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Abstract: Melanoma remains mostly an untreatable fatal disease despite advances in decoding
cancer genomics and developing new therapeutic modalities. Progress in patient care would benefit
from additional predictive models germane for human disease mechanisms, tumor heterogeneity,
and therapeutic responses. Toward this aim, this review documents comparative aspects of
human and naturally occurring canine melanomas. Clinical presentation, pathology, therapies,
and genetic alterations are highlighted in the context of current basic and translational research
in comparative oncology. Somewhat distinct from sun exposure-related human cutaneous
melanomas, there is growing evidence that a variety of gene copy number alterations and
protein structure/function mutations play roles in canine melanomas, in circumstances more
analogous to human mucosal melanomas and to some extent other melanomas with murine
sarcoma viral oncogene homolog B (BRAF), Neuroblastoma RAS Viral (V-Ras) Oncogene Homolog
(NRAS), and neurofibromin 1 tumor suppressor NF1 triple wild-type genotype. Gaps in canine
genome annotation, as well as an insufficient number and depth of sequences covered, remain
considerable barriers to progress and should be collectively addressed. Preclinical approaches
can be designed to include canine clinical trials addressing immune modulation as well as
combined-targeted inhibition of Rat Sarcoma Superfamily/Mitogen-activated protein kinase
(RAS/MAPK) and/or Phosphatidylinositol-3-Kinase/Protein Kinase B/Mammalian target of
rapamycin (PI3K/AKT/mTOR) signal transduction, pathways frequently activated in both human
and canine melanomas. Future investment should be aimed towards improving understanding
of canine melanoma as a predictive preclinical surrogate for human melanoma and for mutually
benefiting these uniquely co-dependent species.

Keywords: comparative genomics; clinical trial design; precision medicine; dogs; translational research;
drug development; immunotherapy; signal transduction; kinase inhibition

1. Introduction

Melanoma is a significant malignancy, with an estimated 87,110 new cases and 9730 deaths in
the United States during 2017 [1]. Melanomas arise from a variety of tissues. Cutaneous melanomas
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occur most frequently in the skin of people with a fair, non-tanning complexion (phototype 1–2).
Although much less frequent, melanomas also arise from other tissues including the uvea of the
eye (5.2%) and within mucous membranes (1.3%) [2]. Unlike cutaneous melanoma, non-cutaneous
subtypes have a similar incidence across all six dermal phototypes, so noncutaneous melanomas
represent a higher proportion of melanomas in many parts of the world [3].

Melanoma pathogenesis is not completely understood. Research continues to address the
likelihood of biologically distinct subtypes that differ in cell origin characteristics, the existence
of unique clinical and histologic subtypes, as well as varying roles for ultraviolet (UV) radiation,
presence of predisposing germ line alterations, and diverse mutational processes [4]. Familial and
sporadic genetic risk factors exist [5,6]. Some melanomas are associated with sunlight/UV exposure.
Large burdens of mutations typically characterize cutaneous melanomas [7], a feature that adds to the
complexity of identifying driver mutations. A significant proportion of cutaneous melanomas harbor
recurring (hot spot) mutations in BRAF (approximately 50%), RAS (approximately 20%), and/or NF1
(approximately 25%) genes, and these mutations can be associated with constitutive activation of the
MAPK signaling pathway [7–12].

There is also a subgroup of cutaneous melanomas characterized by a lack of BRAF, N/H/K-RAS,
or NF1 mutations, which are referred to as the triple wild-type (TWT) subtype [13]. The TWT genotype
is also a feature underlying most noncutaneous melanomas, including mucosal melanomas [5,14].
Human mucosal melanoma (MM) is known to behave more aggressively and have less favorable
prognosis than other melanoma subtypes, possibly due in part to absence of symptoms initially and
the occult locations they develop in, which impede early diagnosis [15].

Animal models, notably genetically engineered mouse models, have been invaluable in discerning
molecular processes and pathology of cancers including melanoma [16]. Melanoma has been modeled
in mice (and zebrafish) engineered to carry defined mutations such as BRAFV600E or NRASQ61R/K

(or G12V), or in some cases through inactivation of tumor suppressor genes such as CDKN2A or PTEN
to model cutaneous melanomas [6,17,18]. Models of TWT cutaneous melanoma are less common,
but include the hepatocyte growth factor/scatter factor (HGF) transgenic mouse, which represents
a unique model for studying cutaneous TWT melanoma [19–21]. Such models have been valuable
in elucidating mechanisms of malignant transformation, disease progression, and drug resistance in
cutaneous melanoma [6,17]. However, mouse models for non-cutaneous melanomas are still lacking
and there is a need for additional suitable animal models [14]. Like all models, mouse models have
constraints; examples include limited population heterogeneity, tightly controlled environmental living
conditions, and the difficulty of obtaining serial tissue samples.

Naturally occurring cancers in dogs, on the other hand, have several unique advantages as
models for human diseases. As in humans, spontaneous cancers in pet dogs typically develop in
the presence of an intact immune system and are characterized by tumor growth over an extended
period. Inter-individual and intra-tumoral heterogeneity, metastasis, cancer recurrence and therapeutic
resistance are all canine cancer disease features [22]. Furthermore, pet dogs and humans share similar
environments, which can influence tumor development and progression [23,24]. Investigating canine
melanoma can provide an additional avenue for insight into the natural biology of disease, particularly
for MM, as these are the most common subtype in dogs. Spontaneous tumors in dogs can provide
opportunity for surrogate clinical (preclinical) trials since the heterogeneous naturally evolving disease
process occurs in a large immune-competent animal. Care of the dog as a model is more amenable to
human-parallel clinical management and discovery than are induced-disease animal models.

2. Clinical Manifestations of Canine Melanomas

Melanoma is a relatively common tumor in dogs [25], with up to 100,000 diagnoses each year in
the USA [26,27]. The mean age of dogs with benign and malignant melanocytic neoplasms at diagnosis
is 8.1 and 11.6 years, respectively [28]. In dogs, melanocytic malignancies occur most often in the
oral cavity (oral/mucosal). Canine melanoma occurs much less frequently in the skin (cutaneous),
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eye (ocular), the foot pads and nail apparatus (acral), and other mucocutaneous sites (Figure 1).
Cutaneous melanocytic neoplasms in dogs generally have an overall favorable prognosis, in contrast to
most oral/mucosal and acral melanomas [25,29]. UV is not thought to play a significant role in canine
cutaneous melanoma due to the protective hair coat. Anatomic location appears associated with the
biological behavior of canine melanocytic neoplasia and therefore is considered a useful prognostic
parameter [25].
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prevalence in these breeds is thought to reflect, at least in part, genetic predisposition, which may 
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Figure 1. Clinicopathological manifestations of mucosal melanoma in dogs. (A) Canine mucosal
melanoma involving the anorectal area of a dog. There is a darkly pigmented (melanized) mass involving
the mucous membranes of the anus. (B) Pulmonary metastasis of a mucosal melanoma. Circumscribed
nodular metastatic lesions with varying degrees of melanin pigmentation are disseminated in the
lung parenchyma, visible at the visceral pleura, of an autopsy specimen (different dog from image
in (A)). Lesion photographs were kindly provided by Dr. Jeff Caswell, Department of Pathobiology,
Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.

Canine MM patients have a median survival time ranging from three to 18 months, depending on
the stage at diagnosis [25,29,30]. Canine melanomas are associated with breed predispositions and are
overrepresented in black-coated dogs [31]. Commonly affected breeds include Scottish terrier, poodle,
golden retriever, dachshund, cocker spaniel, and miniature poodle [32]. The higher prevalence in these
breeds is thought to reflect, at least in part, genetic predisposition, which may permit identification of
inherited (familial) genetic factors and germline mutations in canine melanomas. This could point to
related genetic factors in human melanomas [31].

Canine and human MM share substantial histopathological features (Figure 2) and clinical
behavior [31,33–35]. According to a consensus study conducted by the National Cancer Institute
Comparative Melanoma Tumor Board, a panel of diagnostic and investigative experts with scientific
and clinical experience in canine and human melanocytic lesions, these characteristics included
melanocyte morphology, patterns of growth including presence of necrosis and ulceration, and the
expression of melanocyte differentiation antigens (Table S1) [35]. Canine and human MM share
a propensity to metastasize to regional lymph nodes and brain, as well as other visceral organs
(Figure 1) [31,33–35]. The tumors of both species are generally resistant to chemotherapy and radiation
therapy. In veterinary oncology, a standard of care for melanoma is not firmly established. Treatment for
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dogs with melanoma consists primarily of surgery, with the options of hypofractionated or definitive
radiation therapy, and platinum chemotherapy [36–39].Int. J. Mol. Sci. 2018, 19, x 4 of 20 
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eosin stained tissue sections. Bars = 50 um. Used by the authors with permission under Creative 
Commons Attribution License [35]. 
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appear to more common in human MM than are BRAF or NRAS mutations, although a few examples 
with NRAS mutations have been documented [5,43] (Table 1). 

Figure 2. Similarities between histopathological features of human (A,C,E) and canine (B,D,F) mucosal
melanomas. Pleomorphic cytomorphologies occurring in both species include (A,B) epithelioid
(polygonal) malignant melanocytes, (C,D) spindloid malignant melanocytes, and (E,F) small round
blue cell malignant melanocyte morphology. Photomicrographs of hematoxylin and eosin stained tissue
sections. Bars = 50 µm. Used by the authors with permission under Creative Commons Attribution
License [35].

3. Comparative Genetics and Molecular Signaling Pathways

Mainly due to its rarity in humans, relatively little is known about the underlying germline or
somatic genetics of the MM subtype compared to cutaneous melanoma. More information about MM
is now beginning to emerge [6,40–42]. UV exposure is not a risk factor for MM, so tumors lack the high
number of UV-signature type mutations found in cutaneous melanoma. Copy number variants appear
to more common in human MM than are BRAF or NRAS mutations, although a few examples with
NRAS mutations have been documented [5,43] (Table 1).
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Table 1. Summary of molecular/genetic findings in canine and human mucosal melanoma.

Molecular/Genetic
Evaluation Canine Human

Specimen # Affected/#
Examined Finding Specimen # Affected/#

Examined Finding

NRAS

Tumor 1/12 Silent mutation at codon 52 [44] PDX 0/17 All lack mutations [42]
Cell lines 1/5 Q61R mutation [44] PDX 2/10 1 G12A mutation; 1 G13D mutation [41]

Tumor 2/28 Q61 mutation [45] Tumor 8/71 G12, G13, or Q61 mutation [46]

Cell lines 2/5 Q61 mutation [45] Tumor; LN 3/8 1 G12C mutation and copy number gain;
1 Q61R mutation; 1 copy number loss [5]

BRAF

Tumor 0/12 All lack mutations [44] PDX 0/10 All lack mutations [41]
Cell lines 0/5 All lack mutations [44] PDX 0/17 All lack mutations [42]

Tumor 0/28 All lack mutations [45] Tumor 0/19 All lack mutations [47]
Cell lines 0/5 All lack mutations [45] Tumor 2/8 1 K486E mutation; 1 copy number gain [5]

Tumor 0/11 All lack mutations [48] Tumor 6/74 4 V600E mutations; 1 V600K mutation;
Cell lines 0/6 All lack mutations [48] 1 N188S mutation [46]

Tumor 2/47 V600E mutation [49]

CDKN2A/p16
Tumor 14/20 Copy number loss [27] Tumor 3/8 Copy number loss [5]
Tumor 10/12 Decreased expression by IHC [50] Tumor 59/59 12 High CDKN2A expression;

Cell lines 4/6 Decreased expression by IHC [50] 47 Low CDKN2A expression by IHC [51]

p-ERK

TMA 33/43 IHC immunopositive [45] TMA 21/37 IHC immunopositive [45]
Tumor 19/28 ERK activation by WB [45]

Cell lines 6/6 Basal p-ERK increased by WB [48]

Cell lines 4/4 Basal p-ERK increased by WB;
cell lines sensitive to MEK inhibitor [44]

GNAQ Tumor 13/284 Mutation at codon 209 [52]

GNA11 Tumor 14/284 Mutation at codon 209 [52]

KIT

Tumor 13/20 Copy number gain [27] PDX 0/17 All lack mutations [42]
Tumor 30/61 IHC immunopositive [53] PDX 2/10 Non-synonymous mutations [41]
Tumor 20/39 All lack mutations; 20 IHC immunopositive [54] Tumor 2/8 Non-synonymous mutations [5]
Tumor 33/34 1 missense mutation; Tumor 4/19 2 Non-synonymous mutations; 2 Deletions;

5 synonymous mutations at nt1743; 3 of 4 in hotspot domains [47]

33 IHC immunopositive [55] Tumor 5/75 Non-synonymous mutations;
1 of 5 mutations were activating [46]

MYC Tumor 16/20 Copy number gain [27] PDX 1/10 Single mutation [41]
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Table 1. Cont.

Molecular/Genetic
Evaluation Canine Human

Specimen # Affected/#
Examined Finding Specimen # Affected/#

Examined Finding

NF1

PDX 0/17 All lack mutations [42]
PDX 1/10 Frameshift mutation [41]

Tumor 0/19 All lack mutations [47]
Tumor 1/8 Copy number loss [5]

Tumor 13/75 Non-synonymous mutations;
9 of 13 mutations were inactivating [46]

p53
Tumor 8/12 Decreased by IHC [50] Tumor 59/59 12 High expression;

Cell lines 3/6 Decreased by IHC [50] 47 Low expression by IHC [51]
Tumor 7/20 6 Copy number loss; 1 Copy number gain [27] Tumor 2/8 Copy number loss [5]

PDGFR Tumor 18/48 IHC immunopositive [56]

PTEN
Tumor 10/12 Decreased by IHC [50] Tumor 1/8 Copy number loss [5]

Cell lines 3/6 Decreased by IHC and WB [50] PDX 1/10 Frameshift mutation [41]

p-AKT
TMA 41/43 IHC immunopositive [45] TMA 31/40 IHC immunopositive [45]

Tumor 12/28 AKT activation by WB [45]

Cell lines 3/5 Basal p-AKT increased by WB;
cell lines sensitive to rapamycin [44]

Note that some of the referenced studies entail a larger sample set that includes mucosal and non-mucosal melanomas. The findings summarized here correspond to mucosal melanomas.
Numbers of cases are presented as # affected with molecular/genetic feature out of # total examined. (Table adapted from Simpson RM et al., 2014 [35]). Review of human literature
findings limited to 2016 and 2017. No entry in table = peer-reviewed literature not obtained. Tumor = primary tumor lesion tissue, can be either frozen or fixed. Cell lines = individual lines
represent either primary or metastatic tumors. LN = metastasis to lymph node. PDX = patient-derived xenograft tumor tissue. TMA = tumor tissue microarray. WB = Western blot.
IHC = immunohistochemistry.
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Similar to human MM, canine MM occur in anatomical locations with limited risk for UV-induced
mutations. Although incompletely defined, the genetic/molecular landscape of canine MM appears to
more closely resemble human sun-shielded melanomas (mucosal and acral) (Table 1). Analogous NRAS
mutations do occur infrequently in canine MM [31,44,45,57], but dogs tested thus far generally lack
NRASG12 and BRAFV600 hotspot mutations (Table 1). While structural rearrangements have not been
thoroughly investigated in canine MM, orthologous chromosomal alterations have been identified in
dogs with MM [27]. For example, alterations in orthologous chromosome regions encoding MAPK
pathway genes occur. Canis familiaris chromosome (CFA) 30 harbors MAPK-related genes including
Sprouty Related EVH1 Domain Containing 1 (SPRED1) and Transient Receptor Potential Cation gene
(TRPM7), which are involved in suppression and regulation of the MAPK pathway, respectively.
The MAPK pathway can be affected by a variety of genomic rearrangements [44,58]. As examples,
loss of SPRED1, as well as copy number gains or mutation of V-Kit Hardy-Zuckerman 4 Feline Sarcoma
Viral Oncogene (KIT) and V-Myc Avian Myelocytomatosis Viral Oncogene Homolog (MYC) [27],
could all contribute to alternative means of promoting MAPK pathway activation in MM. Manifestly,
despite the relative infrequency of BRAF and NRAS mutations, MAPK pathway activation appears to
be a feature exhibited fairly commonly in both canine and human MM [40,44,45].

Along with the MAPK pathway, the PI3K/AKT/mTOR pathway can be activated in MM [5,40,59].
Alterations in the PI3K pathway have been shown to arise from inactivating mutation and structural
variations. Altered signaling of this nature can be influenced by inactivation of the tumor suppressor
PTEN [5,60]. In addition to PTEN, genes including TP53 and ubiquitin ligase proto-oncogene (MDM2)
were found to be mutated in some of the eight human MM studied [5]. Additional efforts to discover
precisely if, and how, these molecules may be factors in canine MM are needed.

A striking parallel is that both canine [44,45] and human MM [40,45] frequently exhibit RAS/
MAPK and/or PI3K/AKT/mTOR signaling pathway activation, which occurs in the absence of some
recognized highly recurrent genomic aberration [44,45,61]. An analysis of 40 human and 43 canine
primary MM revealed distinct, but variable, p-ERK and/or PI3K/AKT/mTOR activation states
in the majority of patients (Figure 3). The precise mechanisms of MAPK and PI3K/AKT/mTOR
pathway activation remain largely undetermined in the majority of MM. It is reasonable to assume
a number of mechanisms are in play. In some canine MM melanomas, pathway activation may be
due loss of PTEN [31,50], mutations in NRAS occur in a few cases (similar to human MM) [31,45,57],
or over-expression of receptor tyrosine kinases, such as platelet derived growth factor receptor (PDGFR)
could be possible [56]. Deeper investigations into constitutive activation of critical pathways and the
underlying genetic components of canine MM is required to enhance our understanding of biological
processes fundamental to canine MM and its utility to model human MM.

In light of the emerging recognition that copy number variations appear to underpin a component
of mucosal melanomagenesis in both species, future focus of melanoma genomics should shift towards
a wider survey of the genetic landscape. This would contrast with what heretofore has been a narrower
focus on single nucleotide variants in limited regions of the genome of MM in particular (Table 1).
Analyses shedding additional light in canine MM are anticipated to be forthcoming (unpublished
work [62]).
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Creative Commons Attribution License [45]. 
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Figure 3. Activation of ERK and PI3K/AKT/mTOR signal transduction pathways in human and
canine mucosal melanoma detected by immunohistochemistry on primary tumor tissue arrays.
(A) Representative immunopositive reactions for pathway mediators are illustrated. Phospho-specific
primary antibody signal detection with red chromogen and hematoxylin counterstain. Bars = 50 µm.
(B) Percentages of immunopositive melanomas for selected canine (Cn, n = 43) and human (Hu,
n = 40) signal transduction mediators. Relative intensity and percentages of immunolabeled cells were
considered in scores, assigned as negative, low, and high. Used by the authors with permission under
Creative Commons Attribution License [45].

4. Canine Mucosal Melanoma as a Preclinical Model

Contemporary study of canine melanoma may serve a dual purpose. In addition to seeking
to improve veterinary patient care, more recent therapeutic approaches undertaken in canine MM
further efforts toward preclinical development. Prospects include investigating targeted therapies,
combinations of drugs and alternate dosing strategies, as well as exploring treatment paradigms such
as immunotherapy for treating canine and human melanoma. Canine cell lines and patients with MM
provide invaluable resources for in vitro and in vivo investigation of MM and TWT melanoma.

Preclinical development in dogs can mirror human clinical trials [6,24]. In earliest phase, canine
clinical trials can reveal critical information about target recognition, drug interactions/toxicity, and also
may be designed to provide insight into clinical outcomes of novel treatments and therapeutic agents,
which in some cases have been predictive [63–65]. Historically, drug safety profile development
in the pharmaceutical industry often included dogs [24,35]. Dogs provide an advantage for
prospectively planning serial sampling for pharmacokinetic and pharmacodynamic information.
Therapeutic development using a canine clinical trial paradigm is only now becoming more organized.
Currently, the ability to pilot therapy for humans in dogs lags behind the traditional therapy development
pipeline. Consequently, some of the current evidence in the literature regarding therapeutic development
in dogs with cancer presented here appears in a somewhat more retrospective light. Despite the present
state of development in the dog however, these examples accordingly embody prospective potential for
future clinical modeling in the dog with cancer, having relevance for human disease.

4.1. Small Molecule Signaling Inhibitors

4.1.1. BRAF, KIT, and MAPK Pathway Inhibitors

Identification of the V600E canonical BRAF mutations in human cutaneous melanoma led
to the development of efficacious small molecule inhibitors. Notably, selective BRAF inhibitors,
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such as Vemurafenib and Dabrafenib, have yielded improved clinical outcomes in melanoma patients
compared to conventional chemotherapy [66,67]. Nevertheless, the beneficial effect of these inhibitors
as monotherapies is generally short-lived due to acquired drug resistance, and combination therapies
of BRAF and other MAPK inhibitors are now used in human patients with improved outcome [68,69].

Comparatively, in vitro studies of canine urinary bladder transitional cell carcinoma harboring
orthologous BRAFV600E mutations (e.g., canine V595E) have shown response to the BRAF kinase
inhibitor Vemurafenib, while tumor cells with wild-type BRAF were unresponsive to the drug [70].
Although canine MM would likely be unresponsive to this BRAF kinase inhibitor, since the ortholog to
the V600E mutant is not a frequent event in this tumor type [44,45,48,49,70], the rational targeting of
the BRAF mutant is validated in canine cancer.

The existence of activating mutations or gene amplification of the proto-oncogene KIT in
human MM [11,71] makes KIT a putative therapeutic target. Small molecule kinase inhibitors of
KIT, such as Imatinib (Gleevec) and Masitinib, have shown variable success in the treatment of human
MM [34,66,72]. Interestingly, clinical response to Imatinib was limited to mucosal melanomas with KIT
mutations, while tumors with amplification of wild-type KIT had no response [73].

In veterinary oncology, feline and canine mast cell tumor and gastrointestinal stromal tumor (GIST)
frequently have KIT activating mutations and respond to Imatinib [74]. As an example of translational
medicine, masitinib mesylate (AB1010) was initially approved in veterinary medicine for the treatment
of unresectable canine mast cell tumors activated by KIT mutation [75]. Based upon the favorable
results achieved in veterinary oncology, masitinib was subsequently investigated for treatment of
several human malignancies, such as GIST, mesothelioma, thymoma, thyroid cancer, and colorectal
cancer [63]. This presents an elegant example of the manner in which comparative oncology can
translate to human clinical therapeutic development. In the case of canine MM, tumor lines were
generally unresponsive to KIT inhibitors such as Imatinib, which is consistent with the infrequency of
KIT mutation (Table 1) [76].

4.1.2. PI3K Pathway Inhibition and Combined Targeted Therapy

Therapies targeting other pathways, such as PI3K/AKT/mTOR signaling, have induced stable
disease in human patients in phase I clinical trials [77]. Similar to the case with BRAF inhibitors,
efficacy is limited when used as a single agent [77,78]. PI3K/AKT/mTOR pathway inhibitors have
been evaluated in dogs, inhibiting growth of canine melanoma cells in vitro [50,79] and in a canine
melanoma xenograft model [45]. Related clinical trials have yet to be conducted.

Growing evidence indicates the majority of human and canine MM tested exhibit RAS/ERK
and/or PI3K/AKT/mTOR signaling pathway activation, despite the paucity of canonical BRAF
and NRAS mutations [35,43–45]. Inhibition of both pathways may be beneficial due to significant
crosstalk and redundancy between the pathways [8,80]. Canine MM cell lines with ERK and
AKT/mTOR activation are sensitive to MAPK/Erk kinase (MEK) and PI3K/mTOR inhibitors [44,45].
Through apparent signaling crosstalk analogous to several human cancers [81–83], targeting PI3K/
mTOR in canine MM, which resulted in diminished downstream p-S6 and eIF4E expression, induced
reciprocal activation of p-ERK in some cell lines [45]. Furthermore, targeting both pathways in
two-drug combinations (MEK inhibitor trametinib, and combined PI3K and mTOR inhibitor dactolisib)
negated the reciprocal ERK phosphorylation in vitro. In addition, such inhibitor combinations
synergistically decreased cell survival and solid tumor growth in canine MM xenografts in mice [45].
These findings, as well as those of others [40], provide evidence of synergistic therapeutic efficacy
when simultaneously targeting multiple mediators in melanomas with RAS/ERK and/or PI3K/mTOR
pathway activation. Given these results, dual inhibition of the MAPK and PI3K pathways may
be promising therapeutic targets that warrant clinical evaluation for melanomas with activation of
RAS/MAPK and/or PI3K/AKT/mTOR, regardless of specific genomic aberration or constitutive basal
level of pathway activation. Opportunities exist to work out various drug combinations and alternative
dosing schedules that would require much longer to develop in human patients. Such combined
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targeted approaches represent a step toward improving current management of canine MM and further
establishes naturally occurring melanoma in the dog as a clinical surrogate for developing human
melanoma therapeutics [45].

4.2. Immunomodulators

Evasion of the immune system is a hallmark of malignancy [84]. Recent advances in cancer
immunology have brought forth outstanding breakthroughs positioning immunotherapy at the
forefront of cancer treatment in veterinary and human medicine. In the face of limited success
of conventional therapies and the short survival associated with mucosal melanoma in both
species, canine MM presents an attractive opportunity to dissect mechanisms of immunoevasion
and the development and testing of novel immune-based therapeutics. However, deficiencies in
our understanding of human and canine comparative immunology may hinder direct translation
of test-article immune-based therapeutics between the two species. Despite these differences,
immunotherapy presents some attractive strategies against melanoma, including targeting or
modulating the immune system through various approaches such as immune checkpoint blockade,
adoptively transferred cell therapies, or cancer vaccines. Examples of emerging proof of principle
for the potential promise of discovery immunotherapy in canine cancer are highlighted in the
following sections.

4.2.1. Immune Checkpoint Blockade

Inhibition of T cell checkpoint molecules such as cytotoxic T-lymphocyte-associated antigen-4
(CTLA-4) and programmed cell dealth-1 (PD-1) using monoclonal antibodies has achieved remarkable
success in cancer treatment including melanoma in humans [85,86]. Targeting PD-1 with Lambrolizumab
PD-1 monoclonal antibodies produced noteworthy responses against advanced human malignant
melanoma [85]. Thus far, there are limited studies characterizing PD-1 immune checkpoints and
therapeutics in canine cancers. The canine PD-1 and PD-L1 genes are highly conserved [87] and
expression of PD-L1 was demonstrated in diverse types of canine tumor cells. This would seem
to imply modeling has potential [87–89]. In addition, PD-1 was shown to be highly expressed on
tumor-infiltrating lymphocytes obtained from canine oral melanoma, suggesting that lymphocytes
in canine MM could be functionally exhausted via this mechanism [90]. In another study, canine
melanoma tumor cell lines and tumor-infiltrating macrophages upregulated PD-L1 expression upon
exposure to interferon-γ, suggesting an important mechanism of tumor-mediated T cell suppression [88].
This provided a backdrop to clinical application of PD-1/PD-L1 inhibitors as novel therapeutic
agents for canine cancers [90]. Maekawa and colleagues demonstrated that a canine-chimeric PD-L1
monoclonal antibody enhanced cytokine production and proliferation of dog peripheral blood
mononuclear cells [90]. Objective anti-tumor responses were observed in one of seven dogs with oral
malignant melanoma and one of two dogs with undifferentiated sarcoma when treated with chimeric
anti-PD-L1 at 2 or 5 mg/kg every 2 weeks in a pilot clinical study [90]. The authors propose this as
a safe and effective treatment option for canine cancers [90]. Species-appropriate development of
antibody-based therapeutics would help pilot optimization of relevant human therapeutic approaches
and provide opportunity to mechanistically evaluate immune regulation, tolerance, or other eventual
loss of efficacy [35].

4.2.2. Adoptively transferred Cell Therapies

Another breakthrough in cancer immunotherapy involves the ex vivo engineering and targeting
of T cells to specific tumor antigens. The recent FDA approval of chimeric antigen receptor (CAR)-T cell
therapy for drug-resistant acute lymphoblastic leukemia heralded the arrival of this novel technology
into the anticancer arsenal. The general approach to generating tumor specific T cells involves the
ex vivo expansion of large numbers of autologous T cells. This is followed by transfection of the
cells with tumor specific T cell receptors or by attaching tumor-antigen specific antibodies to the T
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cells, then re-infusing the modified autologous T cells back into the patient [91]. In the case of CAR
technology, T cells are transfected with genes encoding chimeric antibody receptors specific for a tumor
antigen, resulting in homing of the T cells to the target cell [92]. It is yet to be determined whether
CAR-T cell therapy would benefit melanoma patients. Yet, an earlier version of adaptive transfer
of T-lymphocytes achieved some success in treating melanoma [93]. In this earlier work, infiltrating
lymphocytes harvested from human melanoma patients and expanded ex vivo demonstrated responses
in patients with metastatic melanoma. Subsequently, the applicability of an updated version of this
technology was modeled. CAR-T cells targeting tumor-associated antigen gp100 (a melanocyte
lineage-specific trans-membrane protein) inhibited melanoma progression in a severe combined
immune-deficient (Prkdcscid) mouse xenograft model [94].

Immunotargeting of melanoma-associated gp100 has been evaluated in dogs with MM using
allogeneic cell vaccines expressing human gp100 [95,96]. The objective responses produced could
serve to inform subsequent approaches, including CAR-T cell therapies. Adoptive cell therapy is
costly, requires sophisticated techniques available in limited laboratories, and therefore is not routinely
applicable to canine melanoma patients [97]. However, the potential for applying adoptive cell-based
therapies to dogs with cancer continues to be demonstrated [98]. Investigators determined that
HER2-specific canine CAR-T cells, with costimulatory CD28 signaling domains, recognized and killed
HER2+ canine osteosarcoma cell lines in an antigen-dependent manner. Furthermore, comparison
of canine- and human-derived transmembrane CAR, along with signaling domains to reduce the
potential immunogenicity of CAR, revealed no functional differences between the two species [98].
Translatability of this study to clinical trials in dogs has yet to be substantiated. However, this study
illustrated a successful strategy to generate CAR-expressing canine T cells for future preclinical studies
in dogs. Such clinical trials in dogs would help the optimization of T cell therapeutic efficacy and
durability, as well as risk assessment pertaining to immune-related toxicities.

4.2.3. Tumor Vaccines

The discovery of immunogenic tumor-associated antigens has promoted the development
of various vaccines to induce anti-tumor immune response in canine and human patients [32].
These include but are not limited to whole cell, dendritic cell, and DNA vaccines that have been
extensively reviewed elsewhere [32,97]. A recombinant DNA vaccine expressing human tyrosinase,
intended for the adjunct treatment of stage II and III canine oral melanoma after loco-regional
control [99], induced a cross-reacting humoral response that recognized recombinant human tyrosinase.
Oncept™, a United States Department of Agriculture (USDA)-approved cancer vaccine in veterinary
medicine, produced meaningful clinical responses and marked prolongation of survival in dogs with
metastases in initial studies [100–102]. The safety and immunogenicity of tyrosinase DNA vaccines
were consequently assessed in a human melanoma trial by the same investigators [103]. Subsequent to
the canine studies, vaccine efficacy for immunized dogs with melanoma was retrospectively reviewed.
Inconsistencies in vaccine effectiveness for patients were noted [104], and various immunological
mechanisms have been proposed as reasons for variable success [97]. Canine immunotherapy clinical
trials are informative but, as a model, may not be uniformly predictive for human cancer in all
circumstances. However, as this example illustrates, understanding the limitations and mechanisms of
canine melanoma vaccines is anticipated to further enhance the development of human DNA vaccines.

4.2.4. Cytokine Therapy

Cytokines represent another therapeutic or adjuvantive approach for melanoma. Anti-inflammatory
cytokines and the innate immune system are inherent parts of host response that could be exploited to
provoke anti-tumor effects in cancers like mucosal melanoma [97]. Among cytokine therapeutics tested,
the most promising results have been observed with interleukin 2 (IL-2). IL-2 is a powerful biological
response modifier that has been extensively utilized for modulating anti-tumor immune responses.
Treatment of human metastatic melanoma with IL-2 resulted in complete and durable cancer regression,
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albeit in relatively few patients [105,106]. Due to the durable responses, this cytokine has been licensed
for treatment of advanced stage human melanoma in many countries [107]. In dogs with malignant
oral melanoma, IL-2, along with granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted
by lethally-irradiated transgenic xenogeneic cells, appeared to play a role in significantly increasing
survival time when used in combination with intralesional herpes simplex thymidine kinase suicide
gene co-administered with ganciclovir [108]. The relatively greater response rate in canine patients
could be the result of cytokine supplementation with gene therapy, and similar components of this
treatment may be explored for human trials.

5. Conclusions and Perspectives

The features of naturally occurring melanoma in dogs make modeling an attractive prospect for
both humans and dogs with melanomas. Clinical presentation, pathology, and molecular mechanisms
are noteworthy hallmarks shared between humans and dogs with melanoma. The outlook for
utilizing host immune response and precision targeted therapy mechanisms of action to predict
useful interventional approaches for humans with MM, and other TWT subtypes, appears promising.

Currently, there are gaps in our understanding of the genetic and molecular underpinning of
all melanoma subtypes, and the rarity of human MM is a hurdle for more adequate characterization.
In order for the dog to help fill these gaps, progress critically depends upon more thorough,
deeply penetrating next-generation sequencing, as well as the required validations to better annotate
the canine genome (accounting for breed-related polymorphisms). Relatively incomplete annotation
of the canine genome, compared to that of humans, continues to hinder comprehensive cataloging
of the genetic and molecular landscape of canine MM, and thereby the knowledge essential for
comparative genomics. Deficiencies in canine genome annotation and the lack of associated
platforms for informatics investigations are current challenges posing significant impediments to
advances in canine cancer genetics, and represent areas of critical need for the oncology community.
Fortunately, genetic analyses in domestic dogs, including whole genome sequencing, RNA sequencing,
and array comparative genomic hybridization (aCGH) can contribute to enhancing canine cancer
genomics [109]. These data will provide important comparative insights for extending the current
benefits of canine MM as a pre-clinical model for human melanoma.

As melanoma research progresses, ongoing interdisciplinary efforts comparable to the NCI
Comparative Melanoma Tumor Board should be sustained [35]. In particular, collaborative clinical
trials should advance the annotation of the genetic landscape of the disease in both species,
and create trials first in dogs, to inform first-in-human (phase I) studies. A prospective advantage in
considering dogs as naturally occurring models for human disease is the existence of infrastructure
and expertise for clinical trial design and study execution in dogs that is analogous to human
clinical settings. Canine clinical trials can be undertaken to yield insight useful for human cancer
therapy, while advancing benefit for cancer understanding and treatment in affected dogs (Table 2).
The standard of care for most canine cancers is not well established. This fact presents an opportunity
to proceed with clinical trials for novel therapeutics in veterinary medicine without first having to
experience both failure of front-line therapy and stepwise trial phases, in harmony with standards
of care in veterinary medicine [110,111]. The shorter natural canine lifespan, as well as the relatively
rapid disease course of most malignancies, provide for earlier outcome measures compared to human
trials [6]. A clinical and scientific strategy recommended by NCI Comparative Melanoma Tumor
Board serves as a guideline for canine oncology surrogate clinical trials (Table 2). Careful execution,
coupled with the level of sophistication possible for these studies, contributes to better new drug
applications. Canine clinical research has begun informing FDA decision-making for human as
well as canine therapeutics. As a consequence, comprehension of the value that dog studies hold is
growing within the pharmaceutical industry, melanoma research community, and patient advocacy
groups. The opportunities, once again, create mutually beneficial prospects from, and for, mankind’s
best friend.
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Table 2. Suggested consideration for canine melanoma surrogate-clinical trial development 1 [35].

Elements of Strategy Fundamental Action/Procedure Constructive Consideration

Clinical documentation

• Patient data Presentation/history, duration, previous work up, management Breed and other background information useful to generate
data on incidence

• Gross lesion documentation Extent of disease. Description of specific anatomic location (not just indication of oral
cavity); dimensions in mm, two axes; ulceration, evidence of dissemination Photograph lesion with a ruler if possible

• Biopsy Inclusion for diagnostic intent/therapeutic intent (excisional, incisional); preservation
for correlative molecular analysis

Consideration of lateral extent as well as vertical depth of
invasion; Attention paid to quality of sampling, preservation,
QA, and utilization

• Pathology review
Development of features of malignancy for initial assessment for trial enrollments:
Proliferation, growth pattern, invasion, and dissemination, etc. Continue refining
prognostic summation; Inclusion of IHC panel if needed to establish diagnosis

Capture classical features outlined—Adapt how used initially
vs. what becomes useful from adjunct molecular data
and outcomes [25];

Clinical staging/prognosis and monitoring

• Imaging for dissemination Ultrasound of lymph nodes to detect metastasis (includes submandibular)
+/− consideration of removal for staging; alternative
consideration ultrasound-guided fine needle aspirate cytology
for staging

• CT (MRI) imaging evaluation
• Biopsy

Lung particularly; lymph node; abdomen
Monitoring response to therapy, as appropriate

Consideration of monitoring for brain involvement; inclusion
of cranial imaging
Lymph nodes or other palpable disease is recommended

• Endpoint assessment Necropsy examination, with collection of tissue for research, and documentation of
extent of disease/host response

Quality of life measures Assessments of fatigue, cardiac function, mucositis, altered mentation, serial
assessments of metabolic and hemotologic toxicity, threshold of toxicity vs. response Harmonized approach for multicenter trials similar to [111]

Client education Informed consent; Should also include education on how the initiative is intended to
explore benefits for both dogs and humans; Necropsy education

Necropsy education; emphasis on historical shortcomings
impediment to progress. Education design beyond pro forma
consent for necropsy

Follow up Directly with owner/clients and indirectly with primary care clinician

Genomics Global discovery genomics, proteomics and informatic methods: develop and apply.
Database and clinical monitoring integration.

1 Strategic approach for trial design represents an initial outline to be developed further with medical and veterinary oncologists, pathologists, and basic and clinical melanoma research
investigators for use in developing multidisciplinary trials for piloting therapeutics for human melanoma. Research outcomes are anticipated to produce parallel benefits for canine
melanoma patients.
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