prognostic genes and immune cells. (A) The association between the five prognostic ICD-related 
genes and 22 immune cells. (B) The association between the prognostic ICD-related genes and 28 immune cells. *, P<0.05; **, P<0.01; ***, 
P<0.001. NK, natural killer; ICD, immunogenic cell death. 
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antigen; ICD, immunogenic cell death. 

early clinical indications of KIRC, the disease is typically 
diagnosed in its later stages. However, patients with 
KIRC typically have a poor prognosis due to the limited 
biomarkers for early detection and prognosis prediction (26).  
Thus, genetic characteristics need to be discovered and 
predictive models developed to identify patients with 
distinct risks and outcomes to provide individualized 
treatments.

ICD has been described as a distinct type of regulated 
cell death that is capable of triggering a fully adaptive 
immune response specific to antigens via danger signals 

or DAMPs (27,28). The expression, function, and genetic 
alterations of 34 ICD-related genes were examined in the 
current study (19). In the tumor tissues, the majority of 
the differentially expressed ICD-related genes were highly 
expressed. Using consensus clustering, we identified two 
ICD subtypes based on ICD-related gene expression and 
found that the subtype with higher ICD expression was 
linked to a poor prognosis. We also identified five ICD-
related genes from the 34 ICD-related prognostic genes 
and successfully classified the KIRC patients into high- 
and low-risk groups using median risk scores as the cut-
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off value. For the KIRC patients, this risk signature may 
act as an independent prognostic indicator due to its high 
OS predictive value. The predictive value of the model was 
validated by the K-M and ROC curves, which revealed that 
when paired with other clinical characteristics of KIRC 
patients, the model had the maximum prognostic predictive 
power. Thus, the efficiency of the nomograms in predicting 
the prognosis of KIRC patients was increased using a 
combination of risk scores and clinical characteristics. 
Additionally, the association between the risk score and 
clinicopathological features, immunological features, and 
drug sensitivity were investigated independently.

The five genes in the model have been implicated in 
tumors and other diseases. IL6 is a pro-inflammatory 
cytokine that has been shown to play a significant role in 
maintaining chronic inflammation and promoting cancer 
cachexia and pro-metastatic niche formation in the liver (29).  
FOXP3 has been reported to repress the transcription 
of the proto-oncogene human epidermal growth factor 
receptor 2 (HER2) and runt-related transcription factor 1 
(RUNX1), the expression of vascular endothelial growth 
factor (VEGF), and the activation of the metastatic tumor 
antigen 1 (MTA1) anti-cancer function in breast cancer  
(30-35). IFNB1 has anti-proliferative and pro-apoptotic 
effects in Michigan Cancer Foundation-7 (MCF-7) breast 
cancer cells (36). LY96 interacts with TLR4 and triggers the 
nuclear factor kappa-B (NF-κB) pathway, which promotes 
the production of pro-inflammatory cytokines and adhesion 
molecules in colon cancer cells, thereby accelerating colon 
cancer growth and lung metastasis (37). The survival of 
colorectal cancer (CRC) patients is directly correlated with 
TLR4 overexpression (38-40). Experimental studies have 
shown that improved TLR4 activity increases CRC growth, 
metastasis, and immune surveillance (41,42). In clinical 
biopsies, higher TLR4 has been linked to the acute secretion 
of inflammatory cytokines, including IL6 and IL8 (43). 
Additionally, TLR4 facilitates the development of intestinal 
tumors by activating the β-catenin pathway in a manner 
dependent on phosphoinositide3-kinase (PI3K) (44).

The tumor IME of KIRC is characterized by substantial 
immune cell infiltration and various immunosuppressive 
effects that may severely compromise the efficacy of 
immunotherapy (45). We discovered 956 DEGs between 
the low- and high-risk groups, which helped us to better 
understand the gene functions and pathways in our 
constructed RM. According to the functional enrichment 
analysis, these genes were primarily associated with the 
immune response, which suggests that ICD is involved in 

TME regulation.
We examined the association between the tumor IME 

and risk scores, as evasion of immune destruction is a 
newly recognized characteristic of cancer. The high-risk 
patients in our study tended to have lower tumor purity and 
higher ESTIMATE scores, which may help to explain why 
these patients had a poor prognosis. The CIBERSORT 
algorithm findings showed that the low-risk group had 
higher proportions of CD4+ resting memory T cells, resting 
NK cells, monocytes, M1 macrophages, M2 macrophages, 
resting dendritic cells, resting mast cells, activated mast 
cells, and eosinophils. The high-risk group patients had 
higher proportions of plasma cells, CD8+ T cells, activated 
memory CD4+ T cells, follicular helper T cells, Tregs, and 
M1 macrophages. M1 macrophages have been reported to 
exert anti-tumor effects by producing pro-inflammatory 
cytokines (46). In this study, the immune infiltration analysis 
showed an increase in the number of infiltrating immune 
cells, such as CD8+ T, in the high-risk group. However, the 
high-risk score was positively correlated with programmed 
cell death protein 1 (PD-1) expression. Thus, while this 
gene can recruit immune cells into tumor tissue, the high 
expression of PD-1 inactivates T cells. Thus, the high-risk 
group continued to show an inhibitory effect in relation to 
the tumor immune response.

Immune checkpoint blockades (ICBs) have become a 
major therapeutic approach due to their ability to overturn 
the immunosuppressive tumor microenvironment. ICP 
expression is crucial for immune evasion, and ICB therapy 
and thus immune checkpoint inhibitors are emerging as 
targets following recent advances in cancer immunotherapy. 
In this study, most ICPs, including important ICPs, such 
as programmed cell death-ligand 1 (PD-L1), CD70, and 
CTLA4, showed substantially elevated expression levels in 
the highs-risk populations, indicating that high-risk patients 
may display higher sensitivity to ICB-based therapy. The 
association between ICD-related RM, immune infiltration, 
and ICP could be a potential research area to enhance the 
effectiveness of immunotherapy in solid carcinomas.

The variations in the KIRC patients’ sensitivities to 
the chemotherapeutic drugs may have contributed to the 
observed distinctions in the survival times between the high- 
and low-risk groups. To enhance patient prognosis and to 
address the fact that a lack of drug responses influences 
clinical decision making, we examined resistance in both 
risk groups and small-molecule drugs. The drug sensitivity 
prediction analysis results showed that the patients in 
the high-risk group might be more sensitive to imatinib 
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treatment. Taken together, the results suggest that patients 
with high-risk scores might be more suitable candidates for 
immune checkpoint inhibitors and targeted therapy agents. 
Conversely, the selection of available treatments may be 
limited for patients with low-risk scores.

Conclusions

This study developed a five-gene RM and built nomograms 
to predict KIRC results in clinical practice. Using high- 
and low-risk populations, it also analyzed the IME. The 
correlation among immune infiltration levels, immune 
response levels, and pharmacologic therapy levels at both 
risk levels were also investigated, and a preliminary analysis 
of the signaling pathways involved was performed. The 
prognosis model constructed could better predict the 
survival of patients when other clinical traits, including age, 
gender, and stage, were taken into consideration, and the 
reliability of this model was verified based on information 
from the ICGC database. The current research offers a new 
and extensive viewpoint to clarify the underlying processes 
of KIRC prognosis and offers guidance for personalized 
cancer immunotherapies. Admittedly, this study had some 
limitations, and further research needs to be conducted to 
verify the results of this study.
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