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Abstract: The deep convolutional neural network has led the trend of vision-based road detection,
however, obtaining a full road area despite the occlusion from monocular vision remains
challenging due to the dynamic scenes in autonomous driving. Inferring the occluded road
area requires a comprehensive understanding of the geometry and the semantics of the visible
scene. To this end, we create a small but effective dataset based on the KITTI dataset named
KITTI-OFRS (KITTI-occlusion-free road segmentation) dataset and propose a lightweight and
efficient, fully convolutional neural network called OFRSNet (occlusion-free road segmentation
network) that learns to predict occluded portions of the road in the semantic domain by looking
around foreground objects and visible road layout. In particular, the global context module is used to
build up the down-sampling and joint context up-sampling block in our network, which promotes
the performance of the network. Moreover, a spatially-weighted cross-entropy loss is designed to
significantly increases the accuracy of this task. Extensive experiments on different datasets verify
the effectiveness of the proposed approach, and comparisons with current excellent methods show
that the proposed method outperforms the baseline models by obtaining a better trade-off between
accuracy and runtime, which makes our approach is able to be applied to autonomous vehicles
in real-time.

Keywords: autonomous vehicles; scene understanding; occlusion reasoning; road detection

1. Introduction

Reliable perception of the surrounding environment plays a crucial role in autonomous driving
vehicles, in which robust road detection is one of the key tasks. Many types of road detection methods
have been proposed in the literature based on monocular camera, stereo vision, or LiDAR (Light
Detector and Ranging) sensors. With the rapid progress in deep learning techniques, significant
achievements in segmentation techniques have significantly promoted road detection in monocular
images [1–5]. Generally, these algorithms label each and every pixel in the image with one of the object
classes by color and textual features. However, the road is often occluded by dynamic traffic participants
as well as static transport infrastructures when measured with on-board cameras, which makes it
hard to directly obtain a full road area. When performing decision-making in extremely challenging
scenarios, such as dynamic urban scenes, a comprehensive understanding of the environment needs to
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carefully tackle the occlusion problem. As to the road detection task, road segmentation of the visible
area is not sufficient for path planning and decision-making. It is necessary to get the whole structure
and layout of the local road with an occlusion reasoning process in complex driving scenarios where
clutter and occlusion occur with high frequency.

Inspired by the fact that human beings are capable of completing the road structure in their
minds by understanding the on-road objects and the visible road area, we believe that a powerful
convolution network could learn to infer the occluded road area as human beings do. Intuitively, to
the occlusion reasoning task, the color and texture features are of relatively low importance, what
matters is the semantic and spatial features of the elements in the environment. As far as we know,
semantic segmentation [6–8] is one of the most complete forms of visual scene understanding, where
the goal is to label each pixel with the corresponding semantic label (e.g., tree, pedestrian, car, etc.). So,
instead of an RGB image, we performed the occlusion reasoning road segmentation using semantic
representation as input, which could be obtained by popular deep learning methods in real applications
or human-annotated ground truth in the training phase. As shown in Figure 1, traditional road
segmentation takes RGB image as input and labels road only in the visible area. As a comparison, our
proposed occlusion-free road segmentation (OFRS) intends to leverage the semantic representation to
infer the occluded road area in the driving scene. Note that the semantic input in the figure is just a
visualization of the semantic representation, the actual input is the one-hot type of semantic label.
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In this paper, we aim to infer the occluded road area utilizing the semantic features of visible
scenes and name this new task as occlusion-free road segmentation. First, a suitable dataset is created
based on the popular KITTI dataset, which is referred to as the KITTI-OFRS dataset in the following.
Second, an end-to-end lightweight and efficient fully convolutional neural networks for the new task
is proposed to learn the ability of occlusion reasoning. Moreover, a spatially-dependent weight is
applied to the cross-entropy loss to increase the performance of our network. We evaluate our model
on different datasets and compare it with some other excellent algorithms which pursue the trade-off

between accuracy and runtime in the semantic segmentation task.
The main contributions of this paper are as follows:

• We analyze the occlusion problem in road detection and propose the novel task of occlusion-free
road segmentation in the semantic domain, which infers the occluded road area using semantic
features of the dynamic scenes.
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• To complete this task, we create a small but efficient dataset based on the popular KITTI
dataset named the KITTI-OFRS dataset, design a lightweight and efficient encoder–decoder fully
convolution network referred to as OFRSNet and optimize the cross-entropy loss for the task by
adding a spatially-dependent weight that could significantly increase the accuracy.

• We elaborately design the architecture of OFRSNet to obtain a good trade-off between accuracy
and runtime. The down-sampling block and joint context up-sampling block in the network are
designed to effectively capture the contextual features that are essential for the occlusion reasoning
process and increase the generalization ability of the model.

The remainder of this paper is organized as follows: First, the related works in road detection are
briefly introduced in Section 2. Section 3 introduces the methodology in detail, and Section 4 shows
the experimental results. Finally, we draw conclusions in Section 5.

2. Related Works

Road detection in autonomous driving has benefited from the development of the deep
convolutional neural networks in recent years. Generally, the road is represented by its boundaries [9,10]
or regions [1,2,11]. Moreover, road lane [12–14] and drivable area [15,16] detection also attract much
attention from researchers, which concern the ego lane and the obstacle-free region of the road,
respectively. The learning-based methods usually outperform the model-based methods due to the
developed segmentation techniques. The model-based methods identify the road structure and road
areas by shape [17,18] or appearance models [19]. The learning-based methods [3,6,7,16,20,21] classify
the pixels in images as road and non-road, or road boundaries and non-road boundaries.

However, the presence of foreground objects makes it hard to obtain full road despite the
occlusion. To infer the road boundaries despite the occlusion, Suleymanov et al. [22] presented a
convolutional neural network that contained intra-layer convolutions and produced outputs in a
hybrid discrete-continuous form. Becattini et al. [23] proposed a GAN-based (Generative Adversarial
Network) semantic segmentation inpainting model to remove all dynamic objects from the scene
and focus on understanding its static components (such as streets, sidewalks, and buildings) to get a
comprehension of the static road scene. In contrast to the above solutions, we conduct occlusion-free
road segmentation to infer the occluded road area as a pixel-wise classification task.

Even though the deep-learning methods have achieved remarkable performance in the pixel-wise
classification task, to achieve the best trade-off between accuracy and efficiency is still a challenging
problem. Vijay et al. [20] presented a novel and practical deep fully convolutional neural network
architecture for semantic pixel-wise segmentation termed SegNet, which follows encoder–decoder
architecture that is designed to be efficient both in memory and computational time in inference
phase. Adam et al. [24] proposed a fast and compact encoder–decoder architecture named ENet
that significantly has fewer parameters, and provides similar or better accuracy to SegNet. Romera
et al. [25] proposed a novel layer design that leverages skip connections and convolutions with 1D
kernels, which highly reduces the compute cost and increase the accuracy. Inspired by these networks,
we follow the encoder–decoder architecture and enhance the down-sampling and up-sampling blocks
with contextual extraction operations [26–28], which are proved to be helpful for segmentation-related
tasks. This contextual information is even more essential and effective for our occlusion reasoning task,
which needs a comprehensive understanding of the driving scenes.

3. Occlusion-Free Road Segmentation

3.1. Task Definition

The occlusion-free road segmentation task is defined as a pixel-level classification as the traditional
road segmentation but with occlusion reasoning process to obtain a full representation of the road
area. The input is fed to the model as a one-hot encoded tensor of the semantic segmentation labels
or predicted semantic segmentation probabilities’ tensor I ∈ [0, 1]W×H×C, where W is the width of the
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image, H its height, and C the number of classes. In the same way, we trained the network to output
a new tensor O ∈ [0, 1]W×H×2 with the same width and height but containing only two categories
belonging to road and non-road.

3.2. Network Architecture

The proposed model is illustrated in Table 1 and visualized in Figure 2, and was designed to get
the best possible trade-off between accuracy and runtime. We followed the current trend of using
convolutions with residual connections [29] as the core elements of our architecture, to leverage their
success in classification and segmentation problems. Inspired by SegNet and ENet, an encoder–decoder
architecture was adopted for the whole network architecture. The residual bottleneck blocks of different
types were used as the basic blocks in the encoder and decoder. Dilated convolution was applied in the
blocks to enlarge the respective field of the encoder. What is more, the context module was combined
with regular convolution to obtain a global understanding of the environment, which is really essential
to infer the occluded road area. In the decoder, we proposed a joint context up-sampling block to
leverage the features of different resolutions to obtain richer and global information.
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Table 1. Our network architecture in detail. Size refers to output feature maps size for an input size of
384 × 1248.

Stage Block Type Size

Encoder

Context Down-sampling 192 × 624 × 16
Context Down-sampling 96 × 312 × 32

Factorized blocks 96 × 312 × 32
Context Down-sampling 48 × 156 × 64

Dilated blocks 48 × 156 × 64
Context down-sampling 24 × 78 × 128

Dilated blocks 24 × 78 × 128

Decoder

Joint Context Up-sampling 48 × 156 × 64
Bottleneck Blocks 48 × 156 × 64

Joint Context Up-sampling 96 × 312 × 32
Bottleneck Blocks 96 × 312 × 32

Joint Context Up-sampling 192 × 624 × 16
Bottleneck Blocks 192 × 624 × 16

Deconv 384 × 1248 × 2

Context Convolution Block Recent works have shown that contextual information is helpful for
models to predict high-quality segmentation results. Modules which could enlarge the receptive field,
such as ASPP [21], DenseASPP [30], and CRFasRNN [31], have been proposed in the past years. Most
of these works explore context information in the decoder phase and ignore the surrounding context
when encoding the features in the early stage. On the other hand, the attention mechanism has been
widely used for increasing model capability. Inspired by the non-local block [27] and SE block [26],
we proposed the context convolution, as shown in Figure 3. A context branch from [28] was added,
bypassing the main branch of the convolution operation. As can be seen in Equation (1), the context
branch first adopted a 1 × 1 convolution Wk and softmax function to obtain the attention weights, and
then performed the attention pooling to obtain the global context features; then the global context
features were transformed via a 1 × 1 convolution Wυ and was added to the features of the main
convolution branch.

zi = xi + Wυ

∑Np

j=1

exp
(
Wkx j

)
∑Np

m=1 exp(Wkxm)
x j , (1)

where Wk and Wυ denote linear transformation matrices.
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Down-Sampling Block In our work, the down-sampling block performed down-sampling by
using a 3 × 3 convolution with stride 2 in the main branch of a context convolution block, as stated
above. The context branch extracted the global context information to obtain a global understanding
of features. Down-sampling lets the deeper layers gather more context (to improve classification) and
helps to reduce computation. And we used two down-sampling blocks at the start of the network to
reduce the feature size and make the network works efficiently for large input.

Joint Context Up-Sampling Block In the decoder, we proposed a joint context up-sampling block,
which takes two feature maps from different stages in the encoder, as shown in Figure 4. The feature
map from the earlier stage with bigger resolution and fewer channels carry sufficient details in spatial,
and the feature map from the later stage with a smaller resolution and more channels contain the
necessary facts in context. The joint context up-sampling block combines these two feature maps gently
and efficiently using a context convolution block and bilinear up-sampling. The two branches of the
two feature maps were concatenated along the channels, and a context convolution block was applied
to the concatenated feature map. As shown in Figure 2, the joint context up-sampling blocks follow a
sequential architecture, the current block utilized the former results and the corresponding decoder
features, which made the up-sampling operation more effective.
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Residual Bottleneck Blocks Between the down-sampling and up-sampling blocks, some residual
blocks were inserted to perform the encoding and decoding. In the early stage of the encoder, we
applied factorized residual blocks to extract dense features. As shown in Figure 5b, a 3 × 3 convolution
was replaced by a 3 × 1 convolution and a 1 × 3 convolution in the residual branch to reduce parameters
and computation. In the later stage of the encoder, we stacked dilated convolution blocks with different
rates to obtain a larger receptive field and obtain more contextual information. The dilated convolution
block applied a dilated convolution on the 3 × 3 convolution in the residual branch compared to the
regular residual block, as shown in Figure 5c. The dilate rates in the stacked dilated residual blocks
were 1, 2, 5, and 9, which were carefully chosen to avoid the gridding problem when inappropriate
dilation rate is used. One dilated residual block consisted of two groups of stacked dilated residual
blocks in our network. In the decoder phase, two continuous regular residual blocks were inserted
between the joint context up-sampling blocks.
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3.3. Loss Function

As to the classification tasks, the cross-entropy loss has proved very effective. However, in our
task, the road edge area needs more attention paid to it when performing the inference process, and the
faraway road in the image took fewer pixels. We proposed a spatially-dependent weight to handle this
problem to enhance the loss on the road edge region and faraway road area. The road edge region (ER)
was defined as a set of the pixels around the road edge pixels E, which was obtained from the ground
truth label image using the Canny algorithm [32], as shown in Figure 6. The Manhattan distance was
adopted to calculate the distance between other pixels and edge pixels, and Tw ∈ R was used to control
the region size. Then the weight is defined as Equation (3), which takes into account the road edge
region and the faraway distance factor. The loss function with spatial weight is shown in Equation (4),
which is referred to as CE-SW, and the traditional cross-entropy loss is referred to as CE in our paper.
The experiment showed that the CE-SW could significantly improve the performance of the models on
the occlusion-free road segmentation task.

ER = {v (i′, j′)
∣∣∣ ∣∣∣i− i′

∣∣∣+ ∣∣∣j− j′
∣∣∣ < Tw, e(i, j) ∈ E, v(i′, j′) ∈ Img

}
, (2)

w(i, j) =

 1, i f p(i, j) ∈ ER
k∗|i−i0 |+| j− j0|

k∗h+w/2 ∗ 2 + 2, i f p(i, j) ∈ ER
, (3)

where w and h are the width and height of the image, k=h/w is the rate to balance the height and width
of the image, i and j are the pixel index, i0 and j0 the bottom center pixel index.

Loss(y, p) =
∑H

i

∑W

j
−w(i, j)

[
yi,j log pi, j +

(
1− yi, j) log

(
1− pi, j

))]
, (4)

where y is the ground truth, p is the predict logits, i and j are the pixel index in the image.
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4. Experiments

In this section, we provide qualitative and quantitative results for experiments carried out to
test the performance of our approach. There are numerous approaches in semantic segmentation; we
mainly compare our method to those pursuing a good tradeoff between high quality and computation,
such as SegNet, ENet, and ERFNet. Moreover, to compare [22], we verified the model of inferring
occluded road boundaries by replacing the decoder part of the model with a new one that is suitable
for our task. The verified model is referred to as ORBNet in our work, which retained the encoder
and employed a decoder similar to that in the DeepLabv3+ algorithm [6]. We present quantitative
results based on evaluations with our manually annotated dataset based on the KITTI dataset named
KITTI-OFRS dataset. The presented results appear all to be based on the manual dataset annotations
except the qualitative results on Cityscapes dataset using predicted semantics as input. We first trained
the models on the proposed KITTI-OFRS dataset, and the experimental results demonstrate that the
proposed approach spends less time on inference and obtains better performance. Then, we compared
the performance of those models when trained with traditional cross-entropy loss function and the
proposed spatially-weighted cross-entropy loss function. Moreover, we tested the generalization
performance of the models on the Cityscapes dataset. Finally, the performance of the models based
on automatically inferred semantics was visualized to show that our network works well in the
real system.

4.1. Datasets

There were no available datasets for the proposed occlusion-free road segmentation task, so we built
our own datasets. We built a real-world dataset named KITTI-OFRS based on the public KITTI semantic
segmentation benchmark, which is used for training and evaluation. Moreover, we qualitatively tested
our well-trained model on the Cityscape dataset [33] for a view of its generalization ability.

KITTI-OFRS Dataset The real-world dataset was built on the public KITTI semantic segmentation
benchmark, which is part of the KITTI dataset [34]. The KITTI dataset is the largest data collection for
computer vision algorithms in the world’s largest autopilot scenario. The dataset is used to evaluate
the performance of computer vision technologies and contains real-world image data collected from
scenes such as urban, rural, and highways, with up to 15 vehicles and 30 pedestrians per image,
as well as varying degrees of occlusion. The KITTI semantic segmentation benchmark consists of 200
semantically annotated train as well as 200 test samples corresponding to the KITTI Stereo and Flow
Benchmark 2015. We only annotated the available 200 semantically annotated training samples for
our task and randomly split them into two parts, one contained 160 samples for training, and the
other contained 40 samples for evaluation. We named this real-world dataset as KITTI-OFRS dataset.
One sample in this dataset contained the RGB image, normal semantic labels, and occlusion-free road
segmentation labels, as demonstrated in Figure 7.
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Figure 7. An example of the KITTI-occlusion-free road segmentation (KITTI-OFRS) dataset sample.
(a) the RGB image; (b) annotation of semantic segmentation; (c) annotation of full road area, white
denotes road.

Cityscapes Dataset The Cityscapes dataset contains 5000 images collected in street scenes from
50 different cities. The dataset is divided into three subsets, including 2975 images in the training set,
500 images in the validation set, and 1525 images in the testing set. High-quality pixel-level annotations
of 19 semantic classes are provided in this dataset. We only used this dataset for the generalization
ability test.
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Classes Transformation The occlusion-free road segmentation network was designed to apply
in the semantic domain. However, different semantic segmentation datasets may have different
categories, and one category may have a different class labels in different datasets. It is obvious that
some categories are not involved in occluding the road, such as sky, and some categories could be
aggregated to one category to get a more compact representation, for example, car, truck, bus, train,
motorcycle, and bicycle could be aggregated to vehicle. Therefore, a classes transformation layer
is proposed to transform different semantic representations to a unify form before being fed to the
occlusion-free road segmentation network.

The classes transformation layer is a matrix multiplication operation, taking one-hot liked
encoded semantic representation of variable categories Rin ∈ [0, 1]W×H×C as input and output one-hot
representation of a unify categories Rout ∈ [0, 1]W×H×Cu .

Rout = Rin∗T, (5)

T(i, j) =

1, i f C(i)→ Cu( j)

0, otherwise
, (6)

where T ∈ {0, 1}C×Cu is the transformation matrix, C is the set of original class labels and Cu the set of
target class labels. C(i)→ Cu( j) refers to that the i-th label in C should be set to the j-th label in Cu.

The classes transformation layer could aggregate and unify labels of different semantic
segmentation representations from different datasets or different semantic segmentation algorithms. In
our work, the unified semantic representation contained 11 classes, namely road, sidewalk, building,
wall, fence, pole, traffic sign, vegetation, person, vehicle, and unlabeled.

Data Augmentation In the training phase, the training data was augmented with random cropping
and padding, flipping left to right. Moreover, to tackle the uncertainty of the semantic labels due to
annotation errors, we augmented the training data by the technique of label smoothing, which is firstly
proposed in InceptionV2 [35] to reduce over-fitting and increase the adaptive ability of the model. We
used this method to add noise to the semantic one-hot, which could make our model more adaptive to
annotation errors and prediction errors from other semantic segmentation methods. Unlike the original
usage that takes α a constant value for all the samples, we choose α as a random value between 0.1
and 0.2 following uniform distribution, which was independent of each pixel in a training batch.

yLS
k = yk + (1−α) + α/K. (7)

4.2. Evaluation Metrics

For quantitative evaluation, precision (PRE), recall (REC), F1 score, average precision (ACC), and
intersection-over-union (IoU) were used as the metrics within a region around the road edges within
4 pixels. The metrics acting on such a region are more powerful to test the network performance
than on the whole pixels taking into account the primary task of occlusion reasoning. The metrics are
calculated as in Equations (8)–(12), where TP, TN, FP, FN are, respectively, the number of true positives,
true negatives, false positives, and false negatives at the pixel level. Our experiments considered an
assessment that demonstrates the effectiveness of our approach for inferring occluded road in the
semantic domain.

PRE =
TP

TP + FP
, (8)

REC =
TP

TP + FN
, (9)

F1 =
2PRE ·REC
PRE + REC

, (10)
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ACC =
TP + TN

TP + FP + TN + FN
, (11)

IoU =
TP

TP + FP + FN
. (12)

4.3. Implementation Details

In the experiments, we implemented our architectures in PyTorch version 1.2 [36] (FaceBook,
State of California, USA) with CUDA 10.0 and cuDNN back-ends. All experiments were run on a
single NVIDIA GTX-1080Ti GPU. Due to GPU memory limitations, we had a maximum batch size of 4.
During optimization, we used the SGD optimizer [37] with a weight decay of 0.0001 and a momentum
of 0.9. The learning rate was set using the poly strategy with a start value of 0.01 and a power of 0.9.
The edge region width Tw was set to 10 in the training phase and 4 in the evaluation phase.

4.4. Results and Analysis

To evaluate the effectiveness of our method on the occlusion-free road segmentation task, we
trained the proposed model on the KITTI-OFRS dataset, as well as some other lightweight baseline
models, such as ENet, SegNet, ERFNet, and ORBNet. The samples were resized to 384 × 1248 when
training and testing. The quantitative and qualitative results are shown in Table 2 and Figure 8,
respectively. As shown in Table 2 and Figure 8, both models achieved comparable results on the
proposed task, and our method was superior to the baseline models in both accuracy and runtime. In
Figure 8, red denotes false negatives; blue areas correspond to false positives, and green represents
true positives. The models both performed well in the semantic domain containing more compact
information of the driving environment, which indicates that the semantic and spatial information were
more essential for occlusion reasoning than color and textural features. As can be seen from Figure 8,
the models obtained significant results on both simple straight roads and complex intersection areas.
Variable occlusion situations could be handled well, even though there were some heavy occlusion
scenes. Based on the results of the proposed task, the whole road structure could be obtained and
could be easily transformed into 3D world representations by an inverse perspective transformation
without the affectation of the on-road objects. Empirically, higher road detection precision may lead to
a better road model for better path planning.

Comparison of accuracy and computation complexity Our model achieved a significant trade-off

between accuracy and efficiency, which conclusion is drawn by comparing with other models. To
compare the computation complexity, we employed several parameters, GFLOPs, and frames per
second (FPS) as the evaluation metrics. FPS was measured on an Nvidia GTX1080Ti GPU with an
input size of 384 × 1248 and was averaged among 100 runs. As can be seen from Table 2, our model
outperformed ENet by 1.5% in the F1 score and 2.6% in the IoU while runs were only a little slower
than it. Our model ran almost two times faster than ERFNet and improved 1.0% in the F1 score and
1.7% in the IoU. Compared to SegNet and ORBNet, our model got a little improvement in accuracy but
achieved three times faster in the inference phase. In conclusion, our model achieved a better trade-off

between accuracy and efficiency.

Table 2. Evaluation results of models trained with spatially-weighted cross-entropy loss (CE-SW).

Model Parameters GFLOPs FPS ACC PRE REC F1 IoU

ENet 0.37M 3.83 52 91.8% 92.1% 89.3% 90.7% 82.9%
ERFNet 2.06M 24.43 25 92.3% 92.6% 89.7% 91.2% 83.8%
SegNet 29.46M 286.03 16 92.9% 93.6% 90.2% 91.8% 84.9%

ORBNet 1.91M 48.48 11.5 92.7% 93.4% 89.9% 91.6% 84.5%
OFRSNet 0.39M 2.99 46 93.2% 94.2% 90.3% 92.2% 85.5%
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Comparison of loss function To evaluate the effectiveness of the proposed spatially-weighted
cross-entropy loss, we trained the models both with traditional cross-entropy loss (CE) and the
spatially-weighted cross-entropy loss (CE-SW), and the evaluation results of the CE and metrics
degradation are shown in Table 3. When trained with CE, the models saw obvious metrics degradation
compared to CE-SW. The values in parentheses are the metrics degradation compared to that when
models were trained with CE-SW, which shows that the spatially-weighted cross-entropy loss was
very beneficial for increasing accuracy. Intuitively, the spatially-weighted cross-entropy loss forced the
models to take care of the road edge region where the occlusion occurs mostly.

Table 3. Evaluation results of models trained with cross-entropy loss (CE). The values in parentheses
are the metrics degradation compared to that when models were trained with spatially-weighted
cross-entropy loss (CE-SW).

Model ACC PRE REC F1 IoU

ENet 90.4%(−1.4%) 90.5%(−1.6%) 87.6%(−1.7%) 89.0%(−1.7%) 80.2%(−2.7%)
ERFNet 90.5%(−1.8%) 90.9%(−1.7%) 87.3%(−2.4%) 89.1%(−2.1%) 80.3%(−3.5%)
SegNet 92.1%(−0.8%) 92.6%(−1.0%) 89.4%(−0.8%) 91.0%(−0.8%) 83.5%(−1.4%)

ORBNet 91.5% (−1.2%) 92.2% (−1.2%) 88.4% (−1.5%) 90.2% (−1.4%) 82.2% (−2.3%)
OFRSNet 91.7%(−1.5%) 92.4%(−1.8%) 88.6%(−1.7%) 90.5%(−1.7%) 82.6%(−2.9%)

Comparison of convolution with and without context To evaluate the benefits of the context
convolution block, we replaced the context convolution block with regular convolution operation in
the down-sampling and up-sampling blocks. As shown in Table 4, the model with context information
outperformed the model without that by 0.6% in the F1 score and 1.0% in the IoU, which demonstrates
that the context information is desirable for the proposed approach.
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Table 4. Performance comparison of the model with and without context.

Model Context Parameters GFLOPs ACC PRE REC F1 IoU

OFRSNet w/o 0.34M 2.96 92.7% 92.8% 90.4% 91.6% 84.5%
OFRSNet w/ 0.39M 2.99 93.2% 94.2% 90.3% 92.2% 85.5%

Generalization on Cityscape Dataset To further test the generalization ability of our model,
we conducted qualitative test experiments on the Cityscape dataset with the model trained only on
the KITTI-OFRS dataset. As can be seen from Figure 9, the well-trained model performed well on
the complex real-world Cityscapes dataset, which indicates that our model obtained quite a good
generalization ability on the occlusion-free road segmentation task. The generalization ability of our
model benefited from inferring the occluded road in the semantic domain, which made the model
focus on learning the occlusion mechanism in the driving scenes without the affectation of sensing
noise. In the scenes, the color and textual features may differ very much in the same position due to
different camera configurations and lighting conditions while the semantic features share a similar
distribution. The occlusion situations were able to understand that the occluded road area was correctly
inferred in variable occlusion scenes by the proposed method according to the results. As shown in
Figure 9, the detection results obtained the overall structure of the road and accurate segmentation
despite occlusion. Moreover, it is applicable to combine our method with other semantic segmentation
algorithms in the real system due to its lightweight and efficiency. As shown in Figure 10, when taking
the predicted semantics obtained by the DeepLabv3+ algorithm as input, the proposed OFRSNet still
works well to predict the occluded road areas and outperforms ENet and ORBNet in terms of accuracy
and robustness.
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Figure 10. Qualitative results on the Cityscapes dataset using predicted semantics as input, which were
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5. Conclusions

In this paper, we presented an occlusion-free road segmentation network to infer the occluded
road area of an urban driving scenario from monocular vision. The model we presented is a lightweight
and efficient encoder–decoder fully convolutional architecture that contains down-sampling and
up-sampling blocks combined with global contextual operations. Meanwhile, a spatially-weighted
cross-entropy loss was proposed to induce the network to pay more attention to the road edge region
in the training phase. We showed the effectiveness of the model on the self-built small but efficient
KITTI-OFRS dataset. Compared to other recent lightweight semantic segmentation algorithms, our
network obtained a better trade-off between accuracy and runtime. The comparisons of the models
trained with different loss functions highlighted the benefits of the proposed spatially-weighted
cross-entropy loss for the occlusion reasoning road segmentation task. The generalization ability of our
model was further qualitatively tested on the Cityscape datasets, and the results clearly demonstrated
our model’s inferring ability of the occluded road even in complex scenes. Moreover, the proposed
OFRSNet could be efficiently combined with other semantic segmentation algorithms due to its small
size and minimal runtime. We believe that being able to infer occluded road regions in autonomous
driving systems is a key component to achieve a full comprehension of the scene and will allow better
planning of the ego-vehicle trajectories.
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