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Abstract 

Background:  As a complex system participating in tumor development and progression, the tumor microenviron-
ment was poorly understood in esophageal cancer especially squamous cell carcinoma (ESCC).

Methods:  ESTIMATE algorithm is used to investigate tumor-infiltrating immune cells and prognostic genes which 
were associated with the tumor microenvironment in ESCC.

Results:  Based on the immune and stromal scores, ESCC samples were divided into high and low score groups and 
299 overlapping differentially expressed genes were identified. Functional enrichment analysis showed that these 
genes were mainly involved in muscle-related function. Prognostic genes including COL9A3, GFRA2, and VSIG4 were 
used to establish a risk prediction model using Cox regression analyses. Then multivariate analysis showed that 
COL9A3 was an independent discriminator of a better prognosis. Kaplan–Meier survival analysis showed that the 
expression of COL9A3 was significantly correlated with the overall survival of ESCC patients. The area under the curve 
for the risk model in predicting 1- and 3- year survival rates were 0.660 and 0.942, respectively. The risk score was neg-
atively correlated with plasma cells, while positively correlated with the proportions of activated CD4 memory T cells, 
M1 Macrophages and M2 Macrophages (p < 0.001 for each comparison). Gene set enrichment analysis suggested that 
both immune response and immune system process gene sets were significantly enriched in high-risk group.

Conclusions:  Our study provided a comprehensive understanding of the TME in ESCC patients. The establishment 
of the risk model is valuable for the early identification of high-risk patients to facilitate individualized treatment and 
improve the possibility of immunotherapy response.
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Background
Esophageal cancer is a gastrointestinal malignancy with 
extremely aggressive nature and poor prognosis [1]. It 
is the eighth most common cancer and the sixth most 
common cause of cancer death globally [2]. In Iran, 
esophageal cancer is more popular than any other coun-
tries or regions in the world [3]. Classified by histol-
ogy, esophageal cancer is divisible into adenocarcinoma 
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and squamous cell carcinoma (ESCC) [4]. The effective 
methods for treatment of ESCC include chemotherapy 
or chemoradiotherapy followed by extensive surgery, 
which will obviously reduce health-related quality of life. 
Although recent developments have improved progno-
sis and survivorship, the molecular mechanism behind 
ESCC is not clear till now. Therefore, it is still important 
to identify potential biomarkers to increase the effec-
tiveness of therapy and survival rate of ESCC patients. 
As an effective therapeutic option, immunotherapy, 
especially immune checkpoint inhibitors, shows obvi-
ously clinical benefits in various cancers [5, 6]. Instead 
of two well-known immune checkpoint molecules PD-1 
(programmed cell death protein 1, also named CD279) 
and PD-L1 (programmed cell death-ligand 1), other 
molecules such as CD155, CD226, and LAG3 are also 
recognized as new immune-related molecules which 
contribute to tumor-mediated immune suppression and 
promote tumor immunity escape in ESCC [7]. Tumor-
infiltrating immune cells (TIICs), as the main compo-
nents of the tumor microenvironment (TME) which 
composed of stromal cells, endothelial cells, and TIICs 
[8], have a significant impact on tumor progression, 
treatment, and outcomes of patients. Recently, more 
researches have paid attention to antitumor immunity 
regulated by immune microenvironment [9–11], but the 
mechanism regulating the infiltration of immunocytes in 
ESCC is poorly understood. Thus, identifying the TME 
related therapeutic targets may improve immunotherapy 
efficacy and give a new clue for clinical strategy. Based 
on DNA copy number, ESTIMATE (Estimation of Stro-
mal and Immune cells in Malignant Tumor tissues using 
Expression data) uses gene expression signatures to infer 
the fraction of stromal and immune cells in different 
tumor samples. Immune scores and stromal scores were 
calculated to predict the level of infiltrating stromal and 
immune cells to infer tumor purity in tumor tissue, while 
samples with low tumor purity showed high stromal and 
immune scores [12]. The researches in pancreatic adeno-
carcinoma, lung cancer, glioblastoma, osteosarcoma, and 
other types of cancers [13–16] showed that this newly 
developed method is reliable for molecule screen.

In this current study, we first calculated immune and 
stromal scores of 81 ESCC tissues in the TCGA database 
using ESTIMATE algorithm and then retrieved immune-
associated differentially expressed genes (DEGs). Then, 
the correlation between immune/stromal scores and clin-
ical characteristics, prognosis of ESCC patients includ-
ing age(years), gender, pathologic TNM tumor stage, and 
tumor grade were analyzed respectively. A predictive risk 
model to estimate patient outcome was established and 
the associations of the TME-related risk score with the 
levels of TIICs and immune pathways were analyzed.

Methods
Dataset and estimation of stromal and immune scores
The microarray studies of ESCC analyzed during the 
current study were available in The Cancer Genome 
Atlas (TCGA) (dataset ID: TCGA-ESCA, https​://gdc.
xenah​ubs.net/downl​oad/TCGA-ESCA.htseq​_count​
s.tsv.gz). Both the gene expression and clinical data 
used in this research are publicly available and classi-
fied as open-access. To evaluate the infiltrating levels 
of the immune and stromal cells in the ESCC tissues, 
“estimate” R package (version 1.0.13) was used as a tool 
of ESTIMATE algorithm for calculation of immune and 
stromal scores. Based on the median value of immune/
stromal scores, the ESCC patients were divided into 
high and low score groups to identify a possible asso-
ciation of these scores with overall survival.

Identification of DEGs based on immune and stromal 
scores
We used the “limma” R package (version 3.42.2) to 
identify the DEGs between high and low score groups. 
Log2FC > 1.5 or log2FC < (− 1.5) and p < 0.05 were set 
as the threshold for genes screening both in immune 
scores group and stromal scores.

Functional enrichment analysis
Then, the functional enrichment analyses of Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway were analyzed using “clus-
terProfiler” package (version 3.14.3), and p < 0.05 was 
considered to indicate statistical significance.

Establishment of TME‑related risk model and survival 
analysis
Using the “survival” R package (version 3.1-11), the 
univariate and multivariate Cox regression analyses 
were performed for analyzing associations of the levels 
of DEGs with overall survival. Consequently, power-
ful prognostic genes were screened out and then risk 
scores were calculated for all ESCC patients. Based 
on the median of risk scores, all patients were divided 
into high- (n = 41) and low- risk (n = 40) group. We 
used Kaplan–Meier curves to exhibit the association 
between risk score and overall survival. The log-rank 
test was employed to test the statistic difference with 
the significance level p < 0.05. Using the “timeROC” 
package (version 0.4), the survival receiver operating 
characteristic curve (ROC) with the area under the 
curve (AUC) value was visualized.

Gene set enrichment analysis (GSEA) was carried 
out to evaluate associations of immune pathways with 
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the TME-related risk score. p < 0.05 indicated statistical 
significance.

Association between risk scores and the levels of TIICs
The online analytical platform CIBERSORT with an 
arrangement of 1000 default statistical parameter was 
used to quantify the relative proportions of 22 TIICs in 
the TME of ESCC. Wilcoxon rank-sum test was used to 
determine the association between risk scores and the 
differential proportions of 22 TIICs in ESCC tissues. 
p < 0.05 was considered as statistical significance. Spear-
man rank analysis was performed using GraphPad Prism 
version 8.0.0 for Windows (GraphPad Software, San 
Diego, California USA, www.graph​pad.com).

Results
The immune and stromal scores were tightly associated 
with tumor grade.
Using the ESTIMATE algorithm, we first determined 
immune and stromal scores of 81 ESCC samples based 
on the gene expression data obtained from the TCGA 
database (Additional File 1: Table S1). Statistical analysis 
showed that age, gender, and TNM stage had no corre-
lation with both immune score (Fig.  1a–e) and stromal 
score (Fig.  1g–k). But high-grade tumors (G2-G3) had 
higher immune and stromal scores than G1 tumors 
(p = 0.039 and 0.003, respectively), while G2 tumor had 
the highest immune score and G3 tumor had the highest 
stromal score (Fig. 1f, l).

Based on the median of immune and stromal scores 
of every sample, we divided 81 samples into two groups, 
that is, 41 samples were in the high-score group while 40 
in the low-score group. Kaplan–Meier survival curves 
revealed that no significant results were found neither in 
immune score groups or stromal score groups (p = 0.264 
and 0.276, Fig. 2a, b).

Identification of differentially expressed genes 
between high and low immune/stromal scores
To identify the immune-related and stromal-related 
genes, we performed differential analysis using “limma” 
packages (version 3.42.2) in R (version 3.6.1) based 
on genes expression level. As shown in volcano plots, 
there were a total of 1048 and 1219 TME-related DEGs 

Fig. 1  Associations of immune and stromal scores with ESCC clinicopathological characteristics. a, g Distributions of immune and stromal scores 
among different ages, b, h gender, c–e, i–k tumor stage (TNM), and f, l tumor grade. ESCC, esophageal squamous cell carcinoma

Fig. 2  Kaplan–Meier survival curves of ESCC patients with low vs. 
high immune scores (a) and stromal scores (b)

http://www.graphpad.com
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between high and low immune/stromal score groups, 
respectively (Fig.  3a, b). Compared with the low score 
group, there were 756 up-regulated and 292 down-regu-
lated genes in the high immune score group, while 382 
up-regulated and 837 down-regulated genes in the high 
stromal score group (Fig. 3c, d). Subsequently, 299 over-
lapping genes in Venn diagrams were selected for further 
analysis.

Functional enrichment analysis
Functional enrichment analysis was performed to com-
prehend the functional properties of the 299 TME-
related DEGs using the “clusterProfiler” package (version 
3.14.3) in R (version 3.14.3). We selected the top 10 GO 
terms in each biological process (Fig.  4a), cellular com-
ponent (Fig.  4b), and molecular function (Fig.  4c). The 
results showed that these DEGs mainly enriched in the 
biological process including muscle system process, 

muscle contraction, and striated muscle cell differentia-
tion. Similarly, contractile fiber part, contractile fiber, and 
myofibril which mainly related to muscle structure were 
most enriched by selected DEGs. As for molecular func-
tion, substrate-specific channel activity, channel activity, 
and passive transmembrane transporter activity were 
mainly annotated. In the KEGG pathway annotation and 
enrichment analysis, we found that enriched pathways 
were associated with neuroactive ligand-receptor inter-
action, vascular smooth muscle contraction, and pancre-
atic secretion (Fig. 4d).

Establishment of the risk prediction model
According to the results of univariate Cox regression 
analysis of prognostic factors, COL9A3, VSIG4 and 
GFRA2 were significantly associated with overall sur-
vival (p < 0.05 for each comparison). And multivari-
ate Cox regression results showed that COL9A3 was 

Fig. 3  Identification of differentially expressed genes. a–b Volcano plot of DEGs based on immune and stromal score in ESCC samples. c–d Venn 
diagrams showing the overlapping genes among high and low immune/stromal DEG, respectively. DEGs, differentially expressed genes; ESCC, 
esophageal squamous cell carcinoma
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an independent prognosis factor for ESCC patients 
(p = 0.003) (Table  1). These results suggested their 
expression level in ESCC patients were possibly related 
to the prognosis of ESCC. As a result, we selected and 
used COL9A3, VSIG4 and GFRA2, which were signifi-
cantly associated with overall survival in ESCC, to build 
a risk model to give some clinical information related 
to patients’ outcomes for further exploration. Con-
stantly, the risk score was obtained based on relative 

Fig. 4  Enrichment analysis of microenvironment related differentially expressed genes. a–c The top 10 of biological processes, cellular component 
and molecular function GO terms, respectively. d The top 10 enriched KEGG pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes

Table 1  Univariate and multivariate Cox regression analysis of 
prognostic factors for overall survival

HR Hazard ratio, 95% CI 95% confidence interval

The significant values (p < 0.05) are marked in bold

Variables Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

COL9A3 0.689(0.538–0.881) 0.003 0.675(0.519–0.877) 0.003
VSIG4 1.321(1.008–1.732) 0.044 1.155(0.782–1.705) 0.468

GFRA2 1.331(1.007–1.759) 0.045 1.210(0.798–1.832) 0.370
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coefficients in Cox regression according to the for-
mula: (− 0.3937 * COL9A3 expression level) + (0.1902 * 
GFRA2 expression level) + (0.1441 * VSIG4 expression 
level) (Additional File 1: Table S2). The median value of 
risk scores was used as a cutoff to divide samples into 
high- and low-risk groups for further study (Fig.  5a). 
As shown in the scatter plot, patients with lower risk 
scores showed higher survival probability than those 
with higher risk scores (Fig.  5b). Moreover, compared 
with the low-risk group, higher expression levels of 
GFRA2 and VSIG4 were observed in the high-risk 
group. Conversely, the cases with the higher expression 
level of COL9A3 were in the low-risk group, confirming 
that COL9A3 is a good prognostic factor (Fig. 5c). The 
Kaplan–Meier survival analysis revealed that high-risk 
score was significantly associated with a poor outcome 
(Fig. 5d). As for ROC curve, the AUC for the risk model 

in predicting 1- and 3- year survival rates were 0.660 
and 0.942, respectively (Fig.  5e), which probably indi-
cated the risk model we established may have a good 
predictability for patients’ outcome. Moreover, the 
survival curve showed that a high COL9A3 expression 
level was related to low survival probabilities (Fig. 5f ).

The relationship between immune scores and TIICs
Using spearman rank analysis in GraphPad Prism 8.0, we 
identify the association between risk score and the infil-
tration levels of 22 TIICs in ESCC tissues (Table 2). The 
results showed that the risk score was negatively corre-
lated with the proportions of plasma cells (r = − 0.265, 
p = 0.017) (Fig.  6a) while positively correlated with the 
proportions of activated CD4 memory T cells (r = 0.247, 
p = 0.026), M1 Macrophages (r = 0.233, p = 0.036) and 
M2 Macrophages (r = 0.391, p < 0.001) (Fig. 6b–d).

Fig. 5  Establishment and assessment of the predictive risk model. a Dot plot of risk score. Horizontal and vertical axes respectively represent 
risk score and ESCC samples, ranked by increasing risk score. Red and green colors represent high- and low- risk cases, respectively. b Dot plot of 
survival. Red and green colors represent dead and living ESCC cases, respectively. c Heat map of the expression levels of the three genes. Vertical 
and horizontal axes respectively represent genes and ESCC samples, ranked by increasing risk score. Genes with higher, lower, and same expression 
levels are shown in red, green, and black, respectively. Color bars at the bottom of the heat map represent sample types, with pink and blue 
indicating low- and high-risk score samples, respectively. d Overall survival curves obtained by the Kaplan–Meier method. P-values were obtained 
by the log rank test. e ROC curves of the risk model for predicting 1- and 3-year survival rates. f Kaplan–Meier curves of CSS for ESCC patients 
grouped by expression levels of COL9A3. ESCC, esophageal squamous cell carcinoma; ROC, receiver operating characteristic; CSS, cancer-specific 
survival; COLPA3, collagen type IX alpha 3 chain
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The involvement of immune pathways predicted by risk 
model
With online database Molecular Signatures Databases 
v4.0 (http://softw​are.broad​insti​tute.org/gsea/downl​
oads.jsp), we retrieved two immune gene sets, involving 
immune response (M19817) and immune system pro-
cess (M13664). GSEA results showed that both immune 
response and immune system process gene sets were sig-
nificantly enriched in the high-risk group (p = 0.010 and 
0.012, respectively) (Fig. 7a, b).

Discussion
TME is one of the main hallmarks of cancer, so it is 
important to identify the key druggable factors and path-
ways in the TME. The response to cancer immunotherapy 
especially immune checkpoint inhibitors were impacted 
by tumor immune microenvironment. Wang et al. found 
that an “infiltrated-excluded” or “cole” tumor immune 
microenvironment is predictive of poor response and 
low-dose metformin reprograms the TME in ESCC [17]. 
Research by Strizova et  al. showed that FasR+ NK cells, 
CD4+ , and CD8+ T cells infiltrated lymph nodes at the 
lowest levels and that the FasR+ DR3+ CD4+ T cells were 
enhanced in esophageal cancer [18]. These compartmen-
tal proportions correlated with tumor stage and tumor 
grade suggested new possibilities for personalized immu-
notherapy for patients.

Therefore, in the current study, we conducted the bio-
informatics analysis of TIICs and TME-related genes in 
ESCC and established contacts with the clinical outcome 
and prognosis of ESCC patients for potential prognostic 
biomarker selection. ESTIMATE, as a common method 
for calculation of immune and stromal scores, can bring 
scientific evidence to further analysis. We first obtained 
81 ESCC samples with clinical data from the TCGA data-
base. Then, using the ESTIMATE algorithm, we calcu-
lated immune and stromal scores of these patients. The 
correlation between these scores and clinical character-
istics were also analyzed. As a result, there was a signifi-
cance between immune and stromal scores and tumor 
grades. It is suggested that the tumor immune microenvi-
ronment in ESCC had a potential influence on tumor dif-
ferentiation. Besides, identifying the biomarkers related 
to TME may predict and even improve the prognosis of 
ESCC patients.

Continuously, 299 TME-related DEGs were obtained 
between the high and low immune/stromal score groups. 
GO annotation results showed that these genes were not 
enriched in immune-related signaling but almost be rela-
tive to muscle function and structure, which indicated 
a new clue for ESCC development. Skeletal muscles 
contain resident immune cells and there is a cross-talk 

Table 2  Spearman rank analysis to determine the association 
between risk score and the levels of 22 TIICs in ESCC tissues

The significant values (p < 0.05) are marked in bold

Tumor-infiltrating immune cell Risk score

Spearman r p value

B cells memory 0.091 0.417

B cells naive − 0.164 0.143

Dendritic cells activated − 0.047 0.674

Dendritic cells resting 0.127 0.259

Eosinophils − 0.039 0.730

Macrophages M0 − 0.159 0.157

Macrophages M1 0.233 0.036
Macrophages M2 0.391  < 0.001
Mast cells activated − 0.172 0.124

Mast cells resting 0.188 0.093

Monocytes − 0.021 0.852

Neutrophils 0.088 0.436

NK cells activated 0.057 0.616

NK cells resting − 0.046 0.686

Plasma cells − 0.265 0.017
T cells CD4 memory activated 0.247 0.026
T cells CD4 memory resting − 0.178 0.112

T cells CD4 naive − 0.098 0.384

T cells CD8 0.105 0.349

T cells follicular helper − 0.114 0.311

T cells gamma delta − 0.014 0.899

T cells regulatory (Tregs) − 0.033 0.771

Fig. 6  The association between risk score and the levels of 4 TIICs 
in ESCC tissues analyzed by Spearman rank analysis, including 
plasma cells (a), T cells CD4 memory activated (b), M1 (c) and M2 (d) 
macrophages

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp
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between muscle and innate immune cells in physiologi-
cal and pathogenic conditions, including inflammatory 
myopathies, endotoxemia, or different types of muscle 
injury/insult [19]. Paracrine/autocrine and contact inter-
actions have been proven to be involved in these patho-
logical events [19]. In addition, innate immune receptors 
such as toll-like receptors and NOD-like receptors have 
influences on skeletal muscle metabolism and the mus-
cle cells have the ability to secrete factors affecting the 
immune system [20]. These findings showed the cor-
relation between immune response and muscle physi-
ological effect, but there was little research followed with 
interest of tumor genesis. In our study, 299 TME-related 
DEGs were mainly involved in muscle system process, 
muscle contraction, and striated muscle cell differentia-
tion in biological process enrichment analysis. And con-
tractile fiber part, contractile fiber, and myofibril which 
mainly related to muscle structure were most enriched 
in cellular component. In molecular function enrich-
ment, substrate-specific channel activity, channel activity 
and passive transmembrane transporter activity were 3 
most significant signal in selected DEGs. In the enrich-
ment analysis of KEGG pathways, we found that only six 
pathways had significantly statistics including neuroac-
tive ligand-receptor interaction, vascular smooth muscle 
contraction, pancreatic secretion, cGMP-PKG signaling 
pathway, insulin secretion and staphylococcus aureus 
infection. These results indicated that the TME-related 

genes were involved in not only tumor immune micro-
environment but also other undiscovered relative signal 
pathways.

Based on univariate and multivariate Cox regression 
analyses, three prognostic genes were identified and used 
to establish a risk model for predicting the prognosis of 
ESCC patients. The AUC value of 3-year survival was 
infinitely close to 1, which indicated a strong capability 
for predicting survival in ESCC patients. Among these 
three genes, COL9A3 was identified as an independent 
prognosis factor in ESCC. And its expression was posi-
tively correlated with the clinical outcome, that is, the 
patients with high expression level of COL9A3 has longer 
survival time than low expression group (p = 0.003).
COL9A3 encodes the major collagen component of 

hyaline cartilage, which is one of the three alpha chains 
of type IX collagen. Type IX collagen, a heterotrimeric 
molecule, was usually found in tissues containing type II 
collagen, a fibrillar collagen [21]. Mutations in this gene 
were usually found in the patients with multiple epi-
physeal dysplasia type 3. Previous study has proven that 
the allelic variants in the collagen IX gene-COL9A3 was 
a genetic risk factor for intervertebral disc disease [22], 
and two single nucleotide polymorphisms introducing in 
COL9A3 were linked to an increased risk of lumbar disc 
disease [23]. In addition, in X-linked adrenoleukodystro-
phy patients, the combination of methylation levels of 
SPG20, UNC45A, and COL9A3 and also the expression 

Fig. 7  GSEA of the risk score in ESCC. The horizontal axis represents genes of the immune response (a) and immune system process (b) gene 
sets, ranked by decreasing risk score. The vertical axis represents enrichment score. ESCC, esophageal squamous cell carcinoma; GSEA, gene set 
enrichment analysis; ES, enrichment score; NES, normalized enrichment score
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levels of ID4 and MYRF would be a good marker for 
distinguishing the discriminating childhood from adult 
inflammatory phenotypes [24]. As for tumor-related 
research, COL9A3 was identified as tumor suppressor 
gene in rectal cancer [25], and it was also significantly 
associated with the prognosis of triple-negative breast 
cancer as an independent prognostic signature [26]. Sel-
dom research about the relationship between COL9A3 
and ESCC was taken by now.
GFRA2 named Glial cell line-derived neurotrophic 

factor family receptor alpha 2. In human neuroblastoma 
cells and tissues, GFRA2 was upregulated. It can pro-
mote cell proliferation by interacting with the tumor sup-
pressor PTEN in neuroblastoma [27]. Similarly, a high 
expression level of GFRA2 leads to PTEN inactivation 
and then promotes tumor cell growth and chemoresist-
ance in pancreatic cancer [28, 29]. It is suggested that 
GFRA2 may have the same effects on ESCC, as another 
tumor type in the digestive system. But the specific rela-
tionship between GFRA2 expression and ESCC develop-
ment deserves further test and verification.
VSIG4 encodes a protein that may be a negative regu-

lator of T-cell response. It broadly expressed in placenta, 
lung, and 19 other tissues. Byun et al. showed that high 
VSIG4 expression of cancer tissue was associated with a 
longer disease-free interval in benign ovarian tumors [30] 
and hepatitis B virus-related hepatocellular carcinoma 
[31]. Both Xu et al. and Hu et al. found that VISG4 could 
be used as a prognostic factor and a potential immuno-
therapeutic target for glioma [32] and clear cell renal 
cell carcinoma [33]. Similarly, Waldera-Lupa et al. found 
that together with other 2 genes, VSIG4 could be a novel 
biomarker for supporting the diagnosis of primary cen-
tral nervous system lymphomas [34]. Tumor-associated 
macrophage is the prominent component of lung cancer 
stroma and VSIG4 may play a cancer-promoting effect in 
lung carcinoma development [35]. In summary, specific 
targeting of VSIG4 may prove to be an efficacious strat-
egy for the treatment of ESCC, but more research should 
be taken for further investigation.

Plasma cell was derived from small B lymphocytes 
after their activation and related with some important 
process in tumor progression. It showed that tumor-
associated plasma cell signatures emerged as a signifi-
cant signal of survival for diverse solid tumors, but its 
infiltrated levels was associated with poor prognosis 
of patients both in breast and lung adenocarcinomas 
[36]. In triple-negative breast cancers, the infiltration 
level of plasma cells was highly connected with the dis-
ease recurrence [37]. With context-dependent immune 
responses influenced by oncogenic drivers and the pres-
ence of inflammation, CD4+ T cells carried complex 
and important roles within tumor microenvironments 

[38]. Tumor-associated macrophages are heterogeneous 
with diverse functions. For example, M1 macrophages 
inhibit tumor growth, as M2 macrophages promote 
tumor growth. And their phenotype and functions 
are regulated by the surrounding micro-environment 
especially TME. Due to the key roles in tumor progres-
sion, cell invasion, and metastasis [39], direct targeting 
tumor-related macrophages may be a potential ther-
apy strategy for patients. These results indicated that 
the infiltration level may have potential significance in 
ESCC. Using spearman rank analysis, we found that 
the risk score calculated by risk model was negatively 
correlated with the proportions of plasma cells and 
positively correlated with the proportions of activated 
CD4 memory T cells, M1 Macrophages and M2 Mac-
rophages. It is suggested that ESCC patients with high 
infiltration level in activated CD4 memory T cells, M1 
Macrophages and M2 Macrophages need more atten-
tion in clinical therapy. In contrast, patients with high 
infiltration level in plasma cells may have better prog-
nosis and more survival time than other patients.

Finally, GSEA was performed and confirmed the 
close relationship between the risk scores and immune 
pathways. As it shown that the pathways significantly 
enriched in the high-risk group involved immune 
response and immune system process, suggesting that 
immunosuppression exists in high-risk ESCC patients 
and these high-risk patients may have a poor outcome 
due to un-worked immune response.

Conclusion
In conclusion, our study provided a comprehen-
sive understanding of the TME and identified a list of 
TME-related prognostic genes for ESCC patients. The 
establishment of the risk model is valuable for the early 
identification of high-risk patients to facilitate individ-
ualized treatment and improve the possibility of immu-
notherapy response.
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