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Does rapamycin slow down time?

Mikhail V. Blagosklonny

According to Einstein’s theory, time is relative and 
can be made to move slower by increasing the speed of the 
observer. In the famous twin paradox, this slowing of time 
enables one identical twin to live longer than the other. 
Animals treated with rapamycin, an inhibitor of mTOR, 
also live longer [1-5]. Of course, that does not mean  that 
rapamycin slows time in the Einsteinian sense. Instead, it 
figuratively slows biological time by slowing seemingly 
opposite processes. On the one hand, rapamycin (and 
other mTOR inhibitors) retards cell proliferation, while 
on the other hand, it retards loss of proliferative potential 
[6, 7]. In other words, rapamycin decelerates proliferation 
while preserving the potential to proliferate. In that way, 
rapamycin suppresses both cell growth and geroconversion 
(conversion to senescence). It has been calculated that 
rapamycin slows geroconversion by approximately 3-fold 
[6]. By doing so, rapamycin slows development and aging, 
reproduction and menopause, and hyperfunction and 
functional decline [8]. This is because in each case one 
process is a continuation of the other (Figure 1, 2). For 
example, aging is a continuation of developmental growth 
(Figure 1), and functional decline (loss of function, Figure 
2) results from earlier hyperfunction [8]. 

The slowing of biological time entails “suppression 
plus preservation.” For example, by suppressing beta-
cell function, rapamycin preserves beta-cell function in 
the long run [9-11]; or by suppressing reproduction, it 
preserves the oocytes, thereby delaying menopause [12-
14]. In theory, a woman who wants to have children later 
in life could postpone reproduction using rapamycin. This 

can be seen as “freezing the ovaries” until later in life. 
Rapamycin suppresses cellular hyperfunction and thus 
delays all diseases of aging, from cancer to Alzheimer’s 
[8]. Pathological processes such as age-related diseases 
are continuations (or exacerbations) of physiological 
processes. Geroconversion is a continuation of growth 
(Figure 1), hyperfunction is a continuation of tissue-
specific cellular function (Figure 2), age-related 
hypertension and presbyopia are continuations of 
developmental trends (see Figure 3 in ref. 15). Therefore, 
aging is both hyperfunctional and quasi-programmed [8, 
16, 17]. (A quasi-program is a purposeless continuation 
of a developmental program.) Hyperfunction eventually 
leads to organ damage and functional decline [8, 15]. 
By suppressing hyperfunction, rapamycin delays organ 
damage (e.g., infarction) and loss of organ function [8, 
15]. In addition to their therapeutic effects, the side effects 
of rapalogs are also consequences of slowing down time. 
For example, by slowing cell proliferation, high doses of 
rapamycin induce reversible anemia, mucositis and skin 
rash. 

So why does rapamycin do all that? Rapamycin is 
produced by the bacterium Streptomyces hygroscopicus, 
which lives in the soil of Easter island [18]. This 
wonderful microbe had no intention of slowing time on 
its mysterious island; instead, it sought to slow down the 
growth of fungi, its natural enemy. But since rapamycin 
slows growth, it should also slow aging if aging is a 
continuation of growth. In fact, it does just that; rapamycin 
prolongs the lifespan of yeast [19].

Rapalogs (rapamycin, everolimus, temsirolimus and 
deforolimus) are allosteric inhibitors of mTOR complex 1, 
a central regulator of RNA translation and cellular growth 
and metabolism [20-23]. mTOR enhances translation of 
TOP and TOP-like mRNAs [22, 23]. Rapamycin and, 
especially, the pan-mTOR inhibitor Torin1 slow this 
translation [22, 23]. This raises the question, is slowing 
translation equivalent to slowing time and, if so, can 
biological time be measured based on the speed of 
translation? 
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Figure 2: Rapamycin decreases hyper-functions, a key 
feature of aging, thus preventing functional decline

Figure 1: Rapamycin slows aging. A. Cell culture. In 
proliferating cells, rapamycin (RAPA) slows growth. When the 
cell is arrested, then rapamycin slows down geroconversion to 
senescence. Geroconversion is a continuation of growth in non-
dividing (arrested) cells. B. The organism. When development 
is completed, then mTOR drives aging and age-related 
diseases. Thus, aging and its diseases are quasi-programmed (a 
continuation of developmental growth). RAPA slows aging and 
delays diseases.
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The answer to that question is, not entirely. Although 
mTOR inhibitors may in principle “slow time” by slowing 
rapamycin-sensitive translation from mRNA to protein, 
this does not completely explain the gerosuppressive 
effects of rapamycin or pan-mTOR inhibitors. In fact, 
inhibitors of S6 kinase slightly exhibit gerosuppressive 
activities [24], even though S6 kinase is not crucial for 
RNA translation [23]. So, mTOR inhibitors may affect 
the speed of aging by suppressing geroconversion (Figure 
1) and cellular function and hyperfunction (Figure 2) 
independently of TOP mRNA translation. In addition, 
rapamycin also slows age-related methylation, or the 
epigenetic clock [25-29].

Another intriguing possibility is that rapamycin 
slows time by slowing the circadian clock. mTOR 
inhibition slows the circadian clock and dampens clock 
oscillations, whereas mTOR activation accelerates the 
clock and enhances clock oscillations at the level of 
cells, tissues and mice [30]. Conversely, circadian clock 
mediators affect the mTOR pathway and aging [31]. 
Because mTOR activity is itself part of the circadian clock, 
its sensitivity to rapamycin can vary widely depending 
on the time of the day and the phase of the clock [32]. 
This should be taken into account when comparing the 
numerous studies in mouse models. It should also be taken 
into account when designing rapamycin-based therapies 
for aging. 

Rapamycin has been combined with several life-
extending drugs in the “Koschei” formula [5]. This 
rapamycin-based drug combination has been successfully 
used as an anti-aging therapy at the Alan Green clinic  
https://rapamycintherapy.com

https://roguehealthandfitness.com/rapamycin-
anti-aging-medicine-an-interview-with-alan-s-green-m-
d/?print=pdf

The older we become, the faster time flies. It is 
initially measured in days, then in weeks, the four seasons, 
and finally “Winter-Summer” cycles. Of course, this is 
an illusion, but an annoying one. Would treatment with 
rapamycin enable us to notice Spring again?
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