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ABSTRACT: We report a production level implementation of
pair atomic resolution of the identity (PARI) based second-order
Moller—Plesset perturbation theory (MP2) in the Slater type
orbital (STO) based Amsterdam Density Functional (ADF) code.
As demonstrated by systematic benchmarks, dimerization and
isomerization energies obtained with our code using STO basis sets
of triple-{-quality show mean absolute deviations from Gaussian
type orbital, canonical, basis set limit extrapolated, global density
fitting (DF)-MP2 results of less than 1 kcal/mol. Furthermore, we
introduce a quadratic scaling atomic orbital based spin-opposite-

scaled (SOS)-MP2 approach with a very small prefactor. Due to a worst-case scaling of O(N%), our implementation is very fast
already for small systems and shows an exceptionally early crossover to canonical SOS-PARI-MP2. We report computational wall
time results for linear as well as for realistic three-dimensional molecules and show that triple-{ quality calculations on molecules of
several hundreds of atoms are only a matter of a few hours on a single compute node, the bottleneck of the computations being the

SCF rather than the post-SCF energy correction.

1. INTRODUCTION

Spurred by the interest in large biomolecules and inorganic
systems, the last decades have witnessed a tremendous effort in
making accurate electronic structure methods routinely
applicable to molecules and solids of ever increasing size.
Due to its still unrivaled price/performance-ratio,’ Kohn—
Sham (KS)* density functional theory (DFT)>* has estab-
lished itself as the workhorse of quantum chemistry for
medium and large systems.””'' Unfortunately, due to an
insufficient description of electron correlation, state of the art
semilocal'” or hybrid"” approximations to the exact exchange—
correlation functional often fail to accurately account for
London dispersion-type effects'*™"® and noncovalent inter-
actions.'” Both are of paramount importance for a thorough
understanding of the properties and reactivity of biochemical
systems and organometallic compounds.”®”’

Wave function based ab initio methods, however, offer a
systematic route toward the complete and explicit description
of all dynamical correlation effects. As known only too well,
this does not come for free: Expressed in terms of canonical
orbitals, their steep computational scaling (N° (N is a measure
for the system size’’) for second-order Moller—Plesset
perturbation theory (MP2),”> N° for CC with singles and
doubles excitations (CCSD),>**° N’ for CCSD with a
perturbative treatment of triple excitations (CCSD(T)),”’
respectively), their tremendous memory requirements in
practical implementations,28 and their slow convergence to
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the basis set-limit”” complicate the application of these
methods to large molecular systems.

The commonly realized concept of the locality of dynamical
electron correlation has led to a family of low-scaling wave
function based methods approaching the accuracy of their
canonical counterparts. The field came to life when Pulay,
Saebe, and co-workers employed localized molecular orbitals
(MO)**™° and restricted excitations to local domains in
configuration interaction (CI)*”*® and MPn*”~*" computa-
tions. Successfully transferred to the realms of highly accurate
CC theory by Werner and co-workers,”* a plethora of low-
scaling CC*™* and MP2°'™ codes has been developed.
With the size of the excitation domains becoming a liming
factor, Neese and co-workers”***™* and others®™® revived
the decades ago developed’*™™ pair natural orbital (PNO)****
approach to further compress the virtual subspaces. At the
same time, relying on a physical partition of the system of
interest instead of the orbital space, several flavors of fragment
based approaches have been brought forward. Most notably
incremental method,**™*® the cluster-in-
the divide-and-conquer,””™”® and the divide-
9719% approaches.

these are the
89-91
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While having greatly extended the range of computationally
tractable molecules,’®*®*'%” Jocal CC methods can still not
compete with the wall clock times of KS-DFT computations
on the hybrid level. This is not necessarily the case for
MP2.°¢>%7 Although less accurate than CCSD and higher CC
methods, MP2 has been demonstrated to accurately describe
properties such as dispersion interactions and hydrogen
binding,"*'**'*> NMR chemical shifts,"' and polarizabil-
ities''""'* as well as molecular interaction energies''> and
conformational energies,''* especially in its spin-scaled
variants.""*~"'® Furthermore, MP2 energies from KS orbitals
have been used extensively to incorporate explicit electron
correlation effects into the calculation of KS-DFT ener-
gies.'"”7'*> These so-called double hybrid (DH) density
functionals often yield clear improvements over hybrid
functionals,'****” making low-cost MP2 implementations
extremely desirable.

While a simple expression for the MP2 amplitudes exists
using canonical orbitals, the MP2 amplitude equations can
only be solved iteratively in most fragments, as well as localized
orbital based formalisms (the integral-direct formulation of
Nagy et al.®””' should be mentioned as a prominent
exception). Retaining the simplicity of the canonical formalism,
exploiting sparsity in the electron-repulsion integral (ERI)
tensor ~° instead is yet another alley toward the order-N
computation of MP2 energies. Formally quartically scaling, it is
well-known that the number of nonzero elements in the ERI
tensor only scales linearly with system size. The resolution of
the identity (RI) or density fitting approximation (DF)'**~'*
is the most popular technique to overcome the scaling of the
fourth-order ERI tensor by decomposing it into third-order
and second-order tensors and has been z}pIplied successfully to
reduce the prefactor of canonical MP2,**0%106/141=149

Reformulating the energy denominator of canonical MP2 as
an integral expression'*"” > (often referred to as a Laplace
transform (LT)), the MP2 energy can be evaluated in the
atomic orbital (AO) basis. In this representation, approaches
to reduce the dimensionality of the ERI tensor can be applied
more efficiently. Using integral prescreening techniques,>*~"*°
reduced—scalin§ AO-MP2 codes could be realized by Ayala and
Scuseria,>”'*® Ochsenfeld and co-workers,so’lsg_162 and
others.'> However, employing large sets of spatially extended
AOs, the prefactor of these methods is increased significantly
due to an increase of linear dependencies in the pseudo density
matrices (PDM)."°*'%* Cholesky decomposition (CD) based
techniques'®™'% can be used to obtain a set of localized
occupied (virtual) orbitals with cardinality equal to the rank of
the occupied (virtual) PDMs. Employing this approach in
conjunction with screening techniques and DF, very fast AO-
MP2 implementations have been reported by the Ochsenfeld
group.' 771> Also the tensor hypercontraction (THC)
approach to compress the ERI tensor, brought forward by
Martinez and co-workers,'”*"”® has been used successfully to
obtain fast and reliable low-scaling MP2 implementa-
tions, 74179181

In this work, we explore the use of the pair atomic resolution
of the identity (PARI)"**'**~'*7 in the evaluation of MP2
energies. In this approach, the cubic scaling of global DF is
reduced automatically by expanding products of AO pairs in
terms of fit functions centered on the same atoms as the pair of
target functions only. In this way, the complexity of the ERI
tensor only scales quadratically with system size and linearly
when insignificant pairs of basis functions are neglected.

Already developed as early as in the 1970s by Baerends et
al,'® its potential to accelerate the evaluation of the exact
exchange has only been demonstrated recently.'®»'*>~'%
Although some concerns regarding its accuracy and numerical
stability have been brought forward,'*>'*” the applicability of
the PARI approximation in the framework of MP2 and the
random phase approximation (RPA) has been reported by
Thrig et al."®°

The purpose of this paper is 2-fold. First, we present a
production level implementation of PARI based MP2 (PARI-
MP2) using STOs. By means of systematic benchmarks on
various test sets, we demonstrate that our PARI-MP2
implementation in conjunction with triple-{ quality basis
set'” reproduces the basis set limit of canonical MP2 within
less than 1 kcal/mol on average. Second, we show how the
PARI approach can be used to considerably speed up the
evaluation of MP2 energies in a memory efficient way. As we
think that these are the most realistic targets for local
correlation methods, we explicitly focused on designing an
algorithm which is very fast and reliable for small as well as
medium, compact systems of up to several hundreds of atoms:
We herein report a quadratic scaling AO based spin-opposite-
scaled (SOS)-PARI-MP2 implementation of order-N* without
any distance effects considered. Due to a small prefactor, the
computation of the SOS-MP2 energy is much faster than the
SCEF itself. Although we herein refer often to STO basis sets,
we emphasize that our approach is completely general and can
be implemented with basis sets of arbitrary type.

This paper is organized as follows: In section 2, we introduce
the PARI approach to evaluate the exact exchange and describe
our AO based SOS-PARI-MP2 implementation (SOS-AO-
PARI-MP2 in the following). In section 3, we report our
benchmark results and demonstrate the excellent scaling
properties of our algorithm for selected medium and large
molecules. Finally, in section 4 we summarize and conclude
this work.

The herein frequently appearing indices are summarized as
follows:

e A, B, C, D: indices denoting atomic centers, where A = 1,
., N, and N, denotes the number of atoms in the
system.

® 4, U, k, A: AO basis indices, where y = 1, .., Ni, where
N2 denotes the number of basis functions Nj, centered
on atom A.

e @, f, 7, 0: auxiliary basis indices, where a = 1, ..., N2 and
N2 is the number of auxiliary fit functions N centered on
atom A.

e The following convention is always applied: y, @ € A, v,
P € B,k v €C, 4 0 € D, which means that the indices
u,o always imply that the corresponding functions are
centered on atom A.

o ji (@) denote global AO basis indices (global auxiliary
basis indices), ranging from 1 to Ny, ; (Ng,y), where Ny,
(Njay) are the number of AOs (auxiliary fit functions) of
the whole system.

e 7: Numerical quadrature point indices, ranging from 1 to
N,, where N,, denotes the number of quadrature
points.

2. THEORY

2.1. Pair Atomic Resolution of the Identity for the
Exact Exchange. PARI (or local pair fitting) is a quite
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extreme variant of the more general local domain fitting
approach. The general idea is to overcome the cubic scaling of
global, Coulomb metric based DF using fit functions in the
neighborhood of the target product only. When pair-atomic
densities are chosen as local fitting domains, the PARI method
is obtained. This approach is clearly more approximate than
global DF but can be physically motivated as atom-centered
basis functions generate strongly localized contributions to the
total density; i.e., the AO pair density products y,(r) y,(r) =
Py are local in nature. Here, we only recapitulate shortly the
concepts which are necessary to understand our MP2
implementation. We are planning to elaborate on our PARI-
HF implementation in a forthcoming publication.

Each atomic pair density with AOs centered on a certain pair
of atoms (A,B) is expanded in a local set of fit functions {f,(r),

oY,
2

~
P =
a

_ _PARI

Cl/ﬂafa-i-z Cﬂ”ﬁfﬁ = p,ub
b (1)
where (in accordance with the convention introduced in

section 1) the fit functions are defined to be centered on the
second atom for each pair product. Similarly to the global “RI-

V” approach'**'*® we define a residual vector
_ PARI
Igﬂ’/) - |p/w - p;w ) (2)

and minimize the self-repulsion of the residual, (g,le,,).
Essentially, this procedure minimizes the error in the electric
field generated by the two charge distributions'”' and
consequently minimizes the error in the representation of
the ERIs."*® It leads to a set of linear equations for the
determination of the fit coefficients (where the inverse of the
matrix V can always be calculated in a numerically stable way
using a singular value decomposition (SVD)),

Cy;m = Z O;w/}[V_l]a/}
s ()

with the electrostatic interaction between the product of AOs
and fit functions,

Oup = [ e, 2,(6) ) “

and the electrostatic interaction (Coulomb overlap) between
fit functions,

Vop = /[Rs dr v, (r) f, (r) )

where the electrostatic potential v due to the function f, has
been introduced as

w(r) = [ ar'f, ) ©

Using (1) and (S), the elements of the ERI tensor (in
Mulliken notation) might be expressed as

[r — r'l

(uvik2) = (p,\0,)

PARI

~ (0,07

uv

= z Cﬂuﬂ‘//}6CK/15+Z Cbﬂa‘faéclc/l&

p6 ab
+ Z CMVﬂVIJ’rCAK}'-FZ CvuaVarcflKr
By ay (7)
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With the set of eqs 1—7, we have essentially expressed the
fourth-order ERI tensor in terms of a set of third-order and
second-order tensors of quadratically growing cardinality,
where the number of elements of each tensor is small and
independent of the system size. Compared to global DF, the
complexity of computing the exact exchange regarding both
CPU time and memory requirements is greatly reduced: First,
the number of equations that have to be solved in the fittin

procedure is equal to the number of negligible AO products,"*
which always scales linearly with system size. Second, the
memory requirements are brought down to quadratic and
further to linear when insignificant pair densities are not fitted.
Finally, the exact exchange matrix is evaluated in N°*: With eq
7, the elements of the exchange matrix K;; might be expressed

ik
as
Kar = K VA CeN, (8)
K;uc ~ Z Pvﬂ Z Cﬂu/)'V/iﬁcldﬁ + Z B vA z Cyﬂa‘/ac?CKié
vA pé v ad
+ z F,; 2 CunpVpyCany + Z B, Z CupaVeaySany
vA Br vA ay
1 11 TINT 111
=K, + K, + (K", + K, )

where P,, denotes elements of the density matrix. Cubic
scaling is reached as it is possible to arrange all contractions in
a way that never more than three atomic centers are involved.
Taking into account distance effects, the scaling (with regard
to both timing and memory) can be further brought down to
linear as we will elaborate in section 2.5.

2.2. Numerical Considerations and Fit Set Quality.
Compression of the ERI tensor via auxiliary basis set
expansions usually introduces fitting errors € in the ERIs
(see (2)), where ¢ = 0 when the auxiliary basis approaches
completeness. The rate of convergence of the auxiliary basis set
expansion obviously depends strongly on the chosen fitting
metric as well as on the nature of the fitting procedure: Robust
ﬁtting,138

B0 = (0, 18,) + (2,105 = (o g™

(10)
shows an error € falling off bilinearly with the fitting error.
However, due to its much lower computational complexity, we
rely on nonrobust fitting instead,

(Run) ~ (0 g™ (11)
resulting in errors linear in the fitting error.'®” Consequently,
due to the small number of auxiliary fit functions used to
expand the pair densities (when compared to global fitting
approaches), one would expect rather large errors in the
computed integrals. However, the PARI-ERIs are usually very
accurate approximations to the ERIs obtained without DF."®’
The exchange energy contribution (and consequently the HF/
Hybrid-KS-DFT energy) from nonrobust fitting is unbounded
from below,"®’ making the SCF variationally unstable
especially for large basis sets; calculations using quadruple-¢-
quality basis sets are often unreliable. The procedure becomes
numericall}r more stable when rather large auxiliary fit sets are
used."**'® In ADF, they are obtained as even-tempered
series,'”>~'”* where the quality is controlled by the number of
fit functions placed within a given range from the atomic

https://dx.doi.org/10.1021/acs.jctc.9b00854
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Table 1. Number of Auxiliary Fit Functions (Angular Part Expressed in Real Spherical Harmonics) for Representative Types of
Atoms for Different Fit Set Qualities on the All-Electron Level

no. of auxiliary functions (composition)

quality H
62 (6s5p4d3f)
132 (10s7p6dsfag)

Normal
VeryGood

117 (10s9pSd4f3g)
209 (21s12p11d7f6g)

C Au

779 (28528p23d19f16g12h11i)
858 (31522p20d19f16g16h16i)

center. Table 1 shows the number of fit functions for
representative atom types for the fit sets employed in this work.

2.3. DF-MP2 and AO-MP2 Equations. The canonical
MP2 correlation energy EMa” for a closed shell molecule can be
expressed as

occ,virt

-2

ij,ab

(ialjb)[2(ialjb) — (iblja)]
ea + €b - €i - €]v (12)

MPZ
corr -

where (ialjb) denotes an ERI in Mulliken notation, i, j (a, b)
denote occupied (virtual) MO indices and ¢; (¢,) denote
diagonal elements of the occupied (virtual) blocks of the Fock
matrix in the MO basis. Due to the transformation of the ERIs
from the AO to the MO basis, the computational effort for the
evaluation of this expression scales as N°. Using global DF, the
prefactor of the computation of EMP? can be lowered
considerably. The four-center integrals in the AO basis are
then expressed as

ADIRZ) = Z CaipVisCris )

with the third-order tensor Cjzz and second-order tensor V.
With any local fitting approach, the MP2 energy can be
evaluated in exactly the same way. Within the PARI approach
one might simply obtain Cz; and V3 from

C

aof = Coga = =1+ 5AB)
VB,DEN,
Vizs = Vs (14)
In fact, employing PARI the prefactor of canonical DF-MP2
could be reduced further using sparse matrix algebra (the rank
of the third-order tensor only scales linearly). In this work, we
have not explored this possibility as far greater speed-up can be
achieved working in the AO basis.

Applying the transformation

[So]
1 — f dt e_(€a+€b_€i_€))t
€ t€ —€—¢ 0

N.
4

~ Z wTe_(€u+€b_€1_€])ar
T

(15)
suggested by Hiser and Alml6f'*°~">* results in
Naog
Cr\;[rriz — Z w,e (2) — _Z w,(Ze}(z) _ 61(<2))
4 (16)
with
(2) Z (,uV|K/1)( )(I///L|K'/1)
HVKA (17)
and
e ==Y (urlkl) (ZaIk7)
HUKA (18)
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The sum over 7 and the weight @, in (16)—(18) result from
the evaluation of (15) by numerical quadrature. The optimal
values for the set of quadrature points {@,},_; , and weights

3Ny
{Cl),[ }7= 1,“.,Nq

minimization of the error distribution function

can simply be obtained by least-squares

N

q
. - i 1
7.5 (@), (@) = D, we ™% — =,
X

T

x=€ +€ —€—§ (19)
195,196

however, the minimax approximation is a computation-

(@)

ally more efficient approach. (ulk1)"™” is obtained by

transformation of the AO-ERI tensor according to

ol = Y POQ Dok 1)PEQ

AR (20)
employing the PDMs P and (l(’), given as
@ occ
7 —_— iT
Pﬂﬂ/ = Z Ca€ Ciary
@ virt
T —€,t T
Q= Z Coa€ "o
a (21)

The quality of MP2 energies can generally be improved by
empirically scaling individual contributions to it, giving rise to
the popular spin-component-scaled (SCS)-'"* 197199 and spin-
opposite-scaled-(SOS) MP2''*!17299201 appr0aches, where
SCS-MP2 is often more accurate than SOS-MP2. However, for
SOS-MP2 the second term on the right-hand side of (16) is
completely neglected and the SOS-MP2 energy is obtained
from

ESOS—MPZ —

corr

e
—Cs0s Z e
T

where usually cgog = 1.3 is chosen.''® This part of the MP2
energy can be evaluated with considerably lower computa-
tional cost than the same-spin part as it factorizes in a more
favorable way and tensor contraction techniques can be used
more efficiently.'**'*>'*" Given the fact that DHs based on
SOS-MP2 usually come very close to the accuracies of SCS-
MP2 based ones,"*”*°* the construction of fast SOS-MP2
methods alone seems to be highly desirable. Thus, in our
efforts to develop a low-cost MP2 implementation, we have
@r

(22)

focused on the evaluation of ¢ only. The resulting algorithm

and its implementation will be the subject of the next sectlons

2.4. SOS-AO-PARI-MP2 Equations. In the AO basis, N’
can be obtained from summing up the contributions from all
pairs of atoms. Such a decomposition has already been
suggested by Ayala and Scuseria nearly two decades ago;™’

https://dx.doi.org/10.1021/acs.jctc.9b00854
J. Chem. Theory Comput. 2020, 16, 875—891


pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00854?ref=pdf

Journal of Chemical Theory and Computation

here it arises quite naturally from the PARI approach. In
particular, the Coulomb term can be obtained from

() _ )"
g = Ze] ’

AB

(Z)AB

where e i

e§2)AB _ e§2)BA

denotes the contribution to e{®) from atom pair A,
T p

B). Inserting (7) into (17) and dropping the index 7 in the
following, we obtain with the help of (20)

)

uukAp'v'k' A’

AB
g = > CupV psCirs
po

14/4 KK Qw Q—M

+ Z v/m aﬁCK/16+Z ,ul//}VﬁyCAKy + 2 b/m ayczlky

X Z Cﬂ/u’/;”Vﬁ’(S’CK’/l’(S/ + z cy,ﬂ,a,V sCe st
B a's

Z cﬂ,u,ﬂ,Vﬂ,y,c” ,+ Z cy,ﬂ,a, Ky

#r (23)

Equation 23 factorizes (unlike the corresponding expressions
for eK) ) according to

T

(Z)AB Z ana a'p 2 ﬂqﬁli

(24)
and q,, (with q we will denote the set of all tensors g**') is

given as
Z [PW’QM”/CWUI +
o'V’

+ ) [P,

'V’

PWrQWCDW]cD/”/a

u'v' Cy ua + P B2 Cu ﬂa]cuﬂ’a/

(25)

Equation 24 can be computed in N3, and the same is true for
(25): We first evaluate the local PDMs (21) for each pair of
atoms. Then we half-transform the fit coefficients according to

= z E/ucl/ﬂa)
v
z Q V' u/m

Both transformations only involve three atomic centers,
namely, A, B, and B’. Furthermore, f and g are two-center
quantities and the memory required to store f and g (the set of
all tensors f/g for all pairs of atoms (A, A")) scales quadratically
with the number of atoms. Subsequently, the first term in (25)
is evaluated according to

z Ey’ﬂ’acu'/x'a”

Moo = Z eu'/mQﬂﬂ’Cu’ﬂ’a’ =

l/ﬂ(l

(26)

' W
a’ Z v /mPﬂI‘ C’/I"Ul' - Zﬁ/ﬂ/a C'/'ﬂ'a'
' W (27)

and the second term as
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8o = 2 eﬂ’ﬂ“fuy/a”

'
ha/“ = Zf;m’a’eﬂ’ﬂa

' (28)

resulting in
= + gy + g+ ()

qaa’ = Myy Mo’ gaa’ ao (29)

In fact, the chosen sequence of tensor contractions is closely
related to a recent SOS-MP2 implementation by the
Ochsenfeld group, belng even more apparent if one
considers a monatomic system only for which the local pair
fitting approach is equivalent to global DF. In all contraction
steps, at most three atomic centers are involved, implying
cubically scaling computation of the SOS-AO-MP2-PARI
energy without any further consideration of distance effects.
Furthermore, the three-center quantities f and ¢ are evaluated
on the fly, so that the memory requirements of the algorithm
scale quadratically. As will be discussed in the next section,
taking into account distance effects scaling of computation
time and memory can be reduced further. We note that PARI
also allows for quartic scaling computation of the exchange-like
term in Epne. At this point we want to emphasize the strong
similarity of our algorithm to the THC-approach by Martinez
and co-workers:'"#'7>18929% Both methods exploit the locality
in the atomic orbital basis set directly by decomposition of the
ERI tensor into factor matrices that grow initially as N% and as
N as soon as a given system size is reached. Consequently, for
the computation of EMF? , the same formal scaling is reached:
N’ for ¢ 2 and N* for )

2.5. Distance Effects As the basis functions y,, y, are
localized around their atomic centers, their overlap will
decrease with increasing distance between the atoms on
which they are centered. Consequently, the value of the
overlap integral O,,; (eq 4) will approach zero with growing
distance between the centers A and B. To exploit this behavior,
we define a threshold 8.,z € R" (we will refer to this
approximation as distant centers approximation for basis
functions (DCAB) in the following) and consider a basis
function as negligible for Irl > d, if

b, (01 < Spcas VIl > d, (30)

where d,, is some basis function dependent effective radius to
be determined at runtime. The procedure is illustrated in

Figure 1.
Consequently, we only compute the fit coefficient c,,, when
lRA - RBl < dy + dy (31)

In practice, we reorder the basis functions from the most
diffuse (most slowly decaying) to the tightest one for each
atom A, so that the dimension of the fit function tensor ¢
approaches 0 for

Ry, — Ryl = o
If
R, — Ryl >d, +d,

(32)

Vv (33)

all tensor contractions involving the fit coefficient tensor
corresponding to the pair (A, B) will be skipped. In the same
way, we are also skipping tensor contractions involving the
tensor VP if the range of the Coulomb potential due to A does
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Figure 1. Schematic illustration of the dependence of d, on 3,5 for
two different types of functions. As a p-type function (blue) generally
decays slower then an s-type one (red), its effective radius is larger.

not overlap with any basis function on B (distant centers
approximation for Coulomb potential (DCAC)). As the
Coulomb potential decays only as Irl™!, this approach will
only be effective for very large molecules. However, the
Coulomb potential due to a pair density can be approximated
using the well-known multipole expansion of the Coulomb
operator.””> Thus, the interaction between two pair densities
Puw Prs is evaluated via multipole expansion (recall that the fit
functions are always assumed to be centered on the second
atom of the pair) if

IRB - RDI > d/j + d5 v ﬂ, 1) (34)

Similarly to the procedure for the basis functions, the actual
values d,, are controlled via a threshold 8, € R. Considering
multipole moments of up to ., = 3, the dimension of the
tensor V2P reduces to 16 X 16, for realistic fit sets being
considerably lower than N2 X N? (compare with Table 1). The
multipole approximation (MA) as well as the DCAB and
DCAF approximation are used to speed up the computation of
the post-SCF energy correction and the SCF itself. Exclusively
for the MP2 part, we exploit sparsity of the density matrix in a
way that we avoid contractions with half-transformed fit
function tensors if

Vx

+
max lx e €% Inmr ER, x=f, ¢

vpa
vua

I < Syur

(35)

We will refer to this approximation as neglect of half-transformed
fit coefficient tensors (NHF) approximation. Clearly, as we do
not use any localization techniques for the density matrix in
our current implementation, this approximation can only be
effective for spatially very extended systems. However, the
density matrix and the half-transformed fit coefficient tensors
show a high degree of sparsity, so that sparse matrix algebra
techniques could efliciently be exploited here without a
conceptual change of our implementation.

In practice, the efficiency of the possible screening options
depends on thresholds, molecular geometry, and the
diffuseness of the AO basis. Due to the rather large prefactor
of N#N,?, the scaling is dominated by steps 3a/3b, whereas the
computational time for step 1 is always negligible. The
asymptotic scaling of wall clock time and memory of our
algorithm under consideration of screening effects is presented
in Table 2.

A very important question regarding the feasibility of a local
MP2 computation is its memory requirement. The half-
transformed fit coefficient tensors f and g can be kept in
memory for rather large molecules consisting of several
hundreds of atoms. Although the memory requirements for
these quantities is formally linearly scaling, they can hamper
the application of our algorithm to very large systems.
However, storage of f and g for each pair of atoms can be
avoided if these quantities are recalculated prior to the
contraction (28) (i.e., if step 2a/2b is repeated before 4a/4b)
and with slight changes of the loop structure, storage of q can
also be avoided. As the number of non-negligible fit
coefficients and fit functions grows linearly, our algorithm is
then order-N in memory. We also note that the practical
memory bottleneck in our implementation is the storage of the
untransformed fit coefficient tensors for compact systems. This
can be attributed to our large auxiliary fit sets and we are
planning further optimizations in this direction.

2.6. Loop Structure and Parallelization. Our algorithm
is implemented by setting up two nested loops running over all
pairs of atoms, which are closed whenever a quantity needs to
be stored for each pair. Whenever we sum over a third center, a
third loop over atomic shells is invoked. To be memory
efficient, the loops need to be organized in a way that storage
of three-index quantities is always avoided. The concept is
demonstrated for the K™ contribution to the exact exchange
matrix in Algorithm 1 (see eq 9).

Table 2. Outline of the Basic SOS-AO-PARI-MP2 Contraction Steps with Asymptotic Scaling (Big-O Notation Implied) and
Memory Requirements under Consideration of Distanc Effects”

step asymptotic scaling distance effects memory
calculate P and Q N® Nb,allz

2a eb';m = Pb'bcwa

2b fv';mt = Qb’bcu/m N2 DCAB NnZNbZNf (NaszNf)

3a Moy = eb';lanx'cb'y'a'

3b oo = fouaPuwCowa N DCAB, NHF on the fly

4a 8aa’ = ey’;laf;m'a'

4b hya :f;m’a’eu’yu N? on the fly

5 Jaa' = Mag + Mg + 8aa’ + (h);lrrz’ NnZNfZ (NaNfz)
Zop = QuaVrp N? MA, DCAF

A
7 e(Z) = Zaa’(ZT)a’a NZ

“For each step the employed distance effects are given. The Einstein sum convention is used, which here always involves summation over the
respective atomic centers. The memory requirements given in brackets refer to the memory saving variant of our algorithm.

880

https://dx.doi.org/10.1021/acs.jctc.9b00854
J. Chem. Theory Comput. 2020, 16, 875—891


https://pubs.acs.org/doi/10.1021/acs.jctc.9b00854?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00854?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00854?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b00854?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b00854?ref=pdf

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Algorithm 1 Loop structure for the evaluation of the K'/!-part of the exact exchange
matrix including distance effects. Indices 6, ¢ refer to the MA.
KT =0
for A € all, D € all do
for B € all do
if overlap negligible V(v, 1) then
skip pair (A,B)
else
(PO)ya += 5, Pt
(PC)A,LQ += 22, Pt s
end if
end for
for C € all do
if overlap negligible V(\, k) or (A, C) not Coulomb interacting then
skip pair (A,C)
end if
if MA then
(CV) 0 = 220 eanVio
else
(CV) 0 = Zd esVia
end if
Kl += 370 (PC)3,0 (CV) g
end for
end for

v, jt non-negligible
v, pt non-negligible

Q=caorf

One might easily identify the first step in this algorithm as
quadratically scaling, whereas the second one scales linearly.
Although contractions involving V' can rarely be skipped in
practice, the multipole approximation considerably reduces the
prefactor of this step. As the number of fit functions is usually
larger than the number of basis functions, the second step
determines the overall timing for the evaluation of K,
explaining why we observe a subquadratic scaling behavior in
practice (see section 3.3). The SOS-MP2 correlation energy
can be evaluated in a similar way. The algorithm for steps 2a/
2b is outlined in Algorithm 2. The aforementioned quadratic
asymptotic scaling of this step can be verified easily.

Algorithm 2
Schematic implementation of step 2a/b from table 2.
for B’ € all, A € all do

evpa =0
Fopa =0
for B € all do
if overlap negligible V(p, v) then
skip pair (A,B)
else
Cpat = >, PovCoya v, 1 € non-negligible
Sfopat =3, Quvtipa v, pt € non-negligible
end if
end for
Save €yua; furua for pair B/, A
end for

The loop structure of the presented algorithms suggests a
parallelization strategy in which the tensor contractions
associated with a certain pair of atoms (A, D) are distributed
over all processes. Each tensor contraction is then performed
on a single core. To avoid overhead for the MP2 part, we
employ a two-level parallelization strategy where all numerical
quadrature points are distributed over all available nodes and
second the outermost two nested loops over atomic shells are
distributed over all cores on this node. Thus, the number of
nodes that can be used efficiently is limited by the number of
numerical quadrature points N,, (usually less than 10).
However, we do not expect this to be a relevant issue for
the most probable targets of our algorithm.

3. BENCHMARK CALCULATIONS AND DISCUSSION

3.1. Computational Details. We performed PARI-MP2
and SOS-AO-PARI-MP2 calculations with a locally modified
development version of ADE."*”?°***” We employed standard
STO basis sets'”’ and auxiliary fit sets for the evaluation of the
exact exchange as described in section 2.2. If not indicated
otherwise, all computations have been performed on the all-
electron level.
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To rule out the possibility of numerical issues throughout
our benchmark calculations, the numerical integration czluality,
as well as the quality of the DF for the Coulomb part,”*® has
been chosen to be better than default (Good quality, see refs
208 and 209) if not stated otherwise. For the SCF, the mixed
ADIIS+SDIIS method”'” has been employed.

All dimerization energies have been computed using the
counterpoise (CP) method of Boys and Bernardi”'" to correct
the basis set superposition error (BSSE). For all systems
involving transition metals, relativistic effects have been treated
with the zero-order regular approximation (ZORA)*'*~*'* in
conjunction with ZORA-optimized basis sets and the
minimum of neutral atomic potential approximation (MAPA).

If not stated otherwise, we used N,q = 6 for all SOS-AO-
PARI-MP2 calculations, where the numerical quadrature has
been performed with a code’'® developed by Helmich-
Paris."”>'?° For the evaluation of the exact exchange as well
as for all SOS-AO-PARI-MP2 calculations, the default
screening thresholds are

Qpp = 1 x 107",
ya = 3 X 1072,

—3
Spcap = 1 X 1073,

Spcap = 1 X 107° (36)

All calculations presented in this work were performed on a
2.2 GHz intel Xeon (ES-2650 v4) with 24 cores and 128 GB
RAM. All binaries have been created using the GNU Fortran
compiler.

3.2. Accuracy and Convergence with Basis Set Size.
In this section we want to assess (a) the error introduced by
the PARI-approach compared to that introduced by canonical
DF-MP2, (b) the numbers of auxiliary fit functions required
for accurate results as well as for a numerically stable SCF, and
(c) the quality of our standard, non-correlation consistent
STO basis sets. To this end, we performed benchmark
calculations on different popular test sets: These are the s66
test set of weak intermolecular interactions”'” and test sets of
relative conformational energies from the GMTKN30 data-
base.”'® To assess the accuracy of our implementation in
conjunction with an approximate treatment of relativistic
effects, we calculated the HEAVY28 test sets of noncovalent
interactions between heavy element hydrides.”'” We also
report results for the L7**" test set of weak intermolecular
interactions with dimers of between roughly 50—120 atoms to
asses the performance of our SOS-AO-PARI-MP2 implemen-
tation for large molecules. The entirety of all these test sets
comprises of 187 data points.

We calculated the s66 test set of weak intermolecular
interactions (London dispersion, hydrogen binding, 7—x
interactions) using TZP (triple-{ with single shell of
polarization functions) and TZ2P (triple-¢ with two shells of
polarization functions) basis sets in conjunction with the
Normal auxiliary fit set (see Table 1 for the number of auxiliary
fit functions for selected atoms). Figure 2 shows deviations
from our results to DF-MP2/CBS reference values”'” for all
individual data points as well as mean absolute deviations
(MAD) for each basis set. It is well-known that extrapolation
to the basis set limit is only possible when correlation
consistent basis sets of systematically increasing size are
employed.”” As a consequence, comparison of PARI-MP2/
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Figure 2. Deviations from basis set extrapolated DF-MP2/CBS
reference values®'” (in kcal/mol) for different basis sets for each data
point in the s66>'7 test set of weak intermolecular interactions. The
aug-cc-pVDZ and cc-pVTZ reference values®'” have been computed
with DF-MP2, whereas the TZP and TZ2P values have been obtained
with our PARI-MP2 code, using the Normal fit set for both HF and
MP2. MADs are given with respect to DF-MP2/CBS.

TZP(TZ2P) calculations to DF-MP2/CBS results cannot
reveal if deviations can be attributed to basis set incomplete-
ness or to the local pair fitting approach. To obtain a clearer
idea about the reasons for the observed deviations from the
DF-MP2/CBS results, we also compare our computed energies
to DF-MP2/aug-cc-pVDZ and DF-MP2/cc-pVIZ reference
values.”"” Both basis sets are comparable in size with TZP and
TZ2P, with cc-pVTZ being the largest basis set with three
shells of polarization functions, and TZP the smallest one, and
the only one with only one shell of polarization functions.
Figure 2 clearly demonstrates that calculations on PARI-MP2/
TZ2P/Normal-level yield results comparable to those of DF-
MP2/aug-cc-pVDZ and DF-MP2/cc-pVTZ, with a MAD
slightly better than DF-MP2/cc-pVTZ and slightly worse
than DF-MP2/aug-cc-pVDZ. Also the sign-corrected max-
imum errors are with 2.8 kcal/mol for TZP and 2.3 kcal/mol
for TZ2P in line with the two Gaussian type orbital (GTO)
basis sets for which Figure 2 also shows maximum errors
considerably larger than 2 kcal/mol. Although the computed
energies are on average very close to reproducing the DEF-
MP2/CBS references within a chemical accuracy of 1 kcal/
mol, the PARI-MP2/TZP results are generally inferior to their
TZ2P counterparts, which can safely be attributed to the
smaller number of polarization functions.

From the good agreement of our PARI-MP2 results with
DE-MP2 for basis sets of comparable size, we conclude that the
PARI-approximation does not seem to considerably degrade
the accuracy of DF-MP2 dimerization energies. Furthermore,
our findings suggest that our non-correlation consistent STO-
type basis sets can compete with larger correlation consistent
GTO-type basis sets with more shells of polarization functions.

A factor, not having been discussed so far, is the size of the
auxiliary fit sets. As already pointed out, a lager fit set should
help to ensure variational stability of the HF energy in the
SCF. To this end, we computed the relative conformational
energies in the GNTKM30 database (the ACONF, SCONF,
PCONF, CyCONF, and ISO34 subsets) with Normal and
VeryGood fit set for both HF and PARI-MP2 and also
recalculated the s66 dimerization energies with the larger
auxiliary fit set. Somewhat surprisingly, we found that the
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larger auxiliary fit set sometimes led to deteriorated PARI-MP2
energies, especially for the S66 test set, whereas the HF
energies remained essentially unchanged (as expected). This
observation is directly opposed to the fact that larger fit sets
should generally improve any DF approximation.

We then carried out calculations where we retained the
VeryGood fit set for the SCF but used the Normal fit set for the
evaluation of the MP2 energy correction; i.e., we recalculated
the ERIs after convergence of the SCF using a smaller fit set.
The results are summarized in Figure 3.

3.0
0.98 0.99 TZP/Normal
0.83 0.83 EEm TZP/VeryGood//Normal 25
mmm TZ2P/Normal
HEm TZ2P/VeryGood//[Normal 20
1.5

All test sets

1 kcal/mol

r 1.0

0.5

MAD from DF-MP2/CBS [kcal/mol]

0.0

ACONF  CYCONF

1ISO34  SCONF
Individual test set

PCONF 566

Figure 3. PARI-MP2 results (in kcal/mol) for selected test sets of
isomerization energies from the GNTKM30 benchmark set’'® as well
as for the s66 test set. The MADs for each data set with respect to
DF-MP2/CBS, as well as the MADs for the entirety of all test sets (in
total 152 data points) are given. Key: basis set/HF auxiliary fit set//
MP2 auxiliary fit set.

Clearly, for almost all test sets, the computed energies are
nearly independent of the auxiliary fit set employed in the SCF.
This is reflected in the MADs over all test sets, where literally
no difference can be observed between Normal and VeryGood.
Only for the SCONF test set, the VeryGood fit set is slightly
inferior to Normal.

As recalculation of the ERIs after the SCF seems to cure the
problems in the computation of the PARI-MP2 energy for the
VeryGood fit set, one must conclude that neither the MOs nor
the orbital energies resulting from the use of this fit set are
problematic for the computation of ENnz, but rather the fitting
errors in the ERIs themselves. Due to the fact that for some
test sets the VeryGood fit set yielded (rather small) improve-
ments over the Normal one, we do not suspect a fundamental
issue with the PARI approximation here but rather a numerical
one. Clearly, the large number of auxiliary fit functions for the
expansion of each pair of basis functions leads to linear
dependencies in the fit set that might cause numerical
problems due to overfitting. We emphasize that the VeryGood
fit set is usually not inferior to the Normal one. However, the
latter one seems to be numerically more stable for PARI-MP2
calculations and also completely sufficient for the purpose of
the present study. Optimizing fit sets specifically for correlation
methods seems to be highly promising for even more accurate
PARI-MP?2 energies but is out of the scope of this work.

The clearly improved results over the TZP basis set when
TZ2P is used for the s66 test set can generally not be observed
for the test sets of conformers. For the ACONF (alkane
conformers) and PCONF (tripeptide conformers) test sets, the
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Table 3. Maximum Sign Corrected Errors for the S66 Test Set and the Test Sets of Relative Conformational Energies for the
Herein Investigated Combinations of Basis Sets and Fit Sets (All Energies in kcal/mol)*

test set/fit set ACONF CYCONEF
TZP/VeryGood//Normal 0.68 0.50
TZ2P/VeryGood//Normal 0.93 0.28
TZP/Normal 0.67 0.53
TZ2P/Normal 0.92 0.25

“First column: basis set/HF auxiliary fit set (//MP2 auxiliary fit set).

1SO34 SCONF PCONF S66
3.86 3.20 3.46 2.83
3.62 3.09 3.79 2.13
3.87 3.20 3.45 2.87
3.56 3.08 3.76 2.25

TZP energies are even slightly better than the TZ2P ones. This
can only be explained with error cancellation: It is well-known
that MP2 often tends to overestimate correlation energies,221
so that a more incomplete basis set might yield better results
for certain systems. Only for CYCONF (cysteine conformers)
and 1SO34 (isomerization energies of organic molecules), a
clear improvement over TZP can be observed when TZ2P is
used instead. As the overall MADs over all 152 data points
reveal, all considered combinations of basis and fit sets
reproduce the DF-MP2/CBS reference within chemical
accuracy on average, where the TZ2P basis set is in many
(but not all) cases superior to TZP.

As shown in Table 3, we find only moderate maximum
errors for the CYCONF and ACONF test sets with 0.5 and 0.7
kcal/mol, respectively for the TZP basis set and 0.3 and 0.9
kcal/mol, respectively, for the TZ2P one. For the SCONF and
PCONEF test sets we find larger maximum errors of over three
kcal/mol irrespective of basis set and fit set and nearly 4 kcal/
mol for the ISO34 test set with the TZP basis set, reflecting the
slow basis set convergence of MP2 correlation energies.

As our findings show that the more expensive VeryGood fit
set yields no improvement over the Normal one, we strongly
recommend using the latter one. Considering error cancella-
tion between e}z) and ¢) as highly unlikely, our findings also
apply to all spin-scaled variants of MP2.

For heavy elements we found excellent agreements to the
CCSD(T)/CBS reference values for the HEAVY28 test set.”'’
Already on the TZP/Normal/ZORA-level, our results show a
MAD of only 0.30 kcal/mol. This is actually better than DF-
MP2/CBS for which a MAD of 0.41 kcal/mol has been
reported when small effective core potentials of the Stuttgart/
Cologne group”*”*** for elements with Z > 36 are used.

After having assessed the performance of our MO based
PARI-MP2 algorithm, we finally explore the accuracy of our
SOS-AO-PARI-MP2 implementation for large molecules. To
this end, we computed the dimerization energies from the L7
test set with varying thresholds controlling the distance effects
outlined in section 2.5. As we are not aware of SOS-MP2
reference energies for this test set, we compare our results to
the available QCISD(T)/CBS values.”'” We emphasize that
the only approximation in SOS-AO-PARI-MP2 that is not
already present in SOS-PARI-MP2 is the numerical quadrature
(15). For an account on its convergence with respect to N,y we
refer to the literature.'®* We only note that N, = 6 is usually
sufficient to achieve millihartree accuracy. However, a broader
range of orbital energies and a smaller HOMO—-LUMO gap
require more quadrature points and N,, = 8 might be more
appropriate. To rule out the possibility of inaccuracies due to a
too small N, we have decided to use N,, = 8 for the
numerical computation of (15).

First, we tested the performance of our method for different
thresholds, controlling the distance effects described in section
2.5. We do not consider variations of dyyr here and also found
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it useful to group the remaining thresholds in tiers. For each of
these tiers, as described in Table 4, we have calculated the L7

Table 4. Definition of Threshold Tiers

Basic Normal Good VeryGood
Ipcan 2x 1073 1x1073 3x 107t 1x10™*
Ipcac 2 x 1072 1x 1072 1x1073 1x10™*
I 3x 1072 3x 107 3x 1073 3x 107t

test set with the TZP basis set and the Normal auxiliary fit set.
Our results are shown in Figure 4, where the upper part shows

5 System

E c2cpd c3a c3gc cbh cgcg fo]e]e] phe
8 =

=

2 -0.1 S

= . TZP/Normal
& -0.2 e TZP/Good

5 TZP/VeryGood
g -03

8 ® MADs[kcal/mol]

E=

[a)

6.58
6
4.62 4.74 4.76 4.76 4.16
4
i I

Basic  Normal  Good Very- TZ2P DF-MP2/CBS
Good Normal

Figure 4. Upper part: Deviations from results obtained with the Basic
tier of thresholds for the individual reaction energies. Lower panel:
MADs with respect to the QCISD/CBS reference®!’ for SOS-AO-
PARI-MP2 calculations, as well as for DE-MP2/ QBS. All energies are
in kcal/mol. The naming of the dimers follows Rezac et al?!

the deviations of computed reaction energies with respect to
the Basic tier. Going up to the Normal tier (painted area), the
largest change in energies occurs for c3gc with roughly 0.3
kcal/mol. Proceeding from Normal to Good, the energy does
only change marginally for all dimers, justifying the Normal tier
as our default. Essentially no difference can be observed
between the last two tiers.

As shown in the lower half of Figure 4, using smaller
thresholds leads to an artificial improvement of the
dimerization energies: MP2 often exaggerates correlation
effects as its double excitations do not couple.””' Lowering
the cutoff thresholds, however, corresponds to the neglect of
correlation from distant pairs. Thus, the underestimation of
dispersion interactions due to the neglect of long-range
correlation effects partly compensates for the overestimation
of the correlation energy within MP2, explaining the trend in
the observed reaction energies.

We finally note that the TZ2P basis set gives improvements
over TZP, although the MAD is still higher than 4 kcal/mol.
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However, this is significantly better than full DF-MP2/CBS
calculations for which a MAD of 6.58 kcal/mol has been
reported in the literature.”"”

To conclude this section, we think that the presented data
clearly demonstrates (i) that our default fit set is completely
sufficient to compute accurate PARI-MP2 energies in a
numerically stable way, (ii) that the deviation from the DF-
MP2/CBS reference values can (at least to a great extent) be
attributed to the basis set error, (iii) that our PARI-MP2
implementation used with non-correlation consistent basis sets
of triple-{ quality yields errors comparable to the ones from
DF-MP2 with correlation consistent basis sets of the same size,
and finally, (iv) that our implementation also yields accurate
and reliable energies for large systems when rather conservative
default screening thresholds are used.

3.3. Performance and Timing. We analyzed the perform-
ance of our SOS-AO-PARI-MP2 implementation on a series of
linear alkane chains as an optimum-case for local correlation
methods. Our results are summarized in Table 5.

Table 5. CPU Times and Scaling Behavior with Respect to
the Systems Size Relative to the Previous Calculation (in
Parentheses) in Terms of the Polynomial Coefficient x in N*
for SOS-AO-PARI-MP2 Calculations on Linear Alkane
Systems Using TZP and TZ2P, Respectively, and Normal Fit
Set Quality (All Calculations on a Single Core, All Timings
in min)

timing
MP2 time
n no. of [% of full
(C,H,,15) bf total MP2 alone calc]
TZP
20 632 23.5 39 16.6
40 1252 768 (170) 175 (2.16) 228
80 2492 2553 (179) 753 (2.11) 29.5
160 4972 9073 (1.83) 3236  (2.10) 35.6
TZ2P
20 1084 41.7 8.4 20.1
40 2144 1394 (174) 374 (2.15) 2638
80 4264 4730 (176) 1560  (2.06) 33.0
160° 8504 18112  (1.94) 7523  (227) 415

“Calculated with the more memory efficient variant of the algorithm.

In all computations, the evaluation of the MP2 correlation
energy only accounts for between 20 and 42% of the total wall
clock time. Thus, the overall scaling is dominated by the HF
part, reaching subquadratic scaling already for the shortest
chains considered here, whereas for the computation of the
post-SCF energy correction quadratic scaling is observed for
both basis sets. This can be attributed to the rather
conservatively chosen screening thresholds due to which
NHE screening becomes practically irrelevant, even for large
and spatially extended systems. It should also be emphasized
that the scaling is not strongly affected by the number of
diffuse functions in the basis set. For the TZ2P basis set
containing a larger number of diffuse polarization functions,
the scaling is even slightly better than for the TZP basis set.
Due to the huge memory requirements to store f and g, we
have been forced to switch to the slightly slower, but more
memory efficient variant of our algorithm for the computation
of C 400Hz2,, explaining the comparatively high increase in wall
clock time for this step.
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The excellent scaling behavior of our method for relatively
small systems is also reflected in the early crossover point with
respect to canonical SOS-PARI-MP2; for C,oH,,, the SOS-
AO-PARI-MP?2 energy correction alone is computed in 45 s on
the TZP-level of theory, while the respective canonical
calculation already takes 93 s.

On the example of C,Hy, in the TZP basis, we give an
estimate on the efficiency of our parallelization strategy:
Comparing wall clock times obtained with 1, 8, and 24 cores
on the same node, we find parallel speedups of 6.4 and 15.8,
respectively. Parallel timing results are also presented for stacks
of backbone-free DNA in Table 6.

Table 6. CPU Times and Scaling Behavior with Respect to
the Systems Size Relative to the Previous Calculation (in
Parentheses) in Terms of the Polynomial Coefficient x in N*
for SOS-AO-PARI-MP2 Calculations on Backbone-Free
DNA Stacks on the TZP/Normal Level of Theory (All
Calculations on a Single Node with 24 Cores, All Timings in
min)

no. of no. of MP2 time [% of
units bf total MP2 alone full calc]

1 848 4.1 0.7 17.1

2 1696 20,1 (2.29) 43 (2.62) 21.2

4 3392 797 (1.99) 209  (2.28) 26.2

6 5088 1851  (2.08) 521 (2.25) 28.1

Here, each unit consists of an adenine—guanine and a
cytosine—thymine base pair, separated by 3.4 A. Although
these systems are still spatially extended, they are considerably
more compact as linear alkanes. For the largest of these
systems considered here with 354 atoms and 5088 basis
functions, the SOS-AO-PARI-MP2 energy can be evaluated in
approximately 3 h on a single compute node, with the
computation of the SOS-MP2 energy only accounting for 28%
of the total elapsed time. Although the overall scaling is slightly
worse than for the linear alkane chains, one still discovers the
onset of subquadratic scaling for the whole calculation and
convergence to quadratic scaling for the SOS-MP2 calculation
only.

The efficiency of our implementation is illustrated on
different types of realistic, compact systems (see Figure S) in
Table 7, where we give detailed timings for the most expensive
steps of the SOS-AO-PARI-MP2 calculations from Table 2.

The most expensive part for each calculation is the SCF. The
wall clock time for the calculation of the SOS-AO-PARI-MP2
energy correction is clearly dominated by step 3a/3b, whereas
the cubic scaling evaluation of the PDMs (step 1) is negligible.
Step 3a/3b is also the part of our algorithm that would
probably profit most from the exploitation of sparsity in the
half-transformed fit coefficient tensors. For the very compact
systems (Sg),o (compund e in Figure 5) and Au,;S(SCH,) s
(f) in Figure S), the half-transformation of the fit coefficients
(step 2a/2b) also consumes a considerable share of the total
wall clock time as distance effects do not come into play here.
As the majority of the individual tensor contractions scale as
NNt in the SCF and in the MP2 part, the large number of
basis functions and auxiliary fit functions for the gold atoms
(see Table 1) makes the computation for this system
particularly slow. The efficiency of step 6 is more or less
independent from the molecular geometry, best seen on the
example of the water cluster, indicating that the multipole
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Figure S. Realistic 3D systems employed in this work. Upper panel
from left to right: 4b, 7b from the S30L testset of Grimme and co-
workers,”** and a (H,0),,, water cluster'*® from the Ochsenfeld
benchmark set. Lower panel from left to right: A (Sg),, sulfur
cluster,*® a DNA segment from adenine—thymine base pairs > (both
from the Ochsenfeld benchmark set), and a substituted cluster of 21
Au atoms from Jones et al.***®

expansion does not lead to large computational savings for
these compact systems.

In the end, we comment on the memory requirements of
our code. The computation of the SOS-AO-PARI-MP2 energy
for CygoHs,, in TZ2P quality with roughly 8500 AOs could
only been achieved by using our more memory efficient
implementation, even when 128 GB memory is used and
calculations on even larger systems are impossible due to the
memory requirements of the SCF. Although we do not think
that molecules of this size will be the main target of our
implementation, this is currently a severe drawback of our
algorithm and we are planning further optimization in this
direction.

4. CONCLUSION

We have demonstrated on test sets of collectively 187 data
points that dimerization energies and conformational energies
from PARI-MP2 deviate from their DF-MP2/CBS counter-
parts by less than 1 kcal/mol on average, when non-correlation
consistent STO-type basis sets of triple-{ quality and our
default auxiliary fit sets are used. We have also demonstrated
the accuracy of this approach for large systems of more than

100 atoms and shown that our implementation reproduces
CCSD(T)/CBS reference values better than DF-MP2/CBS for
the HEAVY28 test set of noncovalent interaction energies
between heavy element hydrides when relativistic effects are
approximated on the ZORA/MAPA level.

Comparison to DE-MP2 calculations on the S66 test set
shows that the error of our calculations is of the same order of
magnitude as the basis set incompleteness error of GTO-type
basis sets of comparable size. The maximum deviation
observed is below 4 kcal/mol for the TZP basis set with
only a single polarization function per atom and considerably
lower than 1 kcal/mol for some of the investigated test sets.
We expect significant improvement of these values by
employing fit sets optimized for correlation methods as it is
common practice for DE-MP2 with GTOs."*>**°7**® To the
best of our knowledge, such fit sets have not been designed for
STO based PARI yet and research in this direction is currently
being pursued by our group.

Additionally, we have presented a quadratic scaling SOS-
AO-PARI-MP2 algorithm. The overall evaluation of the SOS-
MP2 energy scales quadratically and the post-SCF energy
correction is computed considerably faster than the SCF itself
for all system considered herein. Among others, we have
demonstrated the efficiency of our approach on a very compact
cluster of 160 sulfur atoms with 4480 basis functions, and a
cluster of 142 water molecules with 4544 basis functions: Each
all-electron calculation could be performed in approximately 3
h on a single compute node. Another attractive feature of our
implementation is its early crossover to canonical SOS-PARI-
MP2 in terms of wall clock time: For a linear alkane chain with
only 10 carbon atoms, our AO based algorithm is already twice
as fast as our MO based one. As a consequence, our algorithm
is fast for medium and large compact systems of up to several
hundreds of atoms, the bottleneck, with regard to both
memory and wall clock time, being the SCF rather than the
MP2 calculation. As we are mostly avoiding disk I/O, our
approach is particularly appealing if the calculations are run on
a machine with relatively slow disks, such as the nowadays
ubiquitous computer clusters with external storage devices.

At the moment, the post-SCF energy correction does not
scale as favorably as the SCF itself. Using sparse matrix algebra,
we could possibly turn our current implementation into a truly
linear scaling one. However, one might legitimately argue that
this would not bring much additional value. Even if one could
speed up the MP2 calculation alone by a factor of 2, the overall

Table 7. Detailed Wall Clock Times (in min) for SOS-AO-PARI-MP2 Calculations on Selected Realistic 3D Systems on the
TZP/Normal Level of Theory on a Single Node with 24 Cores”

4b 7b (H,0)14 DNA, (Ss)20 Auzls(SCHs)lsb'c

no. of atoms 158 153 426 260 160 97

no. of bf 2768 2248 4544 3638 4480 2414

Timings

total 76.2 40.3 186.0 104.3 177.9 269.2

total MP2 15.6 9.4 56.7 28.7 75.5 106.7

step 14 0.06 0.04 0.21 0.10 0.19 0.05

step 2a/2b 2.4 1.4 6.63 3.6 11.8 19.62

step 3a/3b 10.0 5.7 36.0 16.4 49.6 75.6

step 6 2.2 1.6 18.0 6.8 6.2 6.3

“The first two structures are taken from the S30L test set,”>* structures 3—S are from the test set of Ochsenfeld and co-workers'*®'*? and the

structure of the last molecule has been taken from Jones et al.?*® PRelativistic effects have been treated on the ZORA/MAPA level of theory. “Due

to the small HOMO—LUMO gap, N,,; = 8 was chosen. dNumbering of steps refers to Table 2.
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wall clock time for the computation of the SOS-MP2 energy
for the sulfur cluster (where the MP2 is particularly slow
compared to the SCF) would only be reduced by 20%. In
other words, major efficiency gains can only be achieved when
the bottleneck of the computation, the computation of the
exact exchange in the SCF, is optimized.

Although larger computational savings could possibly be
achieved for systems much larger than the ones presented
herein, we do not think that even then these large systems
would be a probable target of our algorithm. Furthermore,
application of our algorithm to these systems is hampered by
its rather unfavorable memory requirements (if one wants to
avoid disk 1I/O) and further development of the code will
rather focus on improvements in this direction. We are also
planning to extend our implementation to periodic systems
and to implement gradients as well.

Although we think that accurate and fast MP2 correlation
energies are highly desirable in themselves, they are arguably
most relevant in the framework of double-hybrid density
functional approximations. At the moment, we are working on
a comprehensive benchmark of state-of-the-art SOS based
double hybrids for small as well as for large molecules. As
shown only recently,"*” this class of double hybrids is in almost
all cases not inferior to SCS-MP2 based ones, especially if the
recently developed D4 extension”””*" to the D3 dispersion
correction”'**"*%? is used.
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