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A model based on immunogenic cell death-related genes predicts
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Background: The prognosis of patients with kidney renal clear cell carcinoma (KIRC), a life-threatening
condition, is poor. Immunogenic cell death (ICD) induces regulated cell death via immunogenic signal
secretion and exposure. ICD induces regulated cell death through immunogenic signal secretion and
exposure. ICD plays an essential role in tumorigenesis, however, the role of ICD in KIRC remains unclear.
Methods: This study examined the expression levels of 34 ICD-related genes in The Cancer Genome
Atlas (TCGA) data set. Signature genes linked to KIRC survival were identified using Cox regression. Next,
a prognostic risk model (RM) was built. Subsequently, the KIRC patients were divided into low- and high-
risk groups. Kaplan-Meier curves and receiver operating characteristic (ROC) curves were plotted. Gene
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were carried out to investigate the
possible role of differential gene expression between the two groups. The immune microenvironment (IME)
was assessed using Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression,
CIBERSORT, and single-sample gene-set enrichment analysis algorithms. An enrichment analysis was
used to determine the biological significance of these regulatory networks we conducted. The relationship
between immune checkpoint gene expression and risk score, and the relationship between treatment
outcome and gene expression were assessed using correlation analyses.

Results: We developed a KIRC RM based on five ICD-related genes (i.e., FOXP3, IFNBI, IL6, LY96, and
TLR4), which were identified as the prognostic signature genes. Using the TCGA data set, we conducted a
survival analysis and found that the 3-year RM had an area under the curve (AUC) of 0.735, which validated
the reliability of the signature. Similarly, using the International Cancer Genome Consortium (ICGC) data
set, we found that the 3-year RM had an AUC of 0.732.

Conclusions: A RM based on five ICD-related genes was built to predict the prognosis of KIRC patients.
This RM predicted patient prognosis and reflected the tumor IME of KIRC patients. Thus, this RM could

be used to promote individualized treatments and provide potential novel targets for immunotherapy.
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Introduction

Renal cell carcinoma (RCC) is one of the most common
malignancies of the urinary system. RCC accounts for
2-3% of adult malignancies, and its incidence continues
to increase (1). Currently, the incidence and mortality of
RCC patients, particularly those with kidney renal clear
cell carcinoma (KIRC), which represents 75% of all kidney
cancers, has steadily improved (2). As the most common
histological subtype of RCC, KIRC is known for its
significant tumor heterogeneity, different clinical courses,
and uncertainty in specific treatments (2,3).

With advances in medicine and surgery, cure rates and
survival rates have improved greatly. Surgical resection
remains the most common method for treating KIRC
and cannot be replaced (4). By combining radiotherapy,
chemotherapy, targeted therapy, and immunotherapy,
many patients have been able to achieve longer survival
rates (5,6). However, the molecular characteristics of KIRC
have not yet been closely examined. To improve patient
prognosis, the construction of reliable prognostic models
might help guide clinical decisions in the treatment of
KIRC patients. Previously, Chen et 4l. used three immune
relative genes (IRGs) to develop a Cox regression model to
predict the prognosis of patients with KIRC, and found that
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* A bioinformatics analysis was conducted to compare the
expression levels of immunogenic cell death (ICD)-related genes
between kidney renal clear cell carcinoma (KIRC) and adjacent
normal tissues. A five-gene risk model (RM) was developed, and
nomograms for predicting KIRC results in clinical practice were
built.

What is known, and what is new?

® Previously, scholars constructed a prognostic RM using seven
immune relative genes in renal papillary cell carcinoma and found
that the model could independently distinguish between patients
with different risks of death.

e This study developed a five-gene RM that distinguish between
high- and low-risk populations. The correlation of immune
infiltration levels, immune response levels, and pharmacologic
therapy levels at both risk levels were investigated and a
preliminary analysis of the signaling pathways was performed.

What is the implication, and what should change now?

* Research on ICD (e.g., to identify biomarkers to classify patients
according to their responses to ICD immunotherapy) would be
extremely beneficial.
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the model could accurately stratify patients with different
survival outcomes (7). Wan et 4l. constructed a prognostic
risk model (RM) using seven IRGs in renal papillary cell
carcinoma and found that the model could independently
distinguish between patients with different risks of death (8).
However, few studies examining immunogenic cell death
(ICD) in KIRC have been performed.

ICD can modulate cell death and activate the adaptive
immune response of immunocompetent hosts (9). ICD
includes the release of damage-associated molecular
patterns (DAMPs), such as type-I interferons (IFNs),
extracellular adenosine triphosphate (ATP), high-mobility
group box-1 (HMGBI), heat shock proteins (e.g., HSP70
and HSP90), and the cell surface exposure of calreticulin
(CRT). All ICDs originate from dying tumor cells and
lead to the activation of tumor-specific immune responses
(10,11). Using the immune system to trigger an anti-tumor
immune response is a cancer immunotherapy concept.
Numerous studies have shown the ability of ICDs to trigger
certain anti-cancer immune response (12).

ICDs can activate tumor-specific immune responses
through certain chemotherapeutic agents, oncolytic viruses,
photodynamic therapy, and radiation therapy that stimulate
the long-term therapeutic effects of anti-tumor drugs
through a combination of direct cancer cell killing and
anti-tumor immunity (12). For example, previous research
has shown that radiotherapy and a few chemotherapeutic
agents (including oxaliplatin and adriamycin) can cause the
induction of ICD in vitro and in vive and can also stimulate
a tumor cell-specific immune response (13,14).

In light of the critical role that ICD plays in tumor
progression, recent research has identified new ICD-
related genetic signatures for the diagnosis or prognosis
of cutaneous melanoma, head and neck squamous cell
carcinoma, low-grade glioma, and breast cancer (11,15-17).
In recent years, various pre-clinical studies have explored
the molecular mechanism of ICD, but few studies have
examined patients in a clinical context to evaluate the
meanings of ICD (e.g., few studies have sought to identify
biomarkers to classify patients according to their responses
to ICD immunotherapy) (18). However, such research
would be extremely beneficial. Thus, we first conducted
a bioinformatics analysis to compare the expression levels
of ICD-related genes between KIRC and adjacent normal
tissues. We then assessed the prognostic value of the genes
and analyzed the association between ICD and immune
responses in the tumor microenvironment. We present
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this article in accordance with the TRIPOD reporting
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-214/rc).

Methods
Data source

On October 1, 2022, the clinical parameters and RNA-
sequencing (RNA-seq) data of 541 KIRC tissues and 72
adjacent normal tissues were retrieved from The Cancer
Genome Atlas (TCGA) database. For the evaluation, we
used the data provided by the International Cancer Genome
Consortium (ICGC) project, specifically the Renal Cell
Cancer-European Union (RECA-EU) data set, comprising
91 KIRC samples (https://dcc.icgc.org/projects/RECA-
EU) with available RNA-seq data and clinical data. The
study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

The differential expression profiles of the ICD-related

genes

A total of 34 ICD-related genes were extracted from
previous studies (19). Using the “limma” package, we
identified the ICD-related genes that were differently
expressed in the KIRC and the adjacent normal tissues (20).
The identified protein names were uploaded to the
functional protein association network, and protein-protein
interaction (PPI) mapping was performed.

Formulation and verification of prognostic features

Univariate and multivariate Cox regression analyses were
conducted to identify the prognosis-associated genes.
Subsequently, we calculated the risk score using the
following equation: risk score = Coefl x Expl (Genel) +
Coef2 x Exp2 (Gene2) +... CoefN x ExpN (GeneN), where
“coef” represents coefficient, and “exp” represents gene
expression level.

Using the calculated median risk score as the cut-off
value, 541 patients with KIRC from TCGA data set were
allocated to the high- and low-risk groups. Next, using a
Kaplan-Meier (K-M) analysis, we built the overall survival
(OS) curves for the two groups. A receiver operating
characteristic (ROC) analysis dependent on time was also
conducted to examine survival. The predictive power of
the model was assessed based on the area under the curve
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(AUC) of the ROC curve. Using risk scores and clinical
data (e.g., age, sex, grade, and stage), nomogram models
were constructed to predict the OS of KIRC patients.
RECA-EU data were downloaded from the ICGC database
for verification, and the survival differences between the
different risk groups and the constructed prognosis model
were verified.

Independent prognostic analysis of risk score

We downloaded patients’ clinical data (e.g., age, sex, grade,
and stage) from TCGA data set, and we then constructed
a univariate and multivariable Cox regression model to
analyze the independent prognostic characteristics and risk
scores of these variables.

Functional enrichment analysis

Initially, 956 differentially expressed genes (DEGs)
between the high- and low-risk groups were identified in
accordance with the following criteria: |log 2 fold changel
>1.5 and false discovery rate <0.05). Subsequently, Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Geno
Ontology (GO) analyses were conducted.

Immune infiltration, gene variation, and drug-sensitivity
analysis

We used the Estimation of STromal and Immune cells
in MAlignant Tumors using Expression (ESTIMATE)
algorithm to estimate the stromal and immune cells in
the malignant tumor tissues and analyze the immune
component and overall stromal component in the high-
and low-risk subgroups of TCGA data set (21). The
CIBERSORT algorithm was employed to evaluate the
abundance of 22 immune cell types (22). A correlation
analysis was also conducted to investigate the association
between prognostic ICD-related genes and the immune
infiltration landscape. Subsequently, the Wilcoxon test was
used to compare the proportions of immune cells between
the two groups. The Genomics of Drug Sensitivity in
Cancer (GDSC) database was used to analyze the drug
sensitivity of the ICD-related risk genes (23). Somatic
mutation data of the KIRC samples in the “maf” format
were obtained from TCGA GDC information portal.
Next, using the “Maftools” (a package of R) in R software,
waterfall plots were created to facilitate the visualization
and aggregation of the mutated genes.
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Statistical analysis

R software (version 4.1.3) was used to perform all the
statistical analyses, and a P value <0.05 was considered
statistically significant. The rank correlations among
the different variables were assessed using the Pearson
correlation coefficient test. Differences between the
variables were assessed using the independent 7-test.

K-M curves and log-rank tests were used to analyze the
survival data, and a univariate Cox regression analysis was
used to identify the factors affecting the survival of patients
diagnosed with Clear cell renal cell carcinoma (ccRCC). A
multivariate Cox regression analysis was used to identify the
independent prognostic factors. A time-dependent ROC
analysis was used to evaluate the accuracy of the prognostic
prediction model. The model can be predicted according to
this standard: low accuracy: 0.5< AUC-ROC <0.7, moderate
accuracy: 0.7< AUC-ROC <0.9, and high accuracy: 0.9<
AUC-ROC <1 (24).

Results

Identification of 2 ICD-related subtypes using a consensus
clustering technique

Garg et al. conducted a comprehensive meta-analysis and
summarized 34 ICD-related genes (19). The STRING
database was used to analyze the PPI network to ascertain
the correlations among the discovered ICD-related
genes (Figure 1A4). Subsequently, to better elucidate the
relationships between these ICD-related genes, we built
a co-expression network and investigated the associated
functions (Figure 1B). ICD gene expression differed widely
between the normal and KIRC samples (Figure 1C).
Next, we used consensus clustering to identify two clusters
in TCGA data set (Figure 1D-1F). A comparison of the
majority of the expression levels of the ICD-related gene
between clusters 1 and 2 revealed that the genes in cluster
1 were more highly expressed than those in cluster 2
(Figure 1G). Thus, we defined clusters 1 and 2 as the high-
and low-ICD subtypes, respectively. The survival analysis
revealed that the low-ICD subtype had a better prognosis
than the high-ICD subtype (Figure 1H).

RM construction of ICD-related genes

The univariate Cox regression analysis revealed that 10
ICD-related genes were linked to OS (Figure 2A4). The
ICD-related genes were further examined based on
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multivariate Cox regression analysis to build a RM. The
formula for the risk score was expressed as follows: risk
score = (0.17350 x LY96 exp.) + (0.11091 x FOXP3 exp.) +
(030199 x TLR4 exp.) + (0.27993 x IFNBI exp.) + (0.09888
x IL6 exp.) (Figure 2B). After computing the risk scores for
the KIRC patients, the median risk score was used as the
threshold. The patients were then divided into high- and
low-risk groups (Figure 2C).

We also focused on the relationship between survival
statuses and risk scores. According to our findings, the
low-risk group had a significant survival rate than the
high-risk group (Figure 2D). Further, a K-M analysis was
conducted to evaluate the prognostic significance of risk
status in KIRC (Figure 2E). High-risk scores were found
to be correlated with poor OS in TCGA cohort. A heat
map of the results was generated and revealed distinctions
in the expression of the five ICD-related genes between
the high- and low-risk groups (Figure 2F). In the low-risk
group, TLR4 was highly expressed, while LY96, FOXP3,
IFNBI1, and IL6 were lowly expressed. The survival rates
of the ICD-related genes in the high- and low-expression
groups were also used to construct K-M curves. Notably,
low survival rates were observed, when LY96, FOXP3,
IFNBI, and IL6 were highly expressed, or TLR4 was lowly
expressed (Figure S1).

ICD risk score could be an independent predictor of OS

We conducted univariate and multivariate Cox regression
analyses to demonstrate that the risk score obtained from
the five-gene signature model might be an independent
factor in prognosis. Both analyses confirmed that risk
score was an independent prognostic factor that predicted
poor survival in KIRC patients [univariate analysis hazard
ratio (HR) =1.629 and multivariate analysis HR =1.626]
(Figure 34,3B). In addition, the ROC curves were plotted
to validate the prognostic significance of the risk score
(Figure 3C-3E). The AUC values were 0.725 for a 1-year
period, 0.735 for a 3-year period, and 0.73 for a 5-year
period, which shows that the risk score variable had a higher
predictive value than the clinical variables. The RECA-EU
data were downloaded from the ICGC database to verify
these results, and the differences between the different risk
groups and the constructed prognosis model was verified
(Figure S2A-S2C). Additionally, using gene expression and
the corresponding KIRC clinical data, we analyzed the
correlations between the clinical variables and risk scores

of the five ICD-related genes (i.e., LY96, FOXP3, IFNBI,
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IL6, and TLR4). Risk scores and FOXP3 were correlated
with tumor grade, Metastasized stage (M stage), Regional
Lymph Nodes stage (N stage), Tumor stage (T stage), and
comprehensive stage. IFNBI was associated with grade, M
stage, T stage, and comprehensive stage; IL6 was associated
with grade, T stage, and comprehensive stage. LY96 was
associated with T stage and comprehensive stage; while 7LR4
was associated with comprehensive stage (Figure S3A-S3T).

© Translational Cancer Research. All rights reserved.

In addition, we built a nomogram using the risk scores and
clinical features to more precisely predict the prognosis of
KIRC patients (Figure 44,4B). Based on the ROC curve
results, the nomogram was more accurate at predicting
patient survival than the risk score alone (Figure 4C-4E). The
results of both the univariate and multivariate Cox regression
analyses showed that the nomogram was also an independent
predictor of OS in KIRC patients (Figure 454G).
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and other prognostic clinical characteristics to predict the 1-, 3-, and 5-year survival rate of KIRC patients. CI, confidence interval; AUC,

area under the curve; KIRC, kidney renal clear cell carcinoma.

Identification of DEGs and signaling pathways in the low-
and bigh-risk groups

To analyze the distinct mechanisms that influence the
survival status of patients, we first identified 956 genes
in TCGA data set that were differentially expressed
between the two groups. We then conducted GO and
KEGG functional enrichment analyses (Figure 5A,5B).
We discovered that immunity and immune responses
were differentially correlated with the low- and high-risk
subgroups. Notably, according to the GO enrichment
analysis results, the DEGs were enriched in immune-
associated mechanisms, including the humoral immune
response, immunoglobulin complex, and antigen binding
(Figure 5C). The KEGG enrichment analysis demonstrated
that the DEGs were significantly enriched in cytokine-
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cytokine receptor interactions, complement and coagulation
cascades, and the IL-17 signaling pathways (Figure 5D).

Somatic mutations in the high- and low-risk groups

We first analyzed the genetic mutations in the high- and
low-risk groups. The top five mutated genes in the low-risk
group were von Hippel-Lindau (VHL) (46%), Polybromo
1 (PBRM1) (42%), Titin (T'TN) (13%), SET domain
containing 2 (SETD2) (9%), and mucin 16 (MUC16)
(7%) (Figure 64). The top five mutated genes in the high-
risk group were VHL (46%), PBRM1 (39%), TTN (18%),
SETD2 (16%), and BAPI (15%) (Figure 6B). Compared
to the low-risk group, the high-risk group had a higher
incidence of TTN, SETD2, and BAPI mutation rates.
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Figure 6 The contrast of somatic mutations in distinct risk groups. (A,B) Visualization of the top 10 most commonly mutated genes in the

high- (A) and low-risk groups (B) using Oncoprint.

Tumor microenvironment landscape in the high- and low-
risk groups

Various immune estimation algorithms were used to further
investigate the immune infiltration of patients with KIRC
in the high- and low-risk groups. The findings of the
ESTIMATE algorithm demonstrated that the high-risk
group had decreased tumor purity, and improved immune
scores, ESTIMATE scores, and stromal scores than the
low-risk group (Figure 7A-7D). Subsequently, we used the
“CIBERSORT?” algorithm to assess the relative proportion
of immune infiltration in 22 immune cell types and
summarized the results of the KIRC patients from TCGA
data sets (Figure 7E). The CIBERSORT algorithm results
showed that the low-risk group had higher proportions
of cluster of differentiation CD4" resting memory T
cells, resting natural killer (NK) cells, monocytes, M1
macrophages, M2 macrophages, resting dendritic cells,
resting mast cells, activated mast cells, and eosinophils.
Patients in the high-risk group had higher proportions
of plasma cells, CD8" T cells, activated memory CD4" T
cells, follicular helper T cells, regulatory T cells (Tregs),
and MO macrophages (Figure 7F). The single-sample
gene-set enrichment analysis (ssGSEA) algorithm results
revealed that 24 immune cells in the high-risk group
scored significantly lower than those in the low-risk group,
demonstrating that the immune status of patients with low-

© Translational Cancer Research. All rights reserved.

risk scores was better than that of patients with high-risk
scores (Figure 7G). Collectively, these results suggest that
the immune infiltration landscape is associated with the RM
of the ICD-related genes.

Finally, we also explored the relevance of the 28
different immune cells (Figure 7H). A correlation analysis
was conducted to investigate the association between the
prognostic ICD-related genes and the immune infiltration
landscape. The results showed a remarkable association
between the prognostic ICD-related genes and 22 types of
immune cells as calculated by CIBERSORT; for example,
FOXP3 was positively correlated with resting mast cells,
and TLR4 was positively correlated with Tregs (Figure 84).
The results also revealed significant associations between
the prognostic ICD-related genes. The ssGSEA, showed
that 28 types of immune cells, such as LY96, were negatively
correlated with macrophages (Figure 8B).

Given the significance of checkpoint inhibitor
immunotherapy, we examined the expression of immune
checkpoints in the two groups. Specifically, we evaluated
the expression of 24 human leukocyte antigen (HLA) genes
and 47 infected cell protein (ICP) genes in the two groups.
The findings revealed that nearly all the ICP and HLA
genes were significantly upregulated in the high-risk group,
which suggested an association between this group and an
immune hot phenotype. Conversely, the low-risk group
was associated with an immune cold phenotype. Notably,
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Figure 7 The immune landscape between the ICD high- and low-risk groups. (A-D) Violin plots of the stromal score, immune score,
ESTIMATE score, and tumor purity between the ICD high- and low-risk groups. (E) Proportion of 22 types of immune cells infiltrated
between the ICD high- and low-risk groups. (F) Scores of the 22 immune cells in the high- and low-risk groups computed by the
CIBERSORT algorithm. (G) Fraction of the 28 immune cells in the low- and high-risk groups computed by the ssGSEA algorithm. (H)
Heatmap of the correlations among different immune cells. Blue and red illustrate positive and negative associations, respectively. ns,
P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. TME, tumor microenvironment; NK, natural killer; MDSC, myeloid-derived suppressor cell;
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the high-risk group had significantly elevated expression
levels of molecules, such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), programmed cell death-1
(PDCD1), and Recombinant Human CD27 Ligand (CD70)
(Figure 94,9B). These findings suggest that the upregulation
of immune checkpoints and immunosuppressive cytokines
may suppress the immune microenvironment (IME) in
high-risk patients.

Prediction of risk score and drug sensitivity

To analyze the relationship between risk score and small-
molecule drug resistance due to the half-maximal inhibitory
concentration (IC50) value, the pRRophetic algorithm
was employed to calculate the chemotherapeutic effect of
10 commonly used small-molecule drugs (i.e., bosutinib,
cisplatin, paclitaxel, cytarabine, imatinib, gefitinib,
lenalidomide, pyrimethamine, rapamycin, and sunitinib)
in patients with KIRC. As Figure 9 shows, the IC50s

© Translational Cancer Research. All rights reserved.

of paclitaxel, pyrimethamine, cytarabine, lenalidomide,
rapamyecin, cisplatin, gefitinib, sunitinib, and bosutinib were
considerably more improved in the low-risk group than the
high-risk group; however, the IC50 of imatinib was low in
the low-risk group (Figure 10A4-107). These results illustrate
the different responses to anti-tumor drugs in patients with
KIRC in distinct risk subgroups and suggest the potential
benefits of personalized targeted treatments for patients
with KIRC.

As Figure 11 shows, the correlation analysis results
revealed a significant association between the ICD-related
genes and 12 IC50 drugs; for example, LY96 was positively
correlated with cisplatin, while TLR4 was negatively
correlated with paclitaxel.

Discussion

KIRC is the most prevalent primary malignancy in adult
RCC (25). As it can be challenging to recognize the

Transl Cancer Res 2024;13(1):249-267 | https://dx.doi.org/10.21037/tcr-23-214
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antigen; ICD, immunogenic cell death.

early clinical indications of KIRC, the disease is typically
diagnosed in its later stages. However, patients with
KIRC typically have a poor prognosis due to the limited
biomarkers for early detection and prognosis prediction (26).
Thus, genetic characteristics need to be discovered and
predictive models developed to identify patients with
distinct risks and outcomes to provide individualized
treatments.

ICD has been described as a distinct type of regulated
cell death that is capable of triggering a fully adaptive
immune response specific to antigens via danger signals

© Translational Cancer Research. All rights reserved.

*, P<0.05; **, P<0.01; ***, P<0.001. HLA, human leukocyte

or DAMPs (27,28). The expression, function, and genetic
alterations of 34 ICD-related genes were examined in the
current study (19). In the tumor tissues, the majority of
the differentially expressed ICD-related genes were highly
expressed. Using consensus clustering, we identified two
ICD subtypes based on ICD-related gene expression and
found that the subtype with higher ICD expression was
linked to a poor prognosis. We also identified five ICD-
related genes from the 34 ICD-related prognostic genes
and successfully classified the KIRC patients into high-
and low-risk groups using median risk scores as the cut-
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off value. For the KIRC patients, this risk signature may
act as an independent prognostic indicator due to its high
OS predictive value. The predictive value of the model was
validated by the K-M and ROC curves, which revealed that
when paired with other clinical characteristics of KIRC
patients, the model had the maximum prognostic predictive
power. Thus, the efficiency of the nomograms in predicting
the prognosis of KIRC patients was increased using a
combination of risk scores and clinical characteristics.
Additionally, the association between the risk score and
clinicopathological features, immunological features, and
drug sensitivity were investigated independently.

The five genes in the model have been implicated in
tumors and other diseases. IL6 is a pro-inflammatory
cytokine that has been shown to play a significant role in
maintaining chronic inflammation and promoting cancer
cachexia and pro-metastatic niche formation in the liver (29).
FOXP3 has been reported to repress the transcription
of the proto-oncogene human epidermal growth factor
receptor 2 (HER2) and runt-related transcription factor 1
(RUNX1), the expression of vascular endothelial growth
factor (VEGF), and the activation of the metastatic tumor
antigen 1 (MTA1) anti-cancer function in breast cancer
(30-35). IFNBI has anti-proliferative and pro-apoptotic
effects in Michigan Cancer Foundation-7 (MCF-7) breast
cancer cells (36). LY96 interacts with TLR4 and triggers the
nuclear factor kappa-B (NF-«B) pathway, which promotes
the production of pro-inflammatory cytokines and adhesion
molecules in colon cancer cells, thereby accelerating colon
cancer growth and lung metastasis (37). The survival of
colorectal cancer (CRC) patients is directly correlated with
TLR4 overexpression (38-40). Experimental studies have
shown that improved TLR4 activity increases CRC growth,
metastasis, and immune surveillance (41,42). In clinical
biopsies, higher TLR4 has been linked to the acute secretion
of inflammatory cytokines, including /L6 and IL8 (43).
Additionally, TLR4 facilitates the development of intestinal
tumors by activating the B-catenin pathway in a manner
dependent on phosphoinositide3-kinase (PI3K) (44).

The tumor IME of KIRC is characterized by substantial
immune cell infiltration and various immunosuppressive
effects that may severely compromise the efficacy of
immunotherapy (45). We discovered 956 DEGs between
the low- and high-risk groups, which helped us to better
understand the gene functions and pathways in our
constructed RM. According to the functional enrichment
analysis, these genes were primarily associated with the
immune response, which suggests that ICD is involved in

© Translational Cancer Research. All rights reserved.
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TME regulation.

We examined the association between the tumor IME
and risk scores, as evasion of immune destruction is a
newly recognized characteristic of cancer. The high-risk
patients in our study tended to have lower tumor purity and
higher ESTIMATE scores, which may help to explain why
these patients had a poor prognosis. The CIBERSORT
algorithm findings showed that the low-risk group had
higher proportions of CD4" resting memory T cells, resting
NK cells, monocytes, M1 macrophages, M2 macrophages,
resting dendritic cells, resting mast cells, activated mast
cells, and eosinophils. The high-risk group patients had
higher proportions of plasma cells, CD8" T cells, activated
memory CD4" T cells, follicular helper T cells, Tregs, and
M1 macrophages. M1 macrophages have been reported to
exert anti-tumor effects by producing pro-inflammatory
cytokines (46). In this study, the immune infiltration analysis
showed an increase in the number of infiltrating immune
cells, such as CD8" T, in the high-risk group. However, the
high-risk score was positively correlated with programmed
cell death protein 1 (PD-1) expression. Thus, while this
gene can recruit immune cells into tumor tissue, the high
expression of PD-1 inactivates T cells. Thus, the high-risk
group continued to show an inhibitory effect in relation to
the tumor immune response.

Immune checkpoint blockades (ICBs) have become a
major therapeutic approach due to their ability to overturn
the immunosuppressive tumor microenvironment. ICP
expression is crucial for immune evasion, and ICB therapy
and thus immune checkpoint inhibitors are emerging as
targets following recent advances in cancer immunotherapy.
In this study, most ICPs, including important ICPs, such
as programmed cell death-ligand 1 (PD-L1), CD70, and
CTLA4, showed substantially elevated expression levels in
the highs-risk populations, indicating that high-risk patients
may display higher sensitivity to ICB-based therapy. The
association between ICD-related RM, immune infiltration,
and ICP could be a potential research area to enhance the
effectiveness of immunotherapy in solid carcinomas.

The variations in the KIRC patients’ sensitivities to
the chemotherapeutic drugs may have contributed to the
observed distinctions in the survival times between the high-
and low-risk groups. To enhance patient prognosis and to
address the fact that a lack of drug responses influences
clinical decision making, we examined resistance in both
risk groups and small-molecule drugs. The drug sensitivity
prediction analysis results showed that the patients in
the high-risk group might be more sensitive to imatinib
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treatment. Taken together, the results suggest that patients
with high-risk scores might be more suitable candidates for
immune checkpoint inhibitors and targeted therapy agents.
Conversely, the selection of available treatments may be
limited for patients with low-risk scores.

Conclusions

This study developed a five-gene RM and built nomograms
to predict KIRC results in clinical practice. Using high-
and low-risk populations, it also analyzed the IME. The
correlation among immune infiltration levels, immune
response levels, and pharmacologic therapy levels at both
risk levels were also investigated, and a preliminary analysis
of the signaling pathways involved was performed. The
prognosis model constructed could better predict the
survival of patients when other clinical traits, including age,
gender, and stage, were taken into consideration, and the
reliability of this model was verified based on information
from the ICGC database. The current research offers a new
and extensive viewpoint to clarify the underlying processes
of KIRC prognosis and offers guidance for personalized
cancer immunotherapies. Admittedly, this study had some
limitations, and further research needs to be conducted to
verify the results of this study.
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