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Abstract: Glutamine and lipids are two important components of proliferating cancer cells. Studies
have demonstrated that glutamine synthetase (GS) boosts glutamine-dependent anabolic processes
for nucleotide and protein synthesis, but the role of GS in regulating lipogenesis remains unclear.
This study identified that insulin and glutamine deprivation activated the lipogenic transcription
factor sterol regulatory element-binding protein 1 (SREBP1) that bound to the GS promoter and
increased its transcription. Notably, GS enhanced the O-linked N-acetylglucosaminylation (O-
GlcNAcylation) of the specificity protein 1 (Sp1) that induced SREBP1/acetyl-CoA carboxylase 1
(ACC1) expression resulting in lipid droplet (LD) accumulation upon insulin treatment. Moreover,
glutamine deprivation induced LD formation through GS-mediated O-GlcNAc-Sp1/SREBP1/ACC1
signaling and supported cell survival. These findings demonstrate that insulin and glutamine
deprivation induces SREBP1 that transcriptionally activates GS, resulting in Sp1 O-GlcNAcylation.
Subsequently, O-GlcNAc-Sp1 transcriptionally upregulates the expression of SREBP1, resulting in a
feedforward loop that increases lipogenesis and LD formation in liver and breast cancer cells.

Keywords: sterol regulatory element-binding protein 1; glutamine synthetase; O-GlcNAcylation;
lipid droplet; cancer

1. Introduction

Sterol regulatory element-binding protein 1 (SREBP1) is the major transcription factor
that regulates the expression of lipogenic genes [1]. De novo lipogenesis is controlled
by acetyl-CoA carboxylase 1 (ACC1), which is regulated at the transcriptional and post-
translational levels [2,3]. Transcriptionally, insulin induces SREBP1 binding to the ACC1
promoter resulting in ACC1 transactivation and augmented lipogenesis [1,3]. In addition
to lipogenic genes, SREBP1 is predicted to regulate various non-lipogenic genes [4,5] and
plays an important role in autophagy [4], pro-fibrotic signaling [6], endoplasmic reticulum
stress [7], and metabolic circadian rhythm [8]. However, the function of SREBP1 for
regulating glutamine metabolism remains unknown.

Glutamine functions as a nitrogen donor, a signaling molecule, and an exchanger
used to import other amino acids in proliferating cancer cells [9]. Many cancer cells
rely on extracellular glutamine uptake and cannot survive in glutamine-deprived condi-
tions. However, some cancer cells that express high levels of glutamine synthetase (GS),
the enzyme responsible for de novo glutamine production, have increased glutamine-
dependent anabolic processes and are more resistant to glutamine deprivation than cells
with low GS expression [10–15]. Additionally, glutamine is essential for de novo uridine-
diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis and protein O-linked N-
acetylglucosaminylation (O-GlcNAcylation) [16,17]. Protein O-GlcNAcylation is involved
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in the regulation of diverse cellular processes including transcription, epigenetic modifica-
tions and cell signaling [18]. The O-GlcNAcylation of the transcription factor specificity
protein 1 (Sp1) is required for binding to the promoter of and inducing the expression of
SREBP1 [19–21]. Although adding glutamine in the media increases Sp1-induced SREBP1
expression [22], the role of GS on SREBP1 induction via O-GlcNAcylation remains unclear.

In this study, we demonstrate that SREBP1 binds to the promoter, and induces the ex-
pression of GS resulting in lipid droplet (LD) formation through O-GlcNAc-Sp1/SREBP1/ACC1
signaling in liver and breast cancer cells. These findings reveal the expanded function
of SREBP1 for regulating glutamine metabolism and reveal the effects of GS on protein
O-GlcNAcylation and lipogenesis in cancer.

2. Results
2.1. Insulin and Glutamine Deprivation Upregulate GS Expression through SREBP1

We have previously reported the lipogenic effect of insulin on SREBP1 induction and
cell growth in liver and breast cancer cells [3]. 200 nM insulin has been reported to mimic
hyperinsulinemia in individuals with type 2 diabetes mellitus [3]. As glutamine is involved
in cancer cell proliferation, we also tested the effect of insulin on GS induction. Indeed, GS
protein and mRNA expression were induced by 200 nM of insulin in HepG2 (Figure 1A,B)
or MCF7 (Figure 1E,F) cells which were attenuated by 50 µM of betulin, an SREBP1 inhibitor,
in HepG2 (Figure 1C) or MCF7 (Figure 1H) cells. Consistent with previous results, GS
expression was also induced upon glutamine deprivation [11–13] which was attenuated
with 50 µM betulin in HepG2 (Figure 1D) or MCF7 cells (Figure 1I). In addition to GS
induction, insulin also increased the level of intracellular glutamine in MCF7 cells (Figure
1G). These findings demonstrate that iinsulin and glutamine deprivation-induced GS
expression is mediated by SREBP1.
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Figure 1. Insulin and glutamine deprivation upregulate GS expression through SREBP1. (A,B) HepG2 cells were treated
with 200 nM insulin for indicated time periods (A) or with 200 nM insulin for 48 h (B). (C) HepG2 cells were treated
with 50 µM SREBP1 inhibitor betulin for 30 min prior to 200 nM insulin treatment for 48 h. (D) HepG2 cells were treated
with 50 µM SREBP1 inhibitor betulin for 30 min prior to glutamine deprivation for 24 h. (E,F) MCF7 cells were treated
with 200 nM insulin for indicated time periods (E) or with 200 nM insulin for 48 h (F). (G) MCF7 cells were treated with
200 nM insulin for 72 h followed by intracellular glutamine quantification. (H) MCF7 cells were treated with 50 µM SREBP1
inhibitor betulin for 30 min prior to 200 nM insulin treatment for 48 h. (I) MCF7 cells were treated with 50 µM SREBP1
inhibitor betulin for 30 min prior to glutamine deprivation for 24 h. Cell lysates were analyzed by Western blot with
specified antibodies or qRT-PCR with specific primers. Data represent means plus SEM. * p < 0.05 and *** p < 0.001.

2.2. SREBP1 Binds to the GS Promoter Leading to GS Transactivation

As members of the bHLHLZ family of DNA binding proteins, SREBP1 dimerizes and
recognizes the sterol regulatory element (SRE) sequence ATCACCCCAC with permissive
diversities in a few bases [23]. An analysis of the putative GS promoter regions using the
Regulatory Sequence Analysis Tools and the indicated SREBF1 motif (MAO595.1) from
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JASPAR identified a SREBP1 binding sequence ATCACCTCAG (−1393 to −1384) in the
human GS promoter. This result suggested GS may be transcriptionally regulated by
SREBP1. The overexpression of nSREBP1a or nSREBP1c enhanced GS protein expression
in HEK293T or MCF7 cells (Figure 2A). A luciferase assay indicated that nSREBP1a or
nSREBP1c increased GS promoter activity in HEK293T or MCF7 cells (Figure 2B). These
results corresponded to increased SREBP1 binding to the GS promoter in insulin-treated
HepG2 cells (Figure 2C). Subsequently, we investigated whether these effects occur in
human cancer samples. GS mRNA expression levels (Figure 2D,E) and SREBP1 mRNA
expression levels [3] were higher in breast and liver cancer tissues compared to adjacent non-
cancerous tissues according to GEO database analyses. Furthermore, a positive correlation
was observed between SREBP1 and GS mRNA expression in breast cancer compared to
adjacent non-cancerous tissues (r = 0.409, p < 0.0001) (Figure 2F). These results demonstrate
that SREBP1 induces GS transactivation.
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Figure 2. SREBP1 binds to the GS promoter leading to GS transactivation. (A) HEK293T and MCF7 cells were transiently
transfected with vector, pcDNA3-nSREBP1a or pcDNA3-nSREBP1c (n: nuclear form) for 24 h and analyzed by Western
blot with specified antibodies. nSREBP1: nuclear SREBP1. (B) HEK293T and MCF7 cells were transiently transfected with
vector, pcDNA3-nSREBP1a or pcDNA3-nSREBP1c along with the GS promoter conjugated firefly luciferase reporters and a
Renilla luciferase internal control plasmid. Luciferase activities were quantified after 24 h, and promoter activities were
calculated based on the ratios of firefly luminescence versus Renilla luminescence. Promoter activities of nSREBP1a or
nSREBP1c-transfected cells were normalized to that of vector-transfected control cells as relative promoter activities (means
plus SEM). *** p < 0.001 (ANOVA) represents the statistical significance compared to vector-transfected control cells. (C) The
relative amount of SREBP1 binding to the GS promoter upon 200 nM insulin treatment for 48 h was analyzed by ChIP assay
using the SREBP1 antibody followed by qPCR with specific primers in HepG2 cells. Fold enhancement represented the
abundance of enriched DNA fragments over an IgG control and the number was shown as the mean plus SEM. ** p < 0.01.
(D,E) GS expression values were shown in (D) liver (GSE87630) and (E) breast (GSE83591) cancer tissues compared to
adjacent non-cancerous tissues (normal) from database analysis. * p < 0.05 and ** p < 0.01. (F) Expression levels of SREBP1
and GS in TCGA dataset of breast cancer were used to perform Pearson’s correlation analysis.

2.3. GS Triggers a Feedforward Loop of O-GlcNAc-Sp1/SREBP1/ACC1 Signaling That Induces
LD Formation upon Insulin Treatment

Next, the biological function of insulin-induced GS was investigated. Insulin induced
LD formation, whereas knockdown or inhibition of GS by 200 µM MSO reduced 200 nM
insulin-induced LD formation in HepG2 cells (Figures 3A and S1A). Intriguingly, knock-
down of GS attenuated insulin-induced SREBP1/ACC1 protein expression (Figure 3B).
Since glutamine is the precursor of UDP-GlcNAc for protein O-GlcNAcylation and SREBP1
expression is regulated by O-GlcNAc-Sp1 [22], we found that knockdown of GS decreased
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the level of O-GlcNAc-Sp1, which corresponded to reduced SREBP1 protein expression
with or without insulin treatment (Figure 3B). Knockdown of GS had similar effects on
insulin-induced LD formation and on O-GlcNAc-Sp1/SREBP1/ACC1 protein expression in
MCF7 cells (Figure 3C,D). Furthermore, the overexpression of GS induced SREBP1/ACC1
protein and mRNA expression in HepG2 cells (Figure 4A,B). The overexpression of GS also
increased the level of O-GlcNAc-Sp1 (Figure 4A), which was correlated with enhanced
SREBP1 protein levels and the induction of LD formation in HepG2 cells (Figure 4C,D).
Increased O-GlcNAc-Sp1/SREBP1/ACC1 protein expression (Figure 4E) and LD formation
(Figure 4F,G) were also observed in MCF7 cells overexpressing GS. These findings indi-
cate that GS increases Sp1 O-GlcNAcylation resulting in the induction of SREBP1/ACC1
expression and insulin-induced LD formation.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 4 of 13 
 

 

2.3. GS Triggers a Feedforward Loop of O-GlcNAc-Sp1/SREBP1/ACC1 Signaling That Induces 
LD Formation upon Insulin Treatment 

Next, the biological function of insulin-induced GS was investigated. Insulin induced 
LD formation, whereas knockdown or inhibition of GS by 200 µM MSO reduced 200 nM 
insulin-induced LD formation in HepG2 cells (Figures 3A and S1A). Intriguingly, knock-
down of GS attenuated insulin-induced SREBP1/ACC1 protein expression (Figure 3B). 
Since glutamine is the precursor of UDP-GlcNAc for protein O-GlcNAcylation and 
SREBP1 expression is regulated by O-GlcNAc-Sp1 [22], we found that knockdown of GS 
decreased the level of O-GlcNAc-Sp1, which corresponded to reduced SREBP1 protein 
expression with or without insulin treatment (Figure 3B). Knockdown of GS had similar 
effects on insulin-induced LD formation and on O-GlcNAc-Sp1/SREBP1/ACC1 protein 
expression in MCF7 cells (Figure 3C,D). Furthermore, the overexpression of GS induced 
SREBP1/ACC1 protein and mRNA expression in HepG2 cells (Figure 4A,B). The overex-
pression of GS also increased the level of O-GlcNAc-Sp1 (Figure 4A), which was corre-
lated with enhanced SREBP1 protein levels and the induction of LD formation in HepG2 
cells (Figure 4C,D). Increased O-GlcNAc-Sp1/SREBP1/ACC1 protein expression (Figure 
4E) and LD formation (Figure 4F,G) were also observed in MCF7 cells overexpressing GS. 
These findings indicate that GS increases Sp1 O-GlcNAcylation resulting in the induction 
of SREBP1/ACC1 expression and insulin-induced LD formation. 

 
Figure 3. Knockdown of GS attenuates insulin-induced LD formation and O-GlcNAc-Sp1/SREBP1/ACC1 expression. (A,B) 
HepG2 cells stably transfected with non-targeting control or GS shRNA were cultured in the absence or presence of 200 
nM insulin for 48 h. (C,D) MCF7 cells stably transfected with non-targeting control or GS shRNA were cultured in the 
absence or presence of 200 nM insulin for 48 h. (A,C) LD was stained with Oil Red O and normalized to protein concen-
trations for the quantitative analysis. (B,D) Cell lysates were analyzed by Western blot with specified antibodies. flSREBP1: 
full-length SREBP1. The bar graphs on the right represent the densitometry analyses of the ratios of indicated proteins. 
Data represent means plus SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 compared to control cells. # p < 0.05, 
## p < 0.01, and ### p < 0.001 between indicated groups. 

Figure 3. Knockdown of GS attenuates insulin-induced LD formation and O-GlcNAc-Sp1/SREBP1/ACC1 expression.
(A,B) HepG2 cells stably transfected with non-targeting control or GS shRNA were cultured in the absence or presence
of 200 nM insulin for 48 h. (C,D) MCF7 cells stably transfected with non-targeting control or GS shRNA were cultured
in the absence or presence of 200 nM insulin for 48 h. (A,C) LD was stained with Oil Red O and normalized to protein
concentrations for the quantitative analysis. (B,D) Cell lysates were analyzed by Western blot with specified antibodies.
flSREBP1: full-length SREBP1. The bar graphs on the right represent the densitometry analyses of the ratios of indicated
proteins. Data represent means plus SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 compared to control cells. #

p < 0.05, ## p < 0.01, and ### p < 0.001 between indicated groups.
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Figure 4. The overexpression of GS increases O-GlcNAc-Sp1/SREBP1/ACC1 expression and LD formation. (A–D) HepG2
cells stably transfected with vector or pBabe-GS were cultured. (E–G) MCF7 cells stably transfected with vector or pBabe-GS
were cultured. (A,E) Cell lysates were analyzed by Western blot with specified antibodies. flSREBP1: full-length SREBP1.
The bar graphs on the right represent the densitometry analyses of the ratios of indicated proteins. (B) Relative transcript
levels were determined via qRT-PCR. (C,F) LD was stained with Oil Red O and normalized to protein concentrations for the
quantitative analysis. Data represent means plus SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001. (D,G) LD was stained with
the BODIPY 505/515 (green) and the nuclei were stained with DAPI (blue).

2.4. Glutamine Deprivation Induces LD Formation through GS-Mediated
O-GlcNAc-Sp1/SREBP1/ACC1 Signaling, and GS Promotes Cell Survival under Glutamine
Deprivation

In addition to insulin, and consistent with previous findings, we found that glutamine
deprivation induced LD formation in HepG2 and MCF7 cells (Figure 5A,C) [24]. Knock-
down or inhibition of GS by 200 µM MSO decreased glutamine deprivation-mediated
LD formation in HepG2 (Figures 5A and S1B) or MCF7 (Figure 5C) cells. Furthermore,
glutamine deprivation induced GS, O-GlcNAc-Sp1, SREBP1, and ACC1 protein expression,
which was attenuated if GS was knocked down in HepG2 (Figure 5B) or MCF7 (Figure 5D)
cells. Moreover, the addition of 4 or 40 mM glutamine to glutamine-deprived HepG2 and
MCF7 cells decreased glutamine deprivation-induced LD formation and GS protein expres-
sion (Figure S2A,B). In summary, these results demonstrate that GS mediates glutamine
deprivation-induced LD formation through O-GlcNAc-Sp1/SREBP1/ACC1 signaling.
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expression. (A,B) HepG2 cells stably transfected with non-targeting control or GS shRNA were cultured under glutamine
deprivation (-Gln) for 24 h. (C,D) MCF7 cells stably transfected with non-targeting control or GS shRNA were cultured
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represent means plus SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 compared to control cells. # p < 0.05 and
## p < 0.01 between indicated groups.

Glutamine deprivation suppresses cell growth in several cancers [25]. Our results
demonstrated that glutamine deprivation decreased HepG2 and MCF7 cell prolifera-
tion (Figure 6A,D). GS has been demonstrated to promote breast cancer, sarcoma, and
glioblastoma cell survival under glutamine deprivation [11–13]. The overexpression of GS
increased the proliferation of glutamine-deprived HepG2 cells (Figure 6B), whereas the
survival-promoting effects were not observed in MCF7 cells overexpressing GS (Figure 6E).
Furthermore, knockdown of GS decreased the proliferation of glutamine-deprived HepG2
cells at 24, 48, and 72 h (Figure 6C), whereas the cell growth of GS-silencing MCF7 cells
following glutamine deprivation only significantly decreased at 72 h compared to non-
targeting control shRNA-transfected control cells (Figure 6F). Compared to MCF7 cells,
HepG2 cells expressed higher GS levels (Figure 6G). Studies have identified the overexpres-
sion of GS in hepatocellular carcinoma (HCC) and suggest that GS is a potential marker of
HCC [26]. Consistent with this finding, our results indicate that liver cancer cells express
high levels of GS that support cell survival under glutamine deprivation.
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3. Discussion

Insulin plays a pleiotropic role in the regulation of nutrient uptake, gene expression,
and synthesis of glycogen, proteins, DNA, and lipids [27]. However, whether insulin
modulates glutamine metabolism is unknown. Our data reveal a novel finding: insulin
increases GS expression, which is mediated by SREBP1. This finding indicates that insulin-
induced SREBP1 not only promotes lipogenesis but also increases glutamine synthesis.
Moreover, enhanced GS expression boosts glutamine-dependent anabolic pathways in
nucleotide and protein synthesis [11] and also promotes lipogenesis and LD formation (as
demonstrated in the current study), consistent with the functions of insulin. In addition
to insulin, glutamine deprivation-induced GS expression is mediated by SREBP1, which
further increases lipogenesis and supports cell survival under glutamine deprivation
(Figures 5 and 6). These findings reveal the expanded function of SREBP1 for enhancing
glutamine synthesis along with lipogenesis, facilitating cancer cell growth.

Our results demonstrate that GS triggers a feedforward loop of O-GlcNAc-Sp1/SREBP1/
ACC1 signaling that promotes lipogenesis. Moreover, GS mediates glutamine formation,
contributing to the lipogenic acetyl-CoA production in the cytosol via oxidative glutamine
metabolism through glutaminase, glutamate dehydrogenase, the citrate shuttle, and ATP
citrate lyase [28,29]. On the other hand, glutamine is a carbon source for reductive glu-
tamine metabolism in the production of citrate through cytoplasmic isocitrate dehydroge-
nase 1 (IDH1) or mitochondrial isocitrate dehydrogenase 2 (IDH2) and aconitase [30–32].
Notably, SREBP1 stimulates IDH1 expression that increases glutamine-derived lipogene-
sis [33]. These results support our finding that SREBP1 not only stimulates GS expression
for the production of glutamine but also promotes glutamine-mediated lipogenesis through
IDH1 in cancer.
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Moreover, glutamine, glucose, and fatty acids are precursors of the hexosamine biosyn-
thetic pathway (HBP) for the production of UDP-GlcNAc, a substrate of O-GlcNAc trans-
ferase. Increased protein O-GlcNAcylation on serine or threonine residues control protein
stability, localization, transcriptional activity, and multiple other cellular functions [34,35].
This study indicates that GS promotes Sp1 O-GlcNAcylation, activating Sp1 to increase
SREBP1/ACC1 expression and LD formation in liver and breast cancer cells. Similarly,
the O-GlcNAcylation of Sp1 has been demonstrated to upregulate glycerol-3-phosphate
acyltransferase 1 expression, which catalyzes lysophosphatidic acid production to protect
cells in hypoxic conditions [36]. Moreover, the O-GlcNAcylation of fatty acid synthase
increases protein stability, promoting lipogenesis and hepatic steatosis [37]. These findings
suggest an important role of GS-mediated O-GlcNAcylation in the regulation of lipogenic
enzymes to increase lipogenesis and cancer cell growth.

In conclusion, this study demonstrates that SREBP1 transcriptionally activates GS,
promoting intracellular glutamine production and leading to increased O-GlcNAcylation
of Sp1; in turn, O-GlcNAc-Sp1 transcriptionally upregulates the expression of SREBP1,
resulting in a feedforward loop increasing lipogenesis and LD formation in liver and breast
cancer cells (Figure 7). Hence, this study demonstrates the expanded function of SREBP1
for regulating GS expression and reveals a novel function of GS in the regulation of cancer
lipogenesis.
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Figure 7. Schematic illustration of SREBP1-induced GS triggering a feedforward loop of O-GlcNAc-
Sp1/SREBP1/ACC1 signaling that augments LD formation. SREBP1: sterol regulatory element-
binding protein 1; GS: glutamine synthetase; O-GlcNAc: O-linked N-acetylglucosamine; Sp1: speci-
ficity protein 1; ACC1: acetyl-CoA carboxylase 1.

4. Materials and Methods
4.1. Antibodies and Reagents

Antibodies used were as follows: SREBP1 (sc-13551, Santa Cruz Biotechnology, Dal-
las, TX, USA; 1:500 for WB), ACC (#3676, Cell Signaling Technology, Danvers, MA, USA;
1:1000 for WB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (MA5-15738, Ther-
moFisher Scientific, Waltham, MA, USA; 1:10,000 for WB), GS (G2781, Sigma-Aldrich,
Burlington, MA, USA; 1:1000–1:10,000 for WB, and GTX630654, GeneTex, Irvine, CA, USA;
1:1000–1:10,000 for WB), Sp1 (07-645, Millipore, Burlington, MA, USA; 1:1000 for WB),
O-linked N-acetylglucosamine (clone RL2) (MABS157, Millipore, Burlington, MA, USA;
1:500 for WB), horseradish peroxidase (HRP)-conjugated anti-mouse IgG (AP124P, Mil-
lipore, Burlington, MA, USA; 1:500 for SREBP1; 1:10,000 for GAPDH; 1:500–1:5000 for
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GS from GeneTex; 1:500 for O-linked N-acetylglucosamine), HRP-conjugated anti-rabbit
IgG (AP132P, Millipore, Burlington, MA, USA; 1:1000 for ACC; 1:500–1:5000 for GS from
Sigma-Aldrich; 1:500 for Sp1), and normal mouse IgG (#31903, ThermoFisher Scientific,
Waltham, MA, USA). Insulin (Humulin R) was purchased from Eli Lilly and Company.
L-Methionine sulfoximine (MSO) (M5379, Sigma-Aldrich, Burlington, MA, USA) was pur-
chased from Sigma-Aldrich. Betulin (sc-234016, Santa Cruz Biotechnology, Dallas, TX, USA)
was purchased from Santa Cruz Biotechnology. The shRNA targeting GS and non-targeting
control shRNA were purchased from Sigma-Aldrich.

4.2. Cell Lines and Culture

HepG2 and MCF7 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
with 10% fetal bovine serum (FBS), 100 µg/mL streptomycin, and 100 units/mL penicillin
as described previously [3]. The GS-expressing cells were established by retroviral infection
of pBabe-GS construct and selected with puromycin (1 µg/mL) as a stable cell pool. The
GS-silencing cells were established by lentiviral infection of the GS shRNA and selected
with puromycin (1 µg/mL) for stable cell pools. Glutamine free DMEM (A1443001, Gibco,
Waltham, MA, USA) and glutamine (CC515-0100, GeneDireX, Taichung, Taiwan) were
purchased from Gibco and GeneDireX, respectively.

4.3. Western Blotting

Cells were harvested in a lysis buffer containing 10 mM Tris-HCl (pH 7.4), 100 mM
NaCl, 1 mM EDTA, 0.1% SDS, 10% glycerol, 1% Triton X-100, 1 mM NaF, 0.5% sodium de-
oxycholate, 20 mM Na4P2O7, and 2 mM Na3VO4 supplemented with phenylmethylsulfonyl
fluoride (PMSF) and protease inhibitors. The protein concentrations were determined by
the Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA). An equal amount of samples were
analyzed by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to a polyvinylidene fluoride (PVDF) membrane. The membranes were
immunoblotted with primary antibodies overnight at 4 ◦C followed by incubation with the
HRP-conjugated secondary antibodies for 60 min at 25 ◦C. The immunoreactive signals
were detected by using the enhanced chemiluminescence (ECL) detection kit (WBKLS0500,
Millipore, Burlington, MA, USA) or the Trident Femto-ECL (GTX14698, GeneTex, Irvine,
CA, USA). Images were visualized by a chemiluminescence imaging system (GeneGnome
5 chemiluminescent imaging system, Syngene, Frederick, MD, USA) or the Invitrogen iB-
right CL1000 Imaging Systems (ThermoFisher Scientific, Waltham, MA, USA). The relative
amount of protein was quantified by densitometry analyses using ImageJ software (NIH).

4.4. Quantitative Reverse Transcription PCR (qRT-PCR)

Total cellular RNA was isolated with the TRIzol Reagent (Invitrogen, Waltham, MA,
USA) and reverse transcribed with the high capacity cDNA Reverse Transcription Kit
(Applied Biosystems, Waltham, MA, USA). Real-time quantitative PCR (qPCR) was per-
formed with the Fast SYBR Green Master Mix (Applied Biosystems, Waltham, MA, USA)
on the StepOnePlus Real-Time PCR system (Applied Biosystems, Waltham, MA, USA). The
relative abundance of a particular mRNA was normalized to human GAPDH mRNA as an
internal control. Specific primers are shown in Table S1.

4.5. Luciferase Assay

A 2528 bp DNA fragment comprising the GS promoter region and exon1 was PCR
amplified from the human genomic DNA. The PCR product was cloned into the pGL4.17
vector containing the firefly luciferase reporter. To determine the promoter activity, cells
were transiently transfected with vector, pcDNA3-nSREBP1a (nuclear form of SREBP1a
encoding 485 AA) or pcDNA3-nSREBP1c (nuclear form of SREBP1c encoding 461 AA) [38]
(50 ng) accompanied with the GS promoter constructs (50 ng) as well as the internal control
plasmid pRL-CMV (5 ng) using jetPRIME® (Polyplus transfection, Illkirch-Graffenstaden,
France). Cells were seeded at 104 cells per well in 96-well plates. Twenty-four hours post
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transfection, luciferase activities were determined following Dual-Glo® Luciferase Assay
System protocol (#E2920, Promega, Madison, WI, USA) with Infinite 200 PRO multimode
plate reader (Tecan, Männedorf, Switzerland). The ratios of firefly luminescence versus
Renilla luminescence were calculated as promoter activities and the promoter activities
of nSREBP1a or nSREBP1c-transfected cells were normalized to that of vector-transfected
control cells as relative promoter activities.

4.6. Intracellular Glutamine Measurement

Cells were seeded at 5 × 105 cells per well in 60-mm dish followed by 200 nM insulin
treatment for 72 h. The collected cells were separated equally to measure intracellular
glutamine levels and protein concentrations. Glutamine levels were measured by glu-
tamine colorimetric assay kit (#K556, Biovision, Milpitas, CA, USA) according to the
manufacturer’s instructions. Glutamine concentration is expressed as nmol/mg of protein.

4.7. ChIP Assay

Chromatin immunoprecipitation (ChIP) assays were performed as described previ-
ously [3]. Briefly, proteins were cross-linked to DNA for 10 min with the addition of 1%
formaldehyde and the reaction was stopped by adding 125 mM glycine. Cells were washed
and scraped with phosphate buffer saline (PBS) containing protease inhibitors. Cells were
collected and lysed with the ChIP lysis buffer (50 mM HEPES-KOH pH 7.5, 1 mM EDTA
pH 8.0, 140 mM NaCl, 0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, and protease
inhibitors). Samples were sonicated with the sonicator (BioruptorTM UCD-200, Diagenode,
Denville, NJ, USA) and target proteins were immunoprecipitated with the Dynabeads™
Protein G (#10004D, Invitrogen, Waltham, MA, USA) in the dilution buffer with SREBP1 or
normal mouse IgG antibodies overnight at 4 ◦C. The beads were washed with the wash
buffer, the final wash buffer, and finally eluted in the elution buffer (100 mM NaHCO3,
1% SDS, and proteinase K) with shaking at 55 ◦C for 2 h and inactivating proteinase K by
incubation at 95 ◦C for 10 min. The DNA cleanup kit (D4034, Zymo Research, Irvine, CA,
USA) was used to purify all DNA samples before qPCR analysis. Specific primers for ChIP
are shown in Table S1.

4.8. Lipid Staining

For lipid staining, Oil Red O staining was performed according to manufacturer’s
instructions (O0625, Sigma-Aldrich, Burlington, MA, USA). Briefly, cells were washed once
with PBS and fixed in 4% paraformaldehyde overnight. Cells were washed once with 60%
isopropanol and incubated with Oil Red O solution for 10 min. Cells were then washed
5 times with ddH2O and photographed using the bright-field microscopy. Oil Red O were
eluted by adding 100% isopropanol for 2 h, and the absorbance was measured at 500 nm
and normalized to its protein concentration. BODIPY 505/515 staining was also performed
according to manufacturer’s instructions (#D3921, Invitrogen, Waltham, MA, USA). Briefly,
cells were washed once with PBS and fixed in 4% paraformaldehyde for 15 min. Cells
were washed three times with PBS and incubated with 0.2 µM BODIPY 505/515 for 30 min.
The cells were then counterstained with 1.5 µg/mL DAPI (H-1200, Vector Laboratories,
Burlingame, CA, USA) for 5 min. Cells were examined and photographed using the
fluorescence microscopy.

4.9. Cell Growth Assay

Cells (104/well) were seeded in 24-well culture plates for 24 h, and then treated with
various treatments. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay was performed to measure cell growth rate. Briefly, cells were washed with
PBS and then incubated with the MTT solution (1 mg/mL) at 37 ◦C for 4–6 h. After
removing the MTT solution, dimethyl sulfoxide (DMSO) was added to dissolve the purple
formazan crystals, and the absorbance was measured at 570 nm with a reference wavelength
of 630 nm using the VersaMax Microplate Reader (Molecular Devices, San Jose, CA, USA).
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4.10. Database Analyses

For SREBP1 and GS expression in liver and breast cancer, a public dataset containing
normal and liver cancer specimens (GSE87630) or normal and breast cancer specimens
(GSE83591) was respectively analyzed from GEO datasets (https://www.ncbi.nlm.nih.
gov/gds/, accessed on 27 September 2019) via analysis platform of GEO2R. Next, analysis
of expression correlation between SREBP1 and GS in TCGA dataset of breast cancer was
analyzed by using UCSC Xena platform (https://xena.ucsc.edu/, accessed on 27 September
2019).

4.11. Statistical Analyses

Unless indicated, results are expressed as mean plus standard error of the mean (SEM)
from at least three independent experiments. Experiments comparing two groups were
analyzed by the two-tailed unpaired Student’s t-test with GraphPad Prism 5 for Windows
(GraphPad Software Inc, San Diego, CA, USA). Differences among multiple groups were
analyzed by ANOVA followed by the Bonferroni or Dunnett post hoc test. Correlation
analysis was evaluated by Pearson’s correlation (with a two-tailed test of significance) with
GraphPad Prism 5. The statistical significance level was 0.05. * p < 0.05, ** p < 0.01 and
*** p < 0.001 or # p < 0.05, ## p < 0.01 and ### p < 0.001 were considered to be statistically
significant.
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IDH1 isocitrate dehydrogenase 1
IDH2 isocitrate dehydrogenase 2
LD lipid droplet
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
O-GlcNAcylation O-linked N-acetylglucosaminylation
PMSF phenylmethylsulfonyl fluoride
PVDF polyvinylidene fluoride
PBS phosphate buffer saline
qPCR quantitative PCR
SREBP1 sterol regulatory element-binding protein 1
Sp1 specificity protein 1
SRE sterol regulatory element
SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SEM standard error of the mean
UDP-GlcNAc uridine-diphosphate-N-acetylglucosamine
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