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Time-of-day-dependent variation of the human liver
transcriptome and metabolome is disrupted in MASLD
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Background & Aims: Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by
the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease
(MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to
MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and
metabolome are significantly altered in human steatotic and MASH livers.
Methods: Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histolog-
ically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased
metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared
between histologically normal, steatotic and MASH livers.
Results: Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and
associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in stea-
totic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in
cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes
were affected in pathological livers. Both TNFa and PPARc signaling were predicted as important contributors to altered
rhythmicity.
Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential
expression of core molecular clock components is maintained.
Impact and implications: This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human
liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we
show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and
metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time
window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a
practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may
significantly affect data interpretation in animal and human studies of liver diseases.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Normal tissue homeostasis requires a precisely timed expression
of genes and proteins around the clock and its alignment with
cycles of light/darkexposure, feedingperiods andphysical activity.
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The central clock, located in the suprachiasmatic nucleus, is light-
entrained and connects with peripheral tissues to synchronize
clock oscillators in these tissues. However, peripheral tissue clocks
can operate autonomously, i.e. independently of the central hy-
pothalamic clock. For example, the major Zeitgeber (“time giver”)
setting the liver clock is food intake/nutrient availability rather
than daylight.1,2 Studies of molecular mechanisms controlling
these circadian regulations in nocturnal rodents generated a
global picture defining a universal molecular clock machinery.3

This cell-autonomous circadian core clock is made of two autor-
egulatory loops comprising 14 transcription factors, encoded by
so-called core clock genes (CCGs). Heterodimeric BMAL1 (ARNTL)
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and CLOCK (or NPAS2) transcriptional activators and PER and CRY
transcriptional repressors, along with the nuclear receptors RORs,
REV-ERBa and b constitute interlocked transcriptional-transla
tional feedback loops. These interlocked transcriptional-transl
ational feedback loops define a cell-autonomous clock machin-
erywhich controls clockoutput genes,4 in turn regulatingmultiple
cellular functions.3

Because most primates (including humans) are diurnal, there
are likely important differences from rodents in circadian regu-
lation that have yet to be explored. A limited number of human
time-of-day-resolved transcriptomes is available, especially for
internal organs. Transcriptomes from whole blood,5,6 peripheral
blood mononuclear cells,7 skin,8 subcutaneous white adipose
tissue,9,10 heart,11 or skeletal muscle12–14 were analyzed for a
relatively low number of individuals (n <30). A gene expression
study in subcutaneous white adipose tissue and skin from 625
healthy volunteers enabled the identification of time-of-day-
regulated genes strongly enriched in CCGs.15

Circadian rhythm dyssynchrony is observed in, and likely
causative of, various diseases such as obesity and its complica-
tions like metabolic dysfunction-associated steatotic liver dis-
ease (MASLD), formerly known as non-alcoholic fatty liver
disease (NAFLD). MASLD is a spectrum of liver conditions char-
acterized by hepatic steatosis combined with varying degrees of
necroinflammation and excluding excessive alcohol consump-
tion.16 Its more severe, yet generally asymptomatic form, termed
metabolic dysfunction-associated steatohepatitis (MASH;
formerly known as NASH, non-alcoholic steatohepatitis), may
evolve towards liver fibrosis, cirrhosis and hepatocellular carci-
noma. Large-scale patient cohort studies have reported differ-
ences in gene expression between disease stages without time-
of-day information.17–20 While hepatic metabolomes and tran-
scriptomes are deregulated in rodent models of MASH and
fibrosis,21,22 whether this occurs similarly in human MASLD re-
mains unknown. A 24 h-circadian transcriptome atlas of 64 tis-
sues from healthy baboons identified only a small set of robustly
cycling genes in the liver, surprisingly not including CCGs.23

Rhythmic gene expression patterns were inferred from the
analysis of tissues collected post mortem from 600 human do-
nors. Relatively few genes (n = 648), including only a few CCGs,
exhibited predicted time-of-day-dependent expression.24 Thus,
both ethical and technical hurdles hinder the thorough investi-
gation of time-of-day-dependent processes in healthy human
liver and the deregulation thereof in MASLD. Importantly, this
conclusion extends to the hepatic metabolome, which is clock-
controlled and disturbed in various liver dysfunction
models.22,25–28 Disturbances in the hepatic chronometabolome
observed in rodent MASLD models have not yet been reported in
humans.29

Considering these knowledge gaps, we asked whether the
hepatic time-of-day-dependent transcriptome and metabolome
are affected during MASLD progression. We leveraged a large
cohort of morbidly obese patients undergoing bariatric surgery
from whom liver biopsies were taken peri-operatively (Hôpital
Universitaire de Lille [HUL] cohort18). Hepatic transcriptomes
and metabolomes were obtained from a sub-cohort of 290 pa-
tients whose biopsies were histologically identified as either
normal, steatotic, or MASH livers and for whom the exact time-
of-day at biopsy was known (Fig. 1A). In an original approach
integrating multiple statistical tests, we provide the first-ever
robust analysis of time-of-day-dependent gene expression and
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tissue metabolite abundance, as well as changes associated with
the different stages of MASLD, in human livers.

Materials and methods
Liver biopsies from the HUL cohort
The HUL cohort, also known as the Biological Atlas of Severe
Obesity (ABOS) cohort, was established in 2006 by the University
Hospital of Lille, France (ClinicialTrials.gov: NCT01129297) and
comprised severely and morbidly obese patients visiting the
Obesity Surgery Department. The study protocol conforms to the
ethical guidelines of the 1975 Declaration of Helsinki. All patients
of the cohort fulfilled criteria for, and were willing to undergo,
bariatric weight-loss surgery (for details, see18). Written
informed consent was obtained from each patient included in
the study. The protocol required that patients fast from midnight
until the time of surgery. During the surgical procedure, wedge
biopsies were taken from the liver to be immediately snap-
frozen and the exact time of the biopsy was noted. A total of
>1,500 patients are currently included in the HUL cohort,
amongst whom 319 were selected to build a sub-cohort with
complete clinical, biometric parameters and a robust histological
MASLD classification of quality-controlled biopsies eliminating
all intermediary MASLD stages (see18 and Fig. 1B for more de-
tails). Both transcriptomes and metabolomes were obtained for
these 319 patients with biopsy mass >100 mg. Out of these, the
time-of-day at biopsy (ranging from 8am to 4pm) was known for
290 patients, who were included in this study. The main clinical
and histological characteristics are provided in Table 1. Patient
clinical data shown in Table 1 were analyzed using the package
“gtsummary” (v1.5.0).

Total RNA sequencing and data processing
A detailed procedure can be found in the supplementary mate-
rials and methods.

Liver metabolomics by liquid chromatography-mass
spectrometry
All tissue samples were flash frozen and maintained at –80 �C
until processing. Sample preparation was carried out as
described previously30 at Metabolon, Inc. (Morrisville, NC, USA).
A detailed procedure can be found in the supplementary mate-
rials and methods.

Bioinformatic analysis
Bulk RNA sequencing
All analyses were carried out using RStudio (v1.4.1106) with R
(v4.1.0). Data processing for differential expression as a function
of time-of-day can be found in the supplementary materials and
methods.

Single-cell RNA sequencing
All analysis has been made under R (v 4.2.0). A detailed pro-
cedure for data extraction and processing can be found in the
supplementary materials and methods.

Enrichment analysis
Time-dependent gene lists were analyzed for enrichment of
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
and gene ontology biological process terms using Metascape
3.531 with default settings (https://metascape.org/). A detailed
2vol. 6 j 100948
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Fig. 1. Timed liver biopsies from a large cohort of humans with obesity. (A) Overall experimental strategy. (B) Decision tree to stratify the HUL sub-cohort.
“HN” (histologically normal), “steatosis” (benign steatosis only) or “MASH” (steatosis+inflammation). (C) Inter-sample variation in gene expression. ANOVA was
used to reveal the main sources of overall inter-sample variation. (D) Biopsy daytime distribution. (E) Gene expression analysis. A volcano plot was generated by
comparing gene expression using DEseq2 from samples collected in the morning (AM) or in the afternoon (PM) regardless of the pathological state. X axis: log2
(fold change), Y axis: -log10(p values). (F) KEGG pathway enrichment analysis. Biological term enrichment was carried out using the 1,660 genes whose expression
was significantly different as determined in (E) (FC >1.2, FDR <0.05). (E, F) Font size was adjusted for clarity purpose. FC, fold change; FDR, false discovery rate; HN,
histologically normal; KEGG, Kyoto Encyclopedia of Genes and Genomes; MASH, metabolic dysfunction-associated steatohepatitis.
procedure for data processing can be found in the supplemen-
tary materials and methods.

Data visualization and illustrations
Graphs were generated as *.svg files using R packages mentioned
above. Data were imported in CorelDraw2020 to assemble fig-
ures. Drawings in Fig. 1A are from Renée Gordon, Victovoi, and
Mikael Häggström, M.D. and were made available to the public
domain via Wikimedia Commons with no restriction of use.
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Bubbleplots were generated in R studio using the ggplot2, plotly,
reshape2, rcpp, and tidyverse packages as described in.32
Results
Time-of-day is a major factor affecting gene expression in
human liver
Human liver biopsies were collected from patients with obesity
and undergoing bariatric surgery, for which the exact daytime of
3vol. 6 j 100948



Table 1. Biometric and biochemical parameters of the HUL sub-cohort.

MASLD group p values

Variable N HN, n = 89 St., n = 122 MASH, n = 79 HN vs. St. HN vs. MASH St. vs. MASH

Sex 290 0.003 0.008 0.7
Female 75/89 (84%) 80/122 (66%) 49/79 (62%)
Male 14/89 (16%) 42/122 (34%) 30/79 (38%)

Age, yr 290 34.6 ± 11.4 41.8 ± 10.9 46.4 ± 10.4 <0.001 <0.001 0.050
BMI 290 45.4 ± 6.8 47.3 ± 7.9 46.2 ± 7.9 0.2 0.5 0.2
Steatosis score 290 <0.001 <0.001 <0.001

0 89/89 (100%) 0/122 (0%) 0/79 (0%)
1 0/89 (0%) 0/122 (0%) 18/79 (23%)
2 0/89 (0%) 71/122 (58%) 29/79 (37%)
3 0/89 (0%) 51/122 (42%) 32/79 (41%)

Inflammation score 290 <0.001 <0.001 <0.001
0 89/89 (100%) 70/122 (57%) 0/79 (0%)
1 0/89 (0%) 44/122 (36%) 55/79 (70%)
2 0/89 (0%) 8/122 (6.6%) 23/79 (29%)

0/89 (0%) 0/122 (0%) 1/79 (1.3%)
Ballooning score 290 0.54 <0.001 <0.001

0 89/89 (100%) 115/122 (94%) 0/79 (0%)
1 0/89 (0%) 7/122 (5.7%) 57/79 (72%)
2 0/89 (0%) 0/122 (0%) 22/79 (28%)

Fibrosis score (Kleiner) 282 0.009 <0.001 <0.001
0 79/89 (89%) 78/118 (66%) 12/75 (16%)
1 9/89 (10%) 28/118 (24%) 22/75 (29%)
2 0/89 (0%) 7/118 (5.9%) 13/75 (17%)
3 1/89 (1.1%) 5/118 (4.2%) 25/75 (33%)
4 0/89 (0%) 0/118 (0%) 3/75 (4.0%)

NAS score 290 <0.001 <0.001 <0.001
0 89/89 (100%) 0/122 (0%) 0/79 (0%)
2 0/89 (0%) 40/122 (33%) 0/79 (0%)
3 0/89 (0%) 51/122 (42%) 11/79 (14%)
4 0/89 (0%) 26/122 (21%) 19/79 (24%)
5 0/89 (0%) 5/122 (4.1%) 29/79 (37%)
6 0/89 (0%) 0/122 (0%) 17/79 (22%)
7 0/89 (0%) 0/122 (0%) 2/79 (2.5%)
8 0/89 (0%) 0/122 (0%) 1/79 (1.3%)

HOMA-IR 279 3.8 ± 4.8 13.5 ± 58.8 24.2 ± 55.2 <0.001 <0.001 <0.001
Biopsy time 290 0.13 0.3 0.4

AM 62/89 (70%) 70/122 (57%) 46/79 (58%)
PM 27/89 (30%) 52/122 (43%) 33/79 (42%)

The main biometric, biochemical and liver histological features of selected patients are indicated. Continuous values are expressed as mean ± SD. Inter-group comparisons
were performed using the unpaired Wilcoxon test for continuous variables (age, BMI, HOMA-IR) and Fisher’s exact test for the remaining categorical variables. HN, histo-
logically normal; HOMA-IR, homeostatic model assessment for insulin resistance; MASH, metabolic dysfunction-associated steatohepatitis; NAS, NAFLD/MASLD activity score;
St., steatosis.
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the liver biopsy was recorded (Fig. 1A). Key clinical parameters of
the 290 patients are summarized in Table 1. Based on histological
features of liver biopsies (steatosis, hepatocyte ballooning,
lobular inflammation), patients were grouped according to
MASLD stages and labelled as histologically normal (HN), stea-
totic or MASH liver following the decision tree shown in Fig. 1B.
The proportion of men in this cohort increased with MASLD
severity, rising from 16% (HN) to 38% (MASH) with an average
Clinical Research Network NAFLD activity score rising from 0 to
5, respectively. Since sex is an important biological variable in
this context,18 this was considered during further analysis (see
below). Patients in the steatosis and MASH groups were slightly
older than those in the HN group, and expectedly also had higher
insulin resistance on average.

The source of variation in gene expression levels was esti-
mated by a multivariate analysis of variance (Fig. 1C). The F-ratio
(ratio of the between-group variance to the within-group vari-
ance) not only confirmed sex and group (i.e. MASLD stage) as the
main sources of variation as previously reported,18 but very
interestingly identified biopsy time (AM vs. PM) as the third most
JHEP Reports 2024
significant source of variation (Fig. 1C). Age made only a minor
contribution to signal variation. The distribution of biopsy times
(Fig. 1D) revealed a daytime window of about 8 h. Biopsies were
predominantly (>60%) taken in the morning with a first peak
around 9:30 AM and a second, lower peak around 2:30 PM, due
to the logistical schedule of surgical interventions. There was,
however, no significant difference in biopsy time distribution
between histological groups (Table 1). Since exclusion of biopsies
collected between 11am and 1pm did not modify the outcomes
of preliminary statistical analysis, the “AM“ subgroup was
defined as biopsies taken before noon (12:00), the “PM” sub-
group as biopsies taken after noon.

Gene expression profiles were thus compared between
morning (AM) vs. afternoon (PM) samples. Differentially
expressed genes were identified using DEseq2 independent of
the MASLD status but correcting for sex. Transcript counts for
1,660 genes were significantly different (Benjamini-Hochberg
adjusted p value <0.05) between AM or PM biopsies (Fig. 1E).
Among the 100 top hits were most of the CCGs (PER3, ARNTL/
BMAL1, NPAS2, NR1D1, NR1D2, PER2, CRY1, PER1), clock-related
4vol. 6 j 100948



genes (CIART, DBP, NFIL3) (Fig. 1E) as well as circadian-regulated
genes involved in lipid metabolism (PPARD, LIPG, LPIN2 .).
Because patients were fasting from midnight irrespective of
surgery time, genes implicated in hepatic gluconeogenesis
(G6PC, PCK1, SGK2 .) were, as expected, expressed at a higher
level in PM samples (Fig. 1E and Table S1). Contrary to nocturnal
rodents, genes from the negative limb of the clock displayed
lower expression in the afternoon (PER3, NR1D1, NR1D2, CIART
.), whereas genes from the positive clock limb displayed higher
expression in the afternoon (ARNTL/BMAL1, NPAS2 .) (Fig. 1E).
Globally, genes displaying AM vs. PM differential expression
were significantly enriched for the KEGG pathways “circadian
rhythm”, “PPAR signaling pathway”, carbohydrate and lipid
metabolic pathways, as well as cellular architecture and
communication, among others (Fig. 1F).

Thus, an 8-hour time frame allowed for the detection of sig-
nificant changes in time-of-day-dependent liver gene expres-
sion, with a large proportion of transcripts functionally related to
circadian rhythmicity.

Time-dependent genes vary between MASLD stages
We next examined whether time-of-day-dependent distribu-
tions of gene expression would differ between the histological
states “HN”, “steatosis” and “MASH”. In order to achieve statis-
tical power and obtain robust and exhaustive lists of time-
dependent gene expression over the available daytime win-
dow, we used three complementary statistical methods
analyzing different aspects of gene expression distribution (dif-
ferential expression, partial Spearman correlation, Kolmogorov-
Smirnov test), the results of which were agglomerated by a
Fisher test to yield a combined p value for each gene (Fig. 2A-C
and Figs S1 and S2). The three types of analyses are graphically
exemplified for the CCG ARNTL/BMAL1 (Fig. 2A-C), which served
as a positive control to validate our approach, as it is among the
most highly time-dependent genes regardless of the histological
group. First DEseq2, which relies on a negative binomial distri-
bution of gene expression, was used to identify differential gene
expression between two conditions (AM vs. PM as in Fig. 1)
(Fig. 2A). Second, partial Spearman correlation was computed
between ARNTL gene expression and time-of-day (Fig. 2B). Both
approaches integrated sex as a confounding factor. Third, the
Kolmogorov-Smirnov test was employed to determine whether
AM and PM ARNTL expression distribution followed a similar law
and thus were similar in shape (Fig. 2C). Finally, the Fisher
combined probability test or “Fisher’s method” was used as a
meta-analysis method for p value combination: individual raw p
values resulting from each statistical test were agglomerated into
a single p value per group (Fig. 2D). The detected expression
profile of ARNTL, of other CCGs (Fig. S1) and of all other tran-
scripts (Fig. S2), clearly confirmed that the available time win-
dow was sufficient for robust time-of-day analysis of gene
expression. A total of 1,427 genes with an absolute fold change
greater than 1.2 (AM vs. PM) (false discovery rate [FDR] <0.01)
was identified (Fig. 2E). The vast majority of these time-
dependent genes (TDGs) were strikingly distinct when
comparing the three patient groups. Less than 10% (132 genes)
were indeed common to all three groups (“common TDGs”)
(Fig. 2E) and notably included most CCGs (ARNTL, NR1D1/2,
NPAS2, CRY1, PER1/2/3, DBP, CIART) (Table S1). TDG repartition
outside of this core set was strongly unequal between groups,
with z50% (558) of non-shared TDGs found in HN, z35% (392)
in steatotic and less than 15% (177) in MASH livers. Along the
JHEP Reports 2024
same line, we found that AM to PM fold changes of common
TDGs were, on average, decreased in steatotic and even more in
MASH livers when compared to HN livers (Fig. 2F). These dif-
ferences are illustrated for a selection of TDGs with AM-PM
differences either decreasing (PCAT18, ARMC4, SIK1B) or
increasing in MASH (CYP4Z1, RHOBTB1, PPIAP71) (Fig. 3A,B).

Common TDGs were collectively enriched for KEGG terms like
“circadian rhythms” as expected from the content in transcripts
coding for CCGs, and for metabolic regulatory pathways like the
PPAR and FoxO pathways (Fig. 4, Fig. S3), illustrated by genes
such as S1PR1, G6PC1, PCK1, SGK2, FASN, AQP7 and PPARD. TDGs
unique to the HN group were also enriched, albeit to a lesser
extent, for pathways linked to circadian rhythm (notably
including CLOCK) as well as to fatty acid and amino acid meta-
bolism. The most highly represented pathway was “gap junc-
tions” (Figs 4A and S3), characterized by genes such as PDGFB,
MAP2K1 and transcripts encoding for tubulins TUBA1C/8, TUBB,
TUBB1/2B (Table S1), suggesting that homeostasis of epithelial
barrier integrity/permeability, which is known to be disturbed in
MASLD,33 requires an oscillating expression of these genes in
healthy conditions. Genes unique to the steatosis group
(Table S1) were mostly linked to metabolism of lipids and fatty
acids (DGKG, PLA2G4B/5, LPIN2/3, ETNK2, ETNPPL, PLPP4, FADS1/2,
CYP2C8, GDPD1, SCD) and also to metabolism of peptides and
amino acids (DNMT3B, GCLM, SDS, PSAT1, GNMT, ALDOC, GPT2,
CSAD, UPB1) (Figs 4A and S3). Lastly, TDGs specific to the MASH
group (Table S1) were highly enriched for signaling by calcium,
cAMP or neurotransmitters (ADRB2, DRD1, GRM1, NTRK1, NTSR1,
P2RX7, RYR2, CACNA1H, SSTR5, TBXA2R, FFAR2, SUCNR1), as well
as for lipolysis (ADRB2, IRS1, PNPLA2) (Figs 4A and S3).The tem-
poral pattern of gene expression in homeostatic conditions is
thus strongly affected by the disease state and indicative of
compromised cellular communication and metabolic pathways.

Inferring upstream regulatory cues or altered biological pro-
cesses may be achieved by comparing differentially expressed
gene lists to consensus gene expression patterns induced by a
given perturbagen (Fig. 4B-D). Speed2 (Signaling Pathway
Enrichment using Experimental Datasets34) analysis enables
gene lists to be probed against ranked gene signatures for 16
signaling pathways, with the aim of identifying upstream
signaling mediators. Ranked signatures suggested that cues in
homeostatic (HN) conditions could be TGFb, TNFa, oxidative
stress, TLR and estrogen (Fig. 4B). In steatosis and MASH condi-
tions, this pattern shifted towards a more limited signaling
pathway panel with similar statistical significance, which
included either TLR and VEGF (steatosis) or TNFa and TLR
(MASH) (Fig. 4C,D, respectively). Although causative links cannot
be proven, this data could reflect a loss of physiological rhythmic
function(s) in steatotic and MASH livers, which in turn gain
rhythmic functions associated to pathogenic immune and pro-
liferative stimuli and responses.

MASLD stages correlates with time-of-day changes in liver
metabolites
Our results suggested that metabolic pathways are altered in a
time-of-day-dependent manner as MASLD progresses, with an
enrichment in amino acid- and lipid metabolism-regulating
genes (Fig. S3). Therefore, an unbiased tissue metabolomic
study by liquid chromatography-mass spectrometry was per-
formed on the same 290 liver samples. Similar to the gene
expression analysis, a global approach was initially employed to
evaluate overall time-of-day dependence of tissue metabolite
5vol. 6 j 100948
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levels regardless of the MASLD status. This global analysis
identified z220 metabolites whose amounts were significantly
different in AM and PM biopsies (DEseq2 corrected for sex, FDR
<0.1) (Fig. 5A, Table S2). Visual inspection of the volcano plot
highlighted intermediates of lipid b-oxidation (carnitine de-
rivatives), amino acids (kynurenate, oxo-arginine .) as differ-
entially detected in AM vs. PM livers (Fig. 5A). It also confirmed
the more marked fasting status of “PM” patients exhibiting an
increased hepatic content in 3-hydroxybutyrate. A biological
term enrichment analysis confirmed that the majority of the
JHEP Reports 2024
identified metabolites belonged to amino acid, lipid and fatty
acid metabolic pathways (Fig. 5B).

To highlight a possible time-of-day differential representation
of metabolites between MASLD groups, we again combined the
three statistical approaches as described for gene expression
analysis (DEseq2, Spearman correlation, Kolmogorov-Smirnov
test) followed by Fisher’s agglomeration for a robust identifica-
tion of time-dependent metabolites (TDMs) (Fig. 5C). A total of
251 TDMs were identified using this method (combined FDR
<0.1), out of which only 14 (6%) were common to all three MASLD
6vol. 6 j 100948
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groups (Fig. 6A,B). These common TDMs included amino acids
such as proline and threonine, several fatty acids and the ketone
body component b-hydroxybutyrate (Figs 6B and S4A-F). KEGG
metabolic pathway enrichment analysis revealed that these
common TDMs were most significantly associated with the
metabolism of amino acids (arginine, proline, threonine) (Figs 6B
and S4A-C). In agreement with the identification of the PPAR
pathway based on gene expression patterns (Fig. 4) and the
detection of 3-hydroxybutyrate (Fig. S4D), synthesis of ketone
bodies was also identified as a relevant term (Fig. 6B).

Among the 197 stage-specific TDMs, 31% were specific to HN,
47% to steatosis and 20% to MASH (Fig. 6A and Table S2). TDMs
specific to HN livers, and thus lost at the steatosis and MASH
stages, were mainly associated with the metabolism of sphin-
golipids (Fig. 6C and Table S2) such as CDP-choline and sphin-
ganine (Fig. S4G, H). Glycerophosphoethanolamines,
glycerophosphocholines as well as derivatives of cholesterol,
amino acids and pyrimidine were also identified as time-
dependent in normal livers (Table S2 and Fig. S4I-L).

A similar enrichment analysis identified amino acid metabolic
pathways (branched-chain, sulfur-containing, arginine, taurine)
(Figs 6D and S5A,B and Table S2) as time-dependent in steatotic
livers. Visual inspection of steatosis TDMs also identified a
carnitine precursor (N6,N6,N6 trimethyl-lysine, Fig. S5C) and
derivatives (Table S2 and Fig. S5D,E) which could reflect altered
JHEP Reports 2024
fatty acid oxidation activity. Finally, MASH-specific TDMs were
enriched mainly for vitamin, glycan and glycosylphosphatidyl
inositol metabolic intermediates (Figs 6E and S5, and Table S2).

Taken together, these analyses highlight the disruption of
time-of-day-dependent bioactive phospholipid metabolism and
of amino acid biotransformation pathways during MASLD pro-
gression. Intriguingly, PPARc ligands of the linoleic acid class
(9,10-dihydroxy-9-octadecenoic acid [DiHOME]35 and 9- and 13-
hydroxyoctadecadienoic acid [HODE]36) displayed a differential
abundance in AM vs. PM steatotic and MASH livers, with esti-
mated concentrations in the 10-100 lM range which are suffi-
cient to activate PPARc (Fig. S5F,J).

Integrative analysis of time-dependent genes and metabolites
We next performed an integrative analysis of the transcriptomic
and metabolomic data at the pathway level using the KEGG
database. This analysis combined TDGs and TDMs specific to
either HN or MASH stages and common TDGs and TDMs, irre-
spective of their relative time-of-day direction of change, to
identify associated transcriptomic and metabolomic conditions
operating in normal and MASH livers (Fig. 7A). TDGs and TDMs
characterizing the HN stage were enriched for metabolic path-
ways related to lipid and amino acid metabolism, while most of
them were not detected at the MASH stage, or with a decreased
significance (arginine [Arg] and proline [Pro] metabolism,
7vol. 6 j 100948
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glycerophospholipid metabolism). Linoleic metabolism was
associated with the MASH stage (Fig. 7B,C). HN- or MASH-
enriched pathways (glycerophospholipid and linoleic pathways,
respectively) were further probed for daytime variation of
associated TDGs and TDMs. The glycerophospholipid pathway
was characterized by an increased abundance in AM livers of
three out of four detected diacylglycerol (DAG) species specif-
ically at the HN stage. Glycerophosphocholine (GPC) in-
termediates (CDP-choline, GPC) displayed stage-specific time-of-
day variations that were not correlated to the occurrence of
glycerophospholipid species (X-GPC) (Fig. 7D). Higher abun-
dance of DAG species in the morning did not correlate with HN
TDG expression changes in transcripts encoding enzymes
involved in this metabolic pathway, with the exception of the
PNPLA3 gene. PNPLA3/adiponutrin has acyltransferase activity,
increasing the formation of phosphatidic acid from lysophos-
phatidic acid, which may lead to more DAG synthesis. It might
JHEP Reports 2024
also reflect the hydrolytic activity of PNPLA3 on triacylglycerol
molecules, favoring DAG accumulation. Along the same line, we
compiled TDG and TDM data related to linoleic acid metabolism
(Fig. 7E). The increased abundance of the PPARc ligands 9- and
13-HODE in the afternoon at the MASH stage was mirrored by
the gene expression of ALOX15, a dioxygenase catalyzing the
synthesis of these two hydroxyoctadecadienoic acids which was
higher in the morning. A similar lack of correlation was observed
between 9,10-DiHOME hepatic content and the expression of the
linoleic acid-converting CYP2C8 at the steatosis stage. These re-
sults suggest that time-dependent metabolite variation in these
pathways is delayed with respect to gene regulation, and/or
controlled by post-transcriptional processes.

Of note, mapping of human transcript expression to liver cell
types using a reference single-cell RNA sequencing dataset37

suggested that the identified enzymatic pathways may follow a
cell-specific expression pattern. They appear mainly restricted,
8vol. 6 j 100948
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but not limited to, hepatocytes. As an example, ALOX15 is
detected in dendritic cells, whereas ALOX5 is also detected in
monocytes, neutrophils and basophils (Fig. S6). Therefore time-
dependent metabolite variation may occur in either identical
or distinct cell types, reflecting a functional compartmentaliza-
tion. Yet these observations confirmed the presence of time-of
day variation in hepatic gene expression and the hepatic
JHEP Reports 2024
metabolome, and identified several new oscillating metabolites
at the MASH stage (Fig. 7 and Table S2).
Discussion
Chronobiological studies require multiple replicates at 2-hour
intervals over a total period of 24 or even 48 h, within a contr
10vol. 6 j 100948
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olled environment including timed exposure to light and food.
These conditions are not achievable in human studies, precluding
the analysis of cyclic processes and particularly in internal or-
gans.38 While human circadian rhythms are appreciated by
genome-wide association studies and the phenotypic manifesta-
tion of disturbed cyclic processes such as sleep, light exposure and
eating patterns,39 their study in healthy or pathological conditions
is indeed hindered by ethical and technical constraints. Despite
controlled experimental setup with regard to sleep behavior and
food intake inprevious studies,5–14 a limited number of samples of
mostly healthy individuals were collected, thereby limiting data
interpretation due to high inter-sample variability.

Herein, we report the first-ever robust analysis of the time-of-
day-resolved human liver transcriptome and associated liver
tissue metabolites, using a 290-patient cohort. Although the
available time window of liver biopsies was only about 8 h, this
temporal window was sufficient to robustly identify TDGs and
TDMs. Time-dependency of genes and metabolites was distinct
between histologically defined MASLD groups. However, a small
proportion of genes was identified as time-dependent in all three
patient groups and included CCGs, indicating that the molecular
clock is rather robust in pathological conditions. In contrast, the
alignment of rhythmic biological processes such as intercellular
communication (gap junctions) and metabolic regulations is
disrupted upon MASLD progression. Interestingly, none of the
detected TDGs in patients with MASH belonged to the human
and mouse core set of MASH/fibrosis-associated genes,20

underlining the need to consider time as an important biolog-
ical variable. Interestingly, the number of stage-specific TDGs
(Fig. 2E) decreases from the HN to the MASH stage, and
concomitantly enriched pathways lessen (Fig. S3), hinting at a
loss of functional adaptability/(metabolic) flexibility. In high-fat
diet-fed mice, transcripts gaining rhythmicity when compared
to chow diet-fed mice are strongly enriched for glycer-
ophospholid metabolism,22 as in steatotic patients (Fig. S3),
indicating convergent mechanisms for liver adaptation to dietary
imbalance as often occurring in MASLD. At the cellular level, Ca2+

fluxes are submitted to ultradian variations and coupled to
metabolic regulations,40 and mishandled intracellular Ca2+ stores
in MASH can significantly impact parenchymal and non-
parenchymal liver cellular functions.41 A number of genes
encoding for Ca2+ channel components or involved in intracel-
lular Ca2+ signaling (PKD1L1, TRPC1 P2RX7, FFAR2, ADRB2, CAC-
NA1H, GRM1, NTRK1) exhibited differential AM vs. PM expression
specifically in MASH livers. Thus, in addition to the lipid-induced
dysfunction of endoplasmic reticulum Ca2+ transport,42 de novo
oscillation of the calcium handling process accompanies pro-
gression to MASH. CLOCK gene deletion affected metabolite os-
cillations in mouse livers25 and we detected time-of-day-
dependent differential expression of CLOCK exclusively in HN
livers, which display a more diverse metabolic activity than
MASH livers (Fig. 7B). While hinting at a possible role of (the loss
of) CLOCK, the examination of individual metabolites neverthe-
less showed little overlap between mouse CLOCK-dependent
metabolites and HN-specific metabolites. This lack of clear
concordance can be explained by species-specific mechanisms,
distinct effects of gene deletion vs. loss of time-dependent
expression and/or technical bias.

While examining the coherence betweenMASLD state-specific
liver transcriptomes and metabolomes, we observed little corre-
lation between enzyme-encoding genes and metabolite
JHEP Reports 2024
abundance. This disconnection is not unprecedented andwas also
observed in a highly standardized mouse study which minimizes
the variability typically observed in human samples.22 The narrow
time window of our study may explain in part this lack of corre-
lation as transcripts are likely to precede metabolite production,
hence affecting our statistical approach for the PM sub-cohort. It
mayalso indicate significant time-of-day-dependent translational
control43 as well as post-translational modifications regulating
enzyme activity which are not captured by our analysis.

Finally, another point of convergence between our study and
mouse studies is the differential abundance of linoleic acid de-
rivatives and PPARc ligands 9,10-DiHOME, 9-HODE and 13-HODE
in steatotic and MASH livers, respectively. The PPARc-encoding
gene NR1C3/PPARG itself did not display significant oscillatory
expression in the human liver, contrasting with high-fat diet-fed
mouse livers.22 Whether the estimated concentrations of these
compounds are indeed sufficient to differentially activate human
liver PPARc, which is mostly expressed in endothelial cells, he-
patocytes and macrophages (Fig. S6), and play a causative role in
hepatic transcriptional reprograming requires further in-depth
investigation.

On the one hand, it is remarkable that many of the biological
processes and pathways shown to be affected by MASLD in other
studies, identified on the basis of changes in gene expression or
metabolite abundance levels regardless of time, also display
altered time-dependent expression profiles in our study. On the
other hand, we identified many novel potential links between
genes with deregulated timed expression and MASLD patho-
genesis, which were not previously considered by standard an-
alyses. It is probably the combination of both types of
deregulations that underlies the deeply disturbed liver functions
once MASH is declared. Conversely, some of the changes detec-
ted when time-of-day information is absent or ignored may turn
out to be artefacts, as time-of-day as a biological variable might
not be equilibrated between groups.

Considering that the time-of-day dependence of transcript/
protein/metabolite measurements was previously neglected or
ignored in nearly all human MASLD studies, our findings reveal a
significant impact of time-of-day on many relevant pathogenic
processes. As such, differences found between sample groups in
cohort studies might reflect a previously under-appreciated bias
in sampling time between groups. Further investigation is
needed in this regard, particularly when studying human ma-
terial. In any case, a new generality should be that sampling
daytimes (or Zeitgeber times) must be carefully recorded and
included in post hoc analyses whenever possible.

This study has both strengths and limitations. This first-of-its-
kind study revealed time-of-day transcriptomic and metab-
olomic alterations in human livers as a function of the histo-
logically proven MASLD stage. It used a large cohort allowing
both the selection of biopsies to adequately encompass healthy
control, steatosis and MASH cases and robust statistical analysis.
There are however a number of limitations inherent to the
observational nature of the study. The narrow time window for
biopsy collection (8 h) precludes the assessment of a 24 h diurnal
rhythmicity and hence of the integrity of the molecular clock.
The unavoidable difference in fasting duration could also be a
confounding factor.

Our bulk RNA sequencing approach provided full coverage of
the transcriptome, but precluded the identification of liver cell
types expressing TDGs. We thus calculated a cell specificity index
12vol. 6 j 100948



of TDGs in human resident parenchymal (PC, hepatocytes) and
non-parenchymal (NPC) CD45- cells. The tau (s) index, calculated
by a robust and simple method to assess cell type specificity, was
used as a metric.44 Using a reference single-cell RNA sequencing
dataset for human livers collected at unknown times,37 s could
be calculated for 584 transcripts out of the 1,481 identified TDGs
(Table S1). Using this metric, only 51 genes displayed a cell type-
restricted expression pattern in CD45- cells (s >0.85), which was
not limited to hepatocytes (Fig. S7). The remaining 533
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transcripts including CCGs could be mapped to two or more cell
types. Of note, 15 out of the 51 cell-restricted transcripts were
mostly expressed in dendritic or Kupffer cells (Fig. S6).

Taken together, our bulk RNA sequencing approach detected a
higher number of TDGs than previous efforts, including many
pathways never previously reported as being time-dependent.
This resource will serve as an important basis for further in-
vestigations that also consider the cell type specificity in time-of-
day gene expression variation in human MASLD.
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