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ABSTRACT Ribosome profiling (Ribo-Seq) is a powerful method to study translation
in bacteria. However, Ribo-Seq signal can be observed across RNAs that one would
not expect to be bound by ribosomes. For example, Escherichia coli Ribo-Seq librar-
ies also capture reads from most noncoding RNAs (ncRNAs). While some of these
ncRNAs may overlap coding regions, this alone does not explain the majority of ob-
served signal across ncRNAs. These fragments of ncRNAs in Ribo-Seq data pass all
size selection steps of the Ribo-Seq protocol and survive hours of micrococcal
nuclease (MNase) treatment. In this work, we specifically focus on Ribo-Seq signal
across ncRNAs and provide evidence to suggest that RNA structure, as opposed to
ribosome binding, protects them from degradation and allows them to persist in the
Ribo-Seq sequencing library preparation. By inspecting these “contaminant reads” in
bacterial Ribo-Seq, we show that data previously disregarded in bacterial Ribo-Seq
experiments may, in fact, be used to gain partial information regarding the in vivo
secondary structure of ncRNAs.

IMPORTANCE Structured ncRNAs are pivotal mediators of bioregulation in bacteria,
and their functions are often reliant on their specific structures. Here, we first inspect
Ribo-Seq reads across noncoding regions, identifying contaminant reads in these li-
braries. We observe that contaminant reads in bacterial Ribo-Seq experiments that
are often disregarded, in fact, strongly overlap with structured regions of ncRNAs.
We then perform several bioinformatic analyses to determine why these contami-
nant reads may persist in Ribo-Seq libraries. Finally, we highlight some structured
RNA contaminants in Ribo-Seq and support the hypothesis that structures in the
RNA protect them from MNase digestion. We conclude that researchers should be
cautious when interpreting Ribo-Seq signal as coding without considering signal dis-
tribution. These findings also may enable us to partially resolve RNA structures,
identify novel structured RNAs, and elucidate RNA structure-function relation-
ships in bacteria at a large scale and in vivo through the reanalysis of existing
Ribo-Seq data sets.
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Ribosome profiling (Ribo-Seq) in bacteria is a method that enriches for ribosome-
protected RNAs and therefore, enables the study of active translation events (1, 2).

Ribo-Seq protocols enrich for monosomes using sucrose density gradients (1) or size
exclusion columns (3) but do not specifically isolate monsomes. Ribo-Seq is especially
challenging in bacteria because, unlike in yeast and other eukaryotes, bacteria have a
broad size distribution of ribosome-protected footprints, ranging from 15 to 40 nucle-
otides (4). The size range that should be selected can vary across Ribo-Seq protocols;
at present, most published Ribo-Seq experiments on bacteria have targeted a size
range of 15 to 45 nucleotides, as was used by Li et al. (1). Hence, compared to
eukaryotic ribosome profiling protocols, bacterial ribosome profiling protocols must
adopt less stringent size selection to comprehensively capture biologically relevant,
actively translated RNAs.
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Imperfect monosome isolation and selection of a wider range of fragments would
enable RNA contaminants of diverse sizes to persist in bacterial Ribo-Seq libraries,
including structured noncoding RNAs (ncRNAs) (5). These structured noncoding con-
taminants have been acknowledged in the literature (5), but they have not been
thoroughly investigated and are often overlooked when analyzing Ribo-Seq results (6).
We hypothesize that some of these contaminants survive MNase treatment because
they are protected from degradation by virtue of their secondary structure. This
hypothesis is conceptually similar to one utilized in the method FragSeq (7); however,
FragSeq utilizes a different enzyme, nuclease P1, for fragmentation and aims to probe
specific secondary structures of RNA via fragmentation patterns in vitro (7). Here, we
propose that instead of disregarding these contaminant signals in Ribo-Seq libraries,
the micrococcal nuclease (MNase) treatment, much like nuclease P1 in FragSeq (7), may
provide valuable insight in identifying RNA structures in vivo.

To test the hypothesis that structured ncRNAs persist in Ribo-Seq libraries, we
analyzed existing E. coli Ribo-Seq data sets to determine whether these ncRNAs were
detected. We quantified Ribo-Seq and transcriptome sequencing (RNA-Seq) reads
across 65 known ncRNAs in E. coli MG1655 (see Table S1 in the supplemental material).
All of these ncRNAs were found to be transcribed (reads per kilobase million
[RPKM] � 10) in RNA-Seq data from Li et al. (1). Of the 65 known ncRNAs, 61 (94%)
produced a Ribo-Seq signal (RPKM � 10) in Ribo-Seq experiments from Li et al. (1) and
in Ribo-Seq of MG1655 E. coli performed in our laboratory and recently reported (8)
(Table S1). Widespread coding by bacterial small RNAs has been described (9, 10). When
we performed an open reading frame (ORF) calling experiment on E. coli, we found that
43 of the 65 ncRNAs did not overlap with an ORF with coding potential or a ribosome
binding site, and 2 of the expressed ncRNAs did not overlap any possible ORF. This
suggests that the signal cannot be explained by overlapping ORFs.

To test whether fragmentation seen in Ribo-Seq libraries correlates with the struc-
tural accessibility of RNAs, we visualized the fragmentation pattern across a highly
transcribed structured RNA, ssrS, native to E. coli (Fig. 1). The structure of ssrS in E. coli
has been previously validated (11–13). First, we found that Ribo-Seq reads were specific
to the boundaries of ssrS (Fig. 1A). Even if we were to give the “benefit of the doubt”
that the two possible ORFs overlapping ssrS were in fact coding, it still would not
explain all of the reads that specifically align within the ssrS boundaries that do not
overlap potential ORFs. This suggests that the Ribo-Seq signal observed is a contami-
nating noncoding signal. When viewing Ribo-Seq signal for other structures, ffn, sokC,
sokX, and spf (see Fig. S1 in the supplemental material), we also find that contamination
best explains the signal. Focusing only on the 5= and 3= ends of reads, representing
where MNase fragmentation of the RNA occurred, we find that the ends of Ribo-Seq
reads were overrepresented specifically at junctions between structured and unstruc-
tured regions of ssrS. This association was reproducibly observed across studies—in our
Ribo-Seq experiments on E. coli MG1655 (Fig. 1B to D), similar experiments performed
by Li et al. (1), and from MetaRibo-Seq experiments carried out on a fecal sample
containing a clinical E. coli strain, referred to in a previous manuscript as sample E (8).
Importantly, this fragmentation pattern was not reproduced in RNA-Seq libraries that
were not exposed to MNase digestion (1) (Fig. 1E). Therefore, it is likely that in vivo
secondary structures within ssrS protect it from MNase digestion in Ribo-Seq protocols.
These fragments are then retained after monosome recovery and fragment size selec-
tion.

To further test the hypothesis that these contaminant fragments of RNA persist due
to their secondary structure, we next turned our attention to CRISPR arrays from
Ruminococcus. We hypothesized that since direct repeats are the only structured
regions of RNA in CRISPR arrays, only these would survive MNase treatment and
therefore be represented in Ribo-Seq data. To test this, we inspected MetaRibo-Seq
signal distribution along CRISPR arrays and found a strong enrichment for structured
repeats in the CRISPR arrays (Fig. 2). For example, a CRISPR array containing 18 repeats
in Ruminococcus lactaris, a human gut commensal, contained Ribo-Seq signal specific
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to each of the 18 repeats in the array (Fig. 2B). This suggested that MNase was able to
digest spacer regions in these CRISPR arrays but was unable to digest the structured
direct repeat regions. Notably, this reinforces our hypothesis that structured regions of
ncRNAs escape MNase digestion and therefore are represented in Ribo-Seq experi-
ments.

While this approach represents an exciting new repurposing of existing Ribo-Seq
data, there are several limitations to using contaminant Ribo-Seq signals to gain
insights into the structure of RNAs. First, this method is not designed to study
structured RNAs and in fact contains steps to actively filter out such contaminants.
Ribo-Seq protocols enrich for ribosomes and restrict RNA sequences to a specific size
range—therefore, many fragments of RNA that are of structural interest are experi-
mentally removed. Further, this process of eliminating RNA fragments results in a
fragmentation profile that is incomplete. Additionally, we cannot assume that all
contaminant fragments are retained after monosome recovery. The absence of a peak
in a Ribo-Seq fragmentation profile for a given structured RNA does not imply that the
specific structure is not there. We refrain from drawing conclusions from the intensity
of any given peak as this could be influenced by transcript abundance, MNase speci-
ficity, and fragment length. Methods like FragSeq (7) and Shape-Seq (14, 15) will
undoubtedly be more sensitive and provide a more comprehensive catalog of struc-
tured RNAs. Additionally, MNase may not be the best enzyme for such fragmentation.
From a methodological standpoint, Ribo-Seq cannot match the resolution or complete-
ness of existing technologies to probe for the structures of RNAs. That said, the concept
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FIG 1 Ribo-Seq fragmentation patterns of ssrS suggest that RNA secondary structures protect it from
MNase. (A) Interactive Genome Browser (IGV) view of Ribo-Seq signal across ssrS. The black trace above
the displayed genomic regions represents the relative coverage of each region by individual sequencing
reads. The genes are shown in dark gray. Possible ORFs are shown in light gray. (B) Quantification of the
3= and 5= ends of Fremin et al. 2020 (8) Ribo-Seq reads mapping to ssrS in E. coli MG1655. Arrows indicate
peaks in signal. (C) Quantification of the 3= and 5= ends of Li et al. 2014 (1) Ribo-Seq reads mapping to
ssrS in E. coli MG1655. (D) Quantification of the 3= and 5= ends of Fremin et al. 2020 (8) MetaRibo-Seq
reads mapping to ssrS in E. coli within a fecal sample. (E) Quantification of the 3= and 5= ends of Li et al.
2014 (1) RNA-Seq reads mapping to ssrS in E. coli MG1655. (F) Characterized structure of ssrS in E. coli.
This structure diagram was created using data from previous work (11–13). Arrows indicate relative
positions comparing line graphs (A to D) to this structure diagram.
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that ncRNA retained in Ribo-Seq protocols have RNA structure appears to be a
supportable hypothesis as to how these fragments persist after MNase treatment.
Alternatively, it is also possible that contaminant fragments are created when other
proteins, not ribosomes, protect regions from MNase digestion. As Ribo-Seq protocols
continue to improve, the existence of these contaminants may also diminish.

Despite these limitations, there are several notable strengths to these findings. First,
it allows us to better understand the limitations of Ribo-Seq. Second, it provides an
explanation as to why these contaminants exist in the data. Third, it allows us to find
utility in these contaminant Ribo-Seq signals to gain insight into structured RNAs.
Currently, there is a plethora of Ribo-Seq data, especially with the development of
MetaRibo-Seq and the ability to capture the ribosome profile of thousands of taxa at
once. To our knowledge, no one has performed a method like FragSeq (7) or Shape-Seq
(14) on a complex fecal community. Ribo-Seq has the potential advantage of partially
capturing in vivo RNA structures, in high throughput, and can immediately be applied
to the vast existing data sets. Additionally, Ribo-Seq data may be leveraged to identify
novel structured RNAs, many of which are yet to be discovered (16).

In summary, here we highlight contaminant Ribo-Seq signals and propose an
explanation for why these fragments exist in the data. First, we find that most ncRNAs
in E. coli contain Ribo-Seq signal that cannot be entirely explained by coding regions.
Second, we analyzed the fragmentation pattern of a well-established structured RNA,
ssrS, in E. coli. We observed that the ends of Ribo-Seq reads accumulated at junctions
between structured and unstructured regions of the ssrS RNA, suggesting that the RNA
structure is protected against MNase digestion, akin to FragSeq (7). Third, we inspected
the signal distribution along CRISPR arrays in Ruminococcus lactaris. We observed that
structured repeats within CRISPR arrays (16) retained Ribo-Seq reads while spacer
regions did not retain reads, suggesting that the structure of the direct repeats was
protected from MNase. By focusing on these contaminants in Ribo-Seq data, we
specifically addressed their prevalence, why they exist in this data type, and how they
may be useful to researchers interested in the in vivo structure of RNAs.

FIG 2 MetaRibo-Seq signal across CRISPR arrays in two gut commensals suggests that secondary structures of direct repeats protect it from MNase. (A)
Ribo-Seq signal across a CRISPR array containing 84 repeats, predicted by minCED (25). This is found in Ruminococcus sp. strain UNK.MGS-30. For reference,
this was predicted from sample C in previous work (8). (B) Ribo-Seq signal across an 18-repeat CRISPR array in Ruminococcus lactaris, also predicted by minCED
(25). For reference, this was predicted from sample A in previous work (8). Arrows indicate direct repeats.
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Methods. (i) Data download. Reads from all samples used are publicly available.
The in-house-generated data can be found under BioProject accession no.
PRJNA510123 (8, 17). Ribo-Seq and RNA-Seq for E. coli generated by Li et al. in 2014 can
be found under BioProject accession no. PRJNA232843 (1).

(ii) Genome annotation. To annotate all possible genes in E. coli, we used Prodigal
(18) with a lower length cutoff of 15 nucleotides to capture small ORFs also (19). We
used the -s parameter with Prodigal to access the intermediate output, which assigned
start site scores and coding potential scores to every possible ORF. CRISPR arrays were
predicted from reference genomes using minCED (25) as a part of Prokka v1.12 (20).

(iii) Read mapping. Reads were trimmed with trim galore version 0.4.0 using
cutadapt 1.8.1 (21) with flags – q 30 and –illumina. Reads were mapped to the
annotated assemblies using bowtie version 1.1.1 (22). Reads were counted using
bedtools (23) multicov. The 5= and 3= positions of reads were determined using
bedtools (23) genomecov. When analyzing fragmentation patterns of reads, reads
derived from fragments longer than the read length were removed from the analysis.
Interactive Genome Browser (IGV) (24) was used to visualize coverage. Reads per
kilobase million (RPKM) calculations were performed using in-house scripts.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, PDF file, 0.7 MB.
TABLE S1, XLSX file, 0.01 MB.
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