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This article reviews the current state and development of thermal catalytic processes using
transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of
theoretical studies to understand the details of the catalytic processes. Structural
features inherent to zeolites, and their corresponding properties such as ion exchange
capacity, stable and very regular microporosity, the ability to create additional
mesoporosity, as well as the potential chemical modification of their properties by
isomorphic substitution of tetrahedral atoms in the crystal framework, make them
unique catalyst carriers. New methods that modify zeolites, including sequential ion
exchange, multiple isomorphic substitution, and the creation of hierarchically porous
structures both during synthesis and in subsequent stages of post-synthetic
processing, continue to be discovered. TM/Z catalysts can be applied to new
processes such as CO2 capture/conversion, methane activation/conversion, selective
catalytic NOx reduction (SCR-deNOx), catalytic depolymerization, biomass conversion and
H2 production/storage.
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INTRODUCTION

Zeolites1 are crystalline aluminosilicates with a negatively charged macromolecular inorganic
framework, which display an extremely large surface area because of intracrystalline channels
and cavities of molecular size with a characteristic geometry and architecture. They also contain
freely moving and easily replaceable cations necessary to balance the charge of the Al containing
tetrahedra (Breck, 1974).

Since the second half of the 20th century, zeolites have been widely used as catalysts for many
reactions involving organic molecules such as cracking, isomerization, hydrocarbon synthesis, and
selective oxidation (Gläser and Weitkamp, 2004; Yilmaz and Müller, 2009). Synthetic zeolites are
catalysts of vital importance in petrochemical plants: they can be acid catalysts or can be used as
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1Despite the generally accepted designation of zeolite structures in the form of a three-letter code (a list of zeolites can be found
on the IZA website: http://www.iza-structure.org/databases/), in our article the names are given in accordance with how they
were used by the authors of the original articles. Therefore, along with the systematic designations (such as MFI or FAU),
traditional designations for the same structures (ZSM-5 or Y-zeolite) coexist in the text.
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support for active metals or reagents. Zeolites allow size- and
shape-selectivity processes, either due to the discrimination of the
transition state or to the exclusion of competing reagents
depending on the molecule diameter, which allows for better
control of the products.

The structural features and properties of zeolites make them
one-of-a-kind unique catalyst carriers. In addition to the primary
microporosity, post-synthetic treatment can create mesoporosity
in their crystals, facilitating diffusion processes. The combination
of micro- and mesoporosity creates new opportunities to develop
chemical technology.

New challenges in chemistry and chemical technology, such as
sustainability and green chemistry, have led to intensive
development of synthesis and modification methods of zeolite
catalysts (Li et al., 2017). Hierarchical zeolites are micro-
mesoporous materials prepared based on standard zeolites, in
which pores of different types and sizes are additionally
generated. These pores can be intracrystalline, intercrystalline
(between individual crystallites in agglomerated intergrowths), or
inner space inmaterials such as layered pillared zeolites (Feliczak-
Guzik, 2018). Pore-related characteristics, associated with the
presence of pores of different diameters, determine specific
applications of hierarchical zeolites, in particular, where
diffusion within materials is of interest (Christensen et al.,
2007; Pérez-Ramírez et al., 2008; Yocupicio-Gaxiola, et al., 2019).

New possibilities of using active phases containing ions and/or
clusters of transition metals (TM) deposited on zeolites (TM/Z)
are being investigated. The TM/Z can be prepared by ion
exchange, incipient wetness impregnation, or deposition of
metal complexes, followed by calcination or reduction to
obtain oxidized states or metal nanoparticles. Hydrogen
reduction of encaged transition metal ions can also yield metal
clusters or isolated atoms in line with protons of high Brønsted
acidity (Sachtler, 1992).

Most heterogeneous catalysts currently in practical use consist
of one or more catalytically active compounds that are supported
on carrier materials. The impregnation method is used to
immobilize acids and bases, salts, oxides, or complexes on
oxide supports. In the case of zeolite support, the active
transition metal can be incorporated by ion exchange and
subsequent processing to produce materials with appropriate
porous, chemical and electronic properties. Such catalysts have
sufficient long-term stability due, for example, to ionic linkages
between the active centers and the crystal lattice (Bell, 2001).

Biomass is one of the important sources of energy after
petroleum, coal and natural gas. It can be used as a renewable
energy source and thus at the same time contribute to reduce
organic wastes, tires, and plastic residues. Also, in the long term,
biomass processes can be used for CO2 conversion/sequestration
helping to reduce the temperature increase that causes climate
change. An advanced design of catalysts, including TM/Z, can be
relevant to develop new environmental benign biomass
transformation processes. Also, the synthesis of biofuels or
biochemicals is a promising area of research where TM/Z may
play an important role to facilitate the next generation of
ecological products. The new bioproducts obtained from
residues and wastes can provide economic and social security

while not competing with food resources such as sugars, starch or
vegetable oils. The new generation of biofuels obtained from
ligno-cellulosic rests, organic litters or forestry products do not
impact food fabrication. For this purpose, improved catalysts that
contribute to the selective production of desired biofuels and
biochemical are necessary. Advanced research of such catalysts is
in progress (Wang L. et al., 2017; Ren et al., 2019; Gopinath et al.,
2020; Saab et al., 2020; Xia et al., 2021).

Not so long ago, a review was published devoted to the synthesis
of catalysts based on transition metals supported on zeolites
(Kosinov et al., 2018). In the present review, we focused on the
latest process developments using similar catalysts to address
current challenges in a variety of environmentally important
and rapidly evolving processes in the fields of green chemistry,
environmental protection and sustainable energy production. We
also consider cases where the collaboration of theoretical and
experimental research has helped to uncover the nature of
specific catalytic processes. In addition, a Table 1 compiling
several TM/Z-based catalysts associated with different catalytic
processes is included at the end of this review article.

CATALYTIC PROCESSES WITH
TRANSITION METALS ON ZEOLITES

CO2 Capture and Conversion
The use of fossil fuels in industrial processes and improper
exhaust gas handling are the chief causes of pollution
(Shelyapina et al., 2020a). Efforts are presently underway to
mitigate CO2 emissions into the environment, with the aim of
protecting the environment and public health. During the
1990–2014 period, global greenhouse gas emissions increased
from 33.8 to 48.9 billion tons, including a 52% increase in CO2

emissions (Zhang J. et al., 2021). Although the greenhouse effect
of CO2 is 25 times less than that of methane (Yin et al., 2010), the
former significantly predominates over the latter. Therefore, CO2

is the major anthropogenically produced gas that contributes to
global greenhouse gas.

CO2 can be separated and/or captured by different processes,
including adsorption, membranes, cryogenics, and microbial or
algae (Thiruvenkatachari et al., 2009; Elhenawy et al., 2020). In
general, there are three capture categories: 1) after the
combustion process (post-combustion); 2) previous to
combustion (pre-combustion) and 3) the oxyfuel combustion
capture (Wu et al., 2014). The affinity of zeolites for one of the
components in a mixture of gases is due to the interaction of its
acid sites and the quadrupole moment of the adsorbent molecule
(CO2) (Graham et al., 1998). CO2 capture by highly porous
materials can be regulated by adsorbate-adsorbent interactions
(Jeong and Kim, 2016), and when this interaction is high, it may
be considered as selective adsorption (Millward and Yaghi, 2005).
The vast majority of research are devoted to the CO2 adsorption
by materials such as metal-organic frameworks (MOF) (Millward
and Yaghi, 2005; Zhang L. et al., 2021), covalent organic
frameworks (COV) (Bagherian et al., 2021), based-carbons
materials (Calvo-Munoz et al., 2016; Seema, et al., 2014), and
zeolites (Jeong and Kim, 2016).
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Zeolites possess excellent and tunable thermal stability and
textural properties, rendering them promising for post-
combustion CO2 capture. The creation of mesoporosity in
zeolite 4A and its effect on the diffusion rate of CO2 was
examined. Results showed that mesoporosity leads to
reasonable CO2 adsorption capacity and to a decrease in
moisture uptake (Panda et al., 2020). Faujasite (zeolite X)
behaves similarly. The inclusion of palladium in 13X zeolite,
causes absorption to rise up to 262.5 mg CO2 per gram of zeolite.
Then, if this system is used as an absorbent for CO2 from steam
methane reforming, this turns zeolites into potential materials to
produce high purity H2 with low CO2 footprint (Kian et al., 2021).
Similarly, much attention has been paid to small pore zeolites
since they are attractive candidates due to the shape and size of
the porous structures (Dusselier and Davis, 2018). High
selectivity to CO2 over CH4 in small-pore zeolites such as
CHA, MER, and RHO was observed (Debost et al., 2020). It
was also found that the CO2 quadrupole moment has an impact,
especially on cation-rich zeolites with a low Si/Al ratio, such as X
zeolite, resulting in high capacity of CO2 capture (Sun et al.,
2019).

The valorization of CO2 is a challenging topic due to its low
reactivity and high stability. Not only removing CO2 emissions,
but also converting them to other chemicals with higher added
value requires high energy processes (Garba et al., 2021). CO2 can
be converted to hydrocarbons. Valorization of CO2 by conversion
to chemicals and hydrocarbons is an evolving path. At present,
two approaches to CO2 conversion can be used; either CO2 can be
reduced to a more reactive CO by a reverse water gas shift
reaction (RWGS) followed by a Fischer-Tropsch reaction (FT)
to form chemicals larger than C1 compounds, or the CO2

hydrogenation process.
The production of longer chains of C2 compounds can be

carried out by hydrogenation of CO2. This process is also known
as CO2-FT, since CO2 is hydrogenated to CO by RWGS, and then
converted to hydrogenated compounds by FT. The FT reaction
proceeds on heterogeneous catalysts containing Group VIII
metals such as Fe, Co, Ni or Ru (Sineva et al., 2015). Cobalt
and iron are the most explored metals of FT. However, iron is
preferred because it is cheaper than cobalt, although Co possesses
high selectivity to paraffins, low activity in water-gas shift, and it
is less susceptible to sintering or deactivation by coke (Sadek et al.,
2019). The most commonly used supports are SiO2, Al2O3, TiO2,
ZrO2, zeolites, and MOF (Yang et al., 2017). A wide variety of
zeolites such as ZSM-5, BEA, CHA (Fujiwara et al., 2015; Dang
et al., 2018; Wei et al., 2021) have been used to support metals in
this reaction.

Metals have peculiarities in functioning for this reaction, and
different selectivity for products; it is clear that this is highly
dependent on the support used, and on the promoters of the
catalytic system. In this reaction, iron proved to be a good catalyst
for RWGS and FT, very selective for long-chain hydrocarbons,
but if it is not promoted (for example, by potassium) it still
presents selectivity for CH4 (Wang et al., 2011). Likewise, cobalt
presents higher selectivity for heavier hydrocarbons than those
iron-based catalysts (Dorner et al., 2010). It has also been
reported that a bi-functional catalyst is needed, that is, a

catalyst combining RWGS with FT activity to achieve the
growth of an organic chain; TM with an acidic support can
perform this task (Kang et al., 2008). In this regard, zeolites are
especially relevant since the isomerization of hydrocarbons
requires the presence of metal and acid sites in the catalyst
(Přech et al., 2020). It has been suggested that the formation
of mesoporosity in the MFI zeolite may improve the selectivity
towards branched hydrocarbons, probably as a consequence of
lowering the diffusional constraints. In this catalyst, cobalt
nanoparticles exhibit resistance to sintering, high CO
conversion, and a long catalytic lifetime (Kim et al., 2014).
Recent reports suggest that the particular steric and
confinement properties of zeolites can be responsible for the
selectivity for C5 (and larger) products and iso-paraffins (Wei
et al., 2018) (Figure 1), which can be produced by
oligomerization of shorter chains (Noreen et al., 2020). The
well-known features of zeolites in organic synthesis, such as
acidity and shape selectivity, are also very important for
synthesizing aromatic compounds. Some studies have reported
that the moderate distribution and stronger Brønsted acid sites
(BAS) are good for synthesizing light aromatics, while a high
density of BAS can cause major coke formation (Wei et al., 2021).

A theoretical study has shown that using a membrane reactor
instead of a traditional one, the CO2 to methanol reaction would
be favored over the RWGS, when a selective separation of
methanol is taken into account by a separation factor. Besides,
the performance of the system is improved with a hydrophilic
zeolite membrane (Barbieri et al., 2002). An experimental study
found that an LTA zeolite membrane reactor performs better
than a conventional reactor, showing good conversion and
selectivity to methanol (Gallucci et al., 2004).

The second process, which consists in direct conversion of
CO2 to chemicals by hydrogenation, can be achieved similarly to
FT, but instead of CO, it uses CO2 and therefore, more hydrogen
is needed. The CO2 hydrogenation process can produce various
products such as methane, methanol, gasoline (C5–C11), and iso-
paraffins, among others. The conversion of CO2 to methane is
known as methanation. The more common metals tested in
methanation are Ni, Rh, Ru, Pt, and some promoters like Ce
and Mg, are supported on various supports like Al2O3, TiO2,
CeO2, ZrO2, SiO2, mesoporous SiO2, among others, as published
in recent reviews (Bacariza et al., 2019; Ashok et al., 2020).

The influence of the most important characteristics of zeolites,
such as the Si/Al ratio, the type of the extra-framework cation,
and the hydrophobicity/hydrophilicity characteristics, were
evaluated (Bacariza et al., 2017; Bacariza et al., 2018). A higher
Si/Al ratio was found to favor greater catalytic activity. The higher
performance in the methanation process could be a consequence
of the higher capture of CO2 observed in zeolites with a low Si/Al
ratio, meanwhile, the high hydrophobicity of the zeolite has a
detrimental effect on the methanation. Bacariza et al. (2018)
showed that the presence of water molecules can inhibit CO2

methanation when the Si/Al ratio decreases. Likewise, previous
works reported about the effects of monovalent and divalent
exchangeable cations present simultaneously with TM cations
(Bacariza et al., 2017). For Ni supported on USY, the addition of
various monovalent cations, gave the following trend Cs+ >Na+ >
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Li+ >H+ for methanation, while for divalent cations such as Ca2+,
Ba2+ and Mg2+; the latter was the best for improving the catalytic
performance (Bacariza et al., 2017). Copper catalysts are being
actively researched for the production of methanol from CO2 due
to the similarity of the reaction to methanol production from
syngas.

Conversion of Methane to Methanol
The growing production of natural gas and the so-called “shale
gas revolution” has sparked discussions about its advantages and
disadvantages, as well as about emerging technical problems
important for its rational use (Boersma and Johnson, 2012;
Grecu et al., 2018; Wang, 2018; Wang et al., 2019; Gao et al.,
2021). Raw natural gas contains fractions such as CH4, H2S, CO2,
C2H6, and other light alkanes, which are valuable either as
chemical feedstock or as fuels (Shah et al., 2016). Since
methane is the main component of natural gas (70–90%)
(Lunsford, 2000; Faramawy et al., 2016; Schwach et al., 2017)
and it is 25 times more efficient in greenhouse effect than CO2

(Yin et al., 2010), it is obvious that a process needs to be found to
convert it into high value-added products.

Methanol is an important feedstock for many industrial
processes, but it can also be used as fuel or to increase the
octane rating of gasoline. Also, methanol can be converted to
gasoline and chemicals by some catalytic processes. The most

explored method is conversion to synthesis gas (“syngas”)
(indirect route), which is based on a two-stage process: 1)
conversion of methane to syngas and 2) synthesis of
hydrocarbons using the FT reaction, or methanol synthesis
followed by conversion to oxygenated hydrocarbons (Loricera
et al., 2017). The direct route is a single-step process wherein
methane interacts with oxygen or other oxidizing agents to
produce the desired product, methanol or formaldehyde.
Energetically, it is the most efficient, and therefore the most
desirable. The conversion of methane to methanol (MTM) by a
partial oxidation reaction stands as a holy grail of catalysis
(Arndtsen et al., 1995; Zhou Y. et al., 2019). On the other
hand, partial oxidation of methane can lead to both methanol
and carbon monoxide, which are exothermic processes. However,
these processes occur at temperatures above 600 K, where CO
oxidation is greatly accelerated (Loricera et al., 2017). Therefore,
it is imperative to find catalytic materials for the activation of
methane at temperatures below 500 K (Li et al., 2016; Sushkevich
et al., 2017).

The use of molecular oxygen as an oxidizing agent is crucial to
the competitiveness of any direct MTM conversion technology,
since molecular oxygen is cheap and available (Edwards and
Foster, 1986). Indeed, several compounds playing the oxidant role
have been tested, namely, N2O (Dubkov et al., 2002; Ipek and
Lobo, 2016), H2O2 (Hammond et al., 2013; Hutchings, 2016), O2

FIGURE 1 | Catalytic performance of composite catalysts. (A) Distribution of products. (B) Conversion and selectivity. (C) CO2 conversion, C4+ and isoparaffin
selectivity as a function of TOS. Reprinted with permission from Wei et al. (2018). Copyright 2018 American Chemical Society.
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(Wulfers et al., 2015; Shan et al., 2017; Bozbag et al., 2018), and
H2O (Sushkevich et al., 2017). Methane and methanol molecules
have singlet fundamental states, and their oxidation by O2 is a
spin-forbidden reaction. Therefore, an appropriate choice of
catalyst is required to activate the reaction (Schwarz, 2011). In
this sense, the option of a solid catalyst seems to be an attractive
route. However, methanol has a higher dipole moment than
methane; consequently, it is preferentially activated on the surface
of a catalyst, promoting its over-oxidation. The preferential
methanol adsorption on the catalyst surface implies an
additional step to recover the methanol by extraction by a
polar solvent. In this sense, one of the biggest challenges in
the conversion of methane to methanol is finding a suitable
catalyst that will be able to adsorb and only partially oxidize CH4

and then facilitate the desorption of the products. Due to the
complexity of this last step, extensive research continues to be
promoted in the field.

The catalysts based on zeolites exchanged with transition
metals have attracted significant attention as they present high
selectivity to methanol. Microporous zeolite materials are
characterized by the fact that they crystallize in a wide variety
of structures, have a remarkable ability to exchange cations, and
have the capacity to support active sites with controlled
nuclearity. Although different metal cations such as Co, Ni,
Rh, Au, Pd, etc., can be housed in zeolites (Shan et al., 2014;
Krisnandi et al., 2015; Bunting et al., 2020; Sajith et al., 2020),
research has shown that the most promising results correspond to
the inclusion of iron or copper. The first efforts were made by
Pannov et al. in the early 90s’ (Pannov et al., 1990; Panov et al.,
1993). The iron species in the cavities of ZSM-5 zeolite can coexist
as mononuclear, binuclear, oligonuclear cationic species, or as
neutral iron oxide species (Sun et al., 2008). However, the active
site in the methane to methanol reaction was determined to be a
mononuclear Fe(II) species formed by irreversible auto-reduction
of impregnated Fe(III) species after heat treatment (Starokon
et al., 2011). Another outstanding work by Groothaert et al.
(2005), showed that Cu-exchanged zeolite ZSM-5 can catalyze the
methane oxidation reaction in the Cu-ZSM-5 system after
activation in O2 or N2O. Copper exchanged zeolites have
shown similar reactivity to methane oxidation compared to Fe
exchanged zeolites, but their advantage is that O2 can activate
them. In this sense, copper exchanged in different zeolite
structures has emerged as one of the most exciting systems.
Other zeolite structures such as ERI, CHA, MFI exchanged
with copper have also been evaluated in the MTM reaction
(Beznis et al., 2010; Paolucci et al., 2016; Martini et al., 2020;
Zhu et al., 2020b); however, the Cu-MOR system remains one of
the most promising. Notwithstanding, the most suitable site for
partial oxidation in the MTM reaction continues to be a matter of
discussion (Groothaert et al., 2005; Mentzen and Bergeret, 2007;
Woertink et al., 2009; Smeets et al., 2010; Grundner et al., 2015,
2016; Narsimhan et al., 2016; Pappas et al., 2021).

Despite the promise of catalytic systems based on zeolites
exchanged with iron and/or copper, their performance remains
low. The methanol productivity normalized to Cu content is one
of the typical values reported in the literature for both Cu-ZSM-5
and Cu-MOR systems, whose dimensions correspond to those of

mole of methanol per mole of copper (molCH3OH/molCu). Some
of the highest reported values are 0.20 (Narsimhan et al., 2016)
and 0.47 (Pappas et al., 2021) molCH3OH/molCu for the Cu-ZSM-5
and Cu-MOR systems. This would suggest that if we follow the
idea that only one copper atom is needed to produce one
molecule of CH3OH, only one part or one tiny fraction of the
copper atoms participate in the partial oxidation of methane. On
the other hand, we can assume that the yield of the catalytic
system is a sign of how many atoms are forming the active site. In
this sense, Grundner et al. suggest that in the case of the Cu-MOR
system the 0.35 molCH3OH/molCu yield is a clear proof of the
presence of a trinuclear copper active site (Grundner et al., 2015;
Grundner et al., 2016). In addition, Pappas et al. (2021) reported a
value close to 0.5 molCH3OH/molCu (Figure 2), suggesting that the
nature of the active site is binuclear. Thus, it is evident that further
and more detailed investigation is required to clarify the
phenomenology in depth.

Selective Catalytic Reduction of NOx

(SCR-deNOx)
Since Iwamoto et al. (1986), Iwamoto and Yahiro (1994) showed
more than 20 years ago that Cu supported on ZSM-5 proved to be
a highly active catalyst for the reduction of nitrogen oxides,
selective catalytic reduction (SCR-deNOx) by transition metals
supported on zeolites has become a widely studied technology for
vehicles powered by internal combustion engines, and stationary
sources (Wang J. et al., 2017; Xin et al., 2018; Han et al., 2019).
The most studied transition metals are groups IB and VIIIB,
mainly copper, iron and cobalt (Sazama et al., 2016; Saeidi and
Hamidzadeh, 2017; Zhao et al., 2021). The main zeolite
frameworks used as supports for these catalysts are MOR,
BEA, MFI, FER, and CHA, because of their thermal stability,
high surface area, availability of exchange sites, the potential for

FIGURE 2 | (A)CH3OH yield in μmol/g and (B) normalized productivity in
molCH3OH/molCu. Reprinted with permission from Pappas et al. (2021).
Copyright 2021 American Chemical Society.

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 7167455

Sánchez-López et al. Transition Metals on Zeolites

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


clusters stabilization, among other intrinsic properties that make
these materials excellent supports (Ben Younes et al., 2021).
However, the synthesis, design, and optimization of the
catalysts to achieve the high activity, selectivity, and stability
remain a challenge. Although the trend towards the use of clean
energy and zero carbon emissions will clearly increase in the
coming decades, diesel engines will continue to be the primary
means of transporting heavy loads over long distances; hence the
need for the development of more efficient technologies to
mitigate emissions of nitrogen oxides from these sources will
continue to be a topic of interest. This chapter will focus on SCR-
deNOx with hydrocarbons or ammonia for diesel engines with
transition metals supported on zeolites.

Likewise, several parameters have been studied during the
synthesis of the catalysts. The most recently studied are: metal
deposition method, metal loading, and order of metal deposition
for multi-metal materials. Regarding the methods of deposition of
TM/Z catalysts, 1) the liquid-state ion exchange or conventional,
2) the solid-state ion exchange, and 3) the incipient impregnation
stand out from other ones. In general, the preparation method
affects the loading of the metal; among the methods, ion exchange
with aqueous solutions prevails. Recently, Lin et al. (2020)
analysed the effect of the preparation method on the catalytic
activity of Cu/LTA on SCR-deNOx with NH3. They found that
the conventional ion exchange carried out with a 0.01 M copper
acetate precursor solution presented the highest catalytic activity
in NH3-SCR above 400°C, which was associated with the presence
of Cu(II) ion species. Likewise, Lee et al. (2019) studied the effect
of Cu loading supported on SSZ-13, ZSM-5 and BEA zeolites in
the SCR-deNOx with C3H6. The CuZSM-5 catalyst with 2 wt% of
metal presented the highest NOx conversion (68% at 360°C)
compared with Cu/SSZ-13 and Cu/BEA catalysts with
different Cu loadings. Authors concluded that the NOx

reduction was influenced by metal loading and topology of the
zeolite, the active sites being mainly associated with the presence
of isolated Cu2+ ions. Zhang L. et al. (2019) reported newmethods
of preparation of zeolites for application in SCR-deNOx, and they
concluded that environmentally friendly synthesis methods can
be convenient to prepare these supports. Lately, it was reported
that the order of deposition of metals during the synthesis of the
TM/Z catalysts, clearly influences the catalytic performance. Such
effect is associated with redox interactions between metal species
that lead to different types of active phases according to the order
of deposition (Jouini et al., 2018; Aziz et al., 2020; Shelyapina
et al., 2020b; Sánchez-López et al., 2020).

Others parameters related to achieve optimal operation
conditions of the SCR-deNOx process with TM/Z catalysts
include: the type of reducing agent (light hydrocarbons or
ammonia) (Heo et al., 2019), and the type of atmosphere
(oxidizing or reducing) (Gu et al., 2015). For instance, Lim
et al. (2020) studied the SCR-deNOx with CH4 under wet
conditions with cobalt supported over different framework
zeolites (small-pore). Results showed that catalytic activity of
Co-CHA, Co-RTH, Co-UFI and Co-LTA with similar Co/Al
ratio, decreased in the presence of water. Within these zeolites,
chabazite was the most resistant to water vapour during CH4-
SCR. In any case, it was concluded that both the topology of the

framework and the Si/Al ratio are determinants for the catalytic
performance.

According to Mytareva et al. (2021) one of the new trends in
the development of catalysts to reduce NOx is to increase
efficiency at low temperatures. As has been well demonstrated,
the highest catalytic performance of TM/Z catalysts is achieved in
the temperature range of 300–450°C, with NOx conversion higher
than 60% and N2 selectivity around 70%. However, in most cases
the efficiency at low temperatures (<300 °C) is even lower, so an
important objective in optimizing of these catalysts will be to
break this limitation. Recently, Lomachenko et al. (2016) studied
a typical catalyst for SCR-deNOx based on Cu-CHA, which was
monitored by operando XAS and XES as a function of the
reaction temperature (150–400°C). They found that the
catalytic activity at high and low reaction temperatures was
due to different Cu species. The activity at low temperature
was related to a mixture of Cu(I)/Cu(II) sites. Then, in order
to improve the catalytic activity over a wide temperature range is
necessary to establish the optimal proportion of active species, in
mono and multi-metallic catalysts. In several review works, for
low-temperature SCR-deNOx catalysts (Guan et al., 2014;
Stakheev et al., 2015; Gao, 2020; Gramigni et al., 2020), the
authors concluded that zeolites with small and large pores
such as; BEA, MFI, CHA, LTA, etc., with Fe and Cu mainly,
have shown the best performance in the operating range less than
300°C.

For instance, mono- and multimetallic catalysts have shown
dynamic behaviour and different active sites during the SCR-
deNOx due to the appearance of different metal species in the
zeolite frameworks such as isolated ions (monomeric), dimers,
multimeric species, and clusters in various oxidation states, metal
nanoparticles and more recently the so-called single-atoms that
may act as active centers. Therefore, these materials are
considered “dynamic catalysts” because they carry out the NO
reduction reaction by redox cycles changing the oxidation state. It
has been discussed by Liu and Corma (2018), various sizes of
metallic species provide different behaviour during the catalytic
evaluation, mainly due to their electronic differences and
dynamic redox characteristics. Recent studies on stabilized
sub-nanometric metal clusters in the cavities of zeolites have
shown good catalytic performance compared with the properties
of bigger metal nanoparticles.

Cu and Fe supported on various zeolites have been widely
studied to raise, the different active sites and their potential for
improving the efficiency in SCR-deNOx. In-situ spectroscopic
studies of Cu and Fe for SCR-deNOx revealed in detail the
different species active during the reaction (Skarlis et al., 2014;
Borfecchia et al., 2018; Negri et al., 2018; Fahami et al., 2019;
Bergman et al., 2020; Zhang et al., 2020). Thus, Liu et al. (2020)
studied Cu-CHA catalysts for NOx reduction with in-situ
spectroscopy and on-line mass-spectroscopy to analyze Cu(I)/
Cu(II) redox cycles during the catalytic test. According to their
results, the Cu(II) sites act at low temperatures (<200°C), while at
high temperatures, the Cu(I)/Cu(II) sites act together. Moreover,
studies with in-situ FTIR spectroscopy carried out by Hamoud
et al. (2019) on Cu-Fe catalysts supported on CHA and MOR
zeolites revealed that the Cu(I)/Cu(II) sites are most active at low
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temperatures, while the Fe(II)/Fe(III) species were more active
above 300°C. It is clear that the discussion on the most active
copper or iron site for the SCR-deNOx is still ongoing. However,
techniques such as in-situ spectroscopies and theoretical
modelling can shed light on the reaction mechanisms of these
catalysts.

Finally, the state-of-the-art research of catalysts based on
transition metals supported on zeolites for SCR-deNOx for a
better generation of catalysts must imply the optimization of: 1)
the synthesis parameters, 2) the optimal ratio of the active phases
and 3) the reaction conditions emulating the sources emission. In
this sense, tools such as machine learning or artificial intelligence
will identify the optimal conditions for the development of
catalytic materials in the near future. An example of this is the
research carried out by Jensen et al. (2019) with the support of
predictive models and data science to find the best route of
synthesis of materials. In that work, the authors studied the
parameters for the synthesis of zeolites with machine learning
support to extract the best synthesis conditions. The extraction of
parameters was obtained from a database of 70,000 articles of
zeolites synthesis that were processed. They concluded that it is
possible to get a new generation of materials by optimizing
synthesis parameters by data mining and machine learning.

Catalytic Upgradation of Biomass and
Polymeric Waste
The generation of solid waste is an integral part of human life as a
consequence of industrialization, and has a serious impact on the

environment. Nowadays, due to growing demand and limited
resources, utilization of waste is becoming increasingly important
as a potential raw material for energy and chemical production
(Figure 3). Plastic waste is widely available, and the cost of its
disposal is partially offset by the cost of the products derived from
it (Corma et al., 2007). Waste treatment technologies rely on
recycling and degradation. Degradation of mixed or separated
municipal solid waste (plastic, biomass, paper, rubber, textiles)
is considered an important method from which fine chemicals
and fuels can be produced. Degradation technology includes
several stages and depends on the feedstock composition and is
achieved with photo-, thermo-, mechanochemical or catalytic
degradation (Wang L. et al., 2017). In the present chapter,
various methods of catalytic waste degradation (CWD) will
be considered.

Zeolites are used in typical polymer degradation processes
such as cracking and isomerization due to their acidic
nature, and a deposited TM plays a key role in pyrolysis
and coking reactions. However, to apply them in CWD the
following points need to be considered: 1) simultaneous
handling of waste of varied composition; 2) efficient
deoxygenation of the oxygen-containing organics; 3) high
resistivity towards coking formation, and 4) generation of
liquid products with a low boiling point, and a higher ratio of
iso-alkane to n-alkane, and olefins (Zheng et al., 2017). The
most striking point of TM/Z in CWD is their high propensity
to form expensive cyclic and aromatic compounds. At the
same time, easy deactivation due to the formation of coke is a
big disadvantage of zeolite catalysts. However, zeolite

FIGURE 3 | Catalytic degradation of polymeric and organic waste.
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deactivation during CWD could be overcome by metal
loading.

It is known that the efficiency of CWD reactions relies on
several intrinsic (catalyst-related) and extrinsic (process-related)
factors. The intrinsic factors are as follows:

• The acidity, the types of acidic sites, and their balanced
distribution are the major factors to be considered in
catalyst design.

• The pore size distribution determines the accessibility of the
reactants and reaction intermediates to the active sites.

• The morphology, structure, Si/Al ratio, and general
chemical composition etc., have a significant impact on
the catalytic degradation yield. However, their influence is
not directly on the active centers but on other intrinsic
factors (Wang L. et al., 2017).

• The second component deposition [like noble metals, non-
noble metals of group VI-A or VIII-A of the periodic table
and metal oxides/carbides/nitrides (Ogo et al., 2017; Munir
et al., 2018; Saab et al., 2020)] on the surface of zeolites can
significantly influence the degradation reaction.

Moreover, the stability of a zeolite depends on the transition
metal ion, the topology of the zeolite framework, its composition
(Si/Al ratio), the type and conditions of the reaction, and the
specific solvents and substrates used in the reaction. Silanol defect
sites are one of the main factors affecting structural stability
during hydrothermal treatments (Zhang et al., 2015). Under
hydrothermal conditions, the deactivation of the zeolite could
be overcome by increasing the hydrophobicity of the zeolite by
silylation (Corma et al., 2003), increasing the susceptibility of
transition metal ions under the reaction conditions (Yang et al.,
2013), using low polar solvents (Lewis et al., 2014). For example,
M-BEA zeolite is one of the strong water inhibitors that can be
used to transform biomass in several reactions (Luo et al., 2016).

It should be remembered that all of the mentioned intrinsic
factors depend on the origin of feedstock—one of the extrinsic
factors. In the present chapter, the advantages and disadvantages
of the TM/Z catalysts in CWD of biomass and plastic feedstock
were considered.

Pyrolysis of Biomass
Biomass consists mainly of three polymers: cellulose,
hemicellulose, and lignin. Therefore, various chemicals can be
produced (Corma et al., 2007) by depolymerization or pyrolysis
of biomass. Catalytic fast pyrolysis (CFP) of renewable
lignocellulosic biomass represents a simple, cheap, and
efficient approach to produce bio-based fuels and chemicals.
During thermopyrolysis solid biomass is subjected to high
temperature (500–700°C) and converted into light gases (CO,
CO2), solid char, and liquid pyrolysis oil. However, the presence
of oxygenated compounds (aldehydes, ketones, furans, carboxylic
acids, phenolic compounds etc.) leads to high viscosity and low
stability, complex structure, and preventing the direct application
of pyrolysis oil. To overcome this, CFP with TM/Z catalysts are
identified as one of the most promising (Veses et al., 2015; Hoff
et al., 2016).

In cracking and aromatization reactions, the acidity and ideal
pore size of zeolites with enhanced accessibility to acid sites
remarkably increases the aromatics formation. CFP using ZSM-5
zeolite as a catalyst produces BTX, and naphthalene, which are
known as building blocks of the petrochemical industry. Several
zeolites (Y, β, ZSM-5, SAPO-34, MCM-22, ITQ-2, etc.) were
applied for CFP and the best performance was demonstrated by
ZSM-5 with high yield of aromatics rather than aliphatic
hydrocarbon and significant percentages of deoxygenation
(Zheng et al., 2017; Naqvi and Naqvi, 2018; Li J. et al., 2019;
Cai et al., 2020). CFP on ZSM-5 is currently the most studied and
is already employed in refineries (Jae et al., 2011; Taarning et al.,
2011; Kubička et al., 2013). However, the lack of structure-activity
correlations currently constitutes a major barrier for the rational
design of ZSM-5 catalysts for CFP (Hoff et al., 2016).

The presence of metal species always promotes deoxygenation,
improves the pyrolysis oil yield with minimal coke formation, etc.
Iliopoulou et al. (2012) reported that NiO and Co3O4

nanoparticles supported on ZSM-5 have a positive effect on
the deoxygenation process with increased aromatics yield.
Cheng et al. (2012) demonstrated that Ga, Ni, or Sn oxides
deposited on H-ZSM-5 leads to high production of
hydrocarbons while Ga2O3/H-ZSM-5 promotes
decarboxylation and olefin aromatization pathways. The use of
mesoporous ZSM-5 with Ru NPs significantly increased the yield
of alkane selectivity. However, one limitation of the use of
mesoporous zeolites is the decrease in acidity i.e., reducing the
activity (Wang L. et al., 2017). ZrO2 supported on the nano-
crystalline ZSM-5 demonstrated promising activity, while its
stability left much to be desired due to reversible crystallinity
distortion by coke formation and re-dispersion (Hernández-
Giménez et al., 2021).

Thus, successful commercialization of CFP could be possible
with TM/ZSM-5-based catalyst. However, several technical
obstacles need to be considered, such as continuous reactor
design, process optimization, and product selectivity, among
other factors, that also need to be taken into account (Chang
et al., 2018).

Hydrocracking of Plastic Waste
The conventional regulations of plastic waste disposal, such
as landfill and recycling, are inadequate due to
environmental and economic inefficiencies. Therefore, an
alternative for this is the utilization of plastic waste by
liquefaction, biological treatment, and pyrolysis (Al-Salem
et al., 2010; Sharma et al., 2015; Lopez et al., 2017). Pyrolysis
of plastic waste has been explored to convert plastic waste
into fuel at high temperatures, while using a catalyst
enhances the degradation and reduces the energy
requirements (Yuan et al., 2014; Jin et al., 2019; Gopinath
et al., 2020). In very recent studies, pyrolysis has also been
performed in the presence of hydrogen to minimize the
extent of coking and the fractional yield of unsaturated
compounds (Bai et al., 2019). The most widely used
catalysts for pyrolysis are H-ZSM-5 (Munir et al., 2018),
Y-Zeolite (Anuar Sharuddin et al., 2016), and silica-alumina
crystals held in a zeolite matrix, for the production of high
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yields of liquid products and catalysts are easily regenerated
by steaming (Syamsiro et al., 2014).

For the hydrocracking reaction, a catalyst with a strong acidic
function (zeolite), and strong hydrogenation-dehydrogenation
function provided by the supported TM, is used. Furthermore,
the porosity of the TM/Z plays a pivotal role in plastic waste
hydrocracking. In the polymer cracking over the conventional
microporous zeolites, the major products consist of gases and a
minor quantity of liquids due to the diffusion limitation of larger
molecules through the pores. This is overcome by the use of
mesoporous zeolites that increase the yield of liquid molecules
rather than gaseous molecules. However, mesoporous zeolites
generally have weak hydrothermal stability and reduced surface
acidity, leading to a drop in catalytic activity. The large polymer
molecules need to be cracked initially and then reformed by
hydrocracking to obtain an increased liquid product with reduced
gaseous contents. Therefore, the mesoporous structures need to
be improved in the zeolite with a desired acidity. Hence, micro-
and mesoporous composite catalysts are desired for polymer
processing (Olazar et al., 2009; Serrano et al., 2012). Therefore,
based on the feedstock type and yield requirements, bi-functional
zeolite-based catalysts needs to be well designed to overcome the
limitations of conventional zeolites. Bi-functional Pt supported
on FER (microporous) and ITQ-6 (delaminated) catalyst was
successfully applied for poly-styrene hydrocracking, yielding low
aromatics (Munir et al., 2018).

The oil obtained from the thermal cracking of low-density
polyethylene (LDPE) mainly consists of linear hydrocarbons with
a high quantity of olefins, which hinders the possible application
of this product in the formulation of transportation fuels.
However, hydro-reforming of this oil using TM/Z catalysts
would allow for the production of gasoline and diesel
fractions. Conversion of polyethylene into transportation fuels
by combining thermal cracking and catalytic hydroreforming
over hierarchical BEA zeolite (with a bimodal micro-
mesoporosity) with 7 wt% Ni has proved to be an efficient
catalyst for obtaining gasoline (Ding et al., 1997). Catalytic
steam reforming of waste high-density polyethylene for the
production of hydrogen/syngas has been investigated using
different zeolites (ZSM-5-30, BEA-25 and Y-30) supported
nickel catalysts in a two-stage pyrolysis-catalytic steam
reforming reactor system, where the Ni/ZSM-5-30 catalyst
generated the maximum syngas production with excellent coke
resistance and thermal stability (Escola et al., 2012).

For mixed plastic waste (MPW) pyrolysis, zeolite-based nickel
catalysts are successfully applied since Ni has good catalytic
properties for cleavage of C-C, O-H, and C-H bonds of
oxygenated organics. The most effective catalyst of combined
pyrolysis reforming is rare-earth metal exchanged Y-type (REY)
zeolite ion-exchanged with nickel due to the proper pore size and
acidic properties. The optimum amount of nickel loading on REY
catalyst was 0.5 wt% due to the high yield of quality gasoline (Yao
et al., 2018). Ni oxide supported on ZSM-5 or SAPO-11 reduces
the content of large chains, accelerating the rate of the cracking
reaction during MPW pyrolysis, and increasing the amount of
volatiles with a minimum coke content. The increase of the Ni
content reduced the yield of wax which in turn increased

pyrolysis oil yield (Zheng et al., 2017). In another report, Ce,
La, and Mn were used to promote the Ni/ZSM-5 in syngas
production from MPW (polyethylene, polypropylene and
terephthalate polyethylene). The modified catalysts enhanced
the pyrolysis reaction rate resulting in high syngas yields.
These catalysts can also accelerate methanization reactions and
isomerize the main carbon chain. Furthermore, using Ce and La-
promoted catalysts increased temperature and oxygen in the
atmosphere and had a positive effect on syngas yield (Songip
et al., 1995).

The selectivity of the aromatics during co-pyrolysis of lignin
and polyethylene can be controlled by adding different metals on
the surface of the zeolite. The presence of Ga increased the
selectivity of mono-aromatics and at the same time converted
the propane into olefins by the pyrolytic cracking route. However,
Ga-containing zeolite with a smaller pore size leads to catalyst
deactivation due to formation of large polyaromatics, and as a
result, the catalyst is deactivated (Zheng et al., 2017). For
chlorine-contaminated MPW sources, the H-ZSM-5 with
gallium oxides sustained catalytic activity for a longer period
than parent zeolite (Al-asadi et al., 2020). Another known
modifier for chlorine-contaminated MPW sources is Fe. Due
to its capacity to react with Cl and Br leading to a decrease of
halogen content in MPW pyrolysis products (Zheng et al., 2017).
ZSM-5 and Y-zeolite catalysts loaded with polyvalent metal ions
(Ce2+, Cu2+, Fe2+, Fe3+, Ni2+, Sn2+, and Zn2+) were tested in a
waste end-of-life vehicle pyrolysis. Irrespective of the zeolite type
(ZSM-5 or Y), the TM/Z catalysts decreased the activation
energies for decomposition and the activation energy
decreasing order was as follows: Cu < Ce < Ni < Fe(III) <
Fe(II) < Zn < Sn, however, the effect is more pronounced in
the case of Y-zeolite based catalysts than ZSM-5 (Miskolczi et al.,
2019).

The literature reveals that; the original zeolites are much more
often used for the processing of plastic waste. A narrow range of
TM has been investigated as modifiers of zeolite-based catalysts.
However, the broad prospects for the development of TM/Z
catalysts of plastic waste pyrolysis have recently attracted
increasing attention of researchers.

Transformation of Natural Oils and Fats
Natural oils and fats (NOF) have several reactive groups that can
be converted into desired products. Oils in particular are
considered suitable sources for jet fuel production due to their
low content of aromatic substances. A multi-stage strategy for
converting lipids into reactive hydrocarbons was announced to
obtain high-quality bio-fuels with high energy density, low
freezing point and viscosity, which includes several reaction
processes. A direct hydro processing pathway to produce
reactive alkanes (C9–C15) should be more efficient and
profitable. However, chemicals derived from natural oils
remain unable to compete effectively with petrochemical
industry products as a result of a huge amount of raw
material and production costs (Figure 4). To improve the
economic aspect of these processes, the choice of raw
materials and reaction conditions, and the use of effective
catalysts are crucial. TM/Z catalysts have potential due to the
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acidic nature of the surface and the ability to modify it with a wide
range of TM, which opens up prospects for product composition
management (Mbaraka and Shanks, 2006).

In (NOF) conversion processes acid catalysts are required for
cracking, isomerization, alkylation, hydration, and dehydration.
Zeolites are successfully used catalysts for NOF conversion due to
its high stability, ease of separation and acidity that can be tuned
by varying the ratio of Brønsted/Lewis acid sites, i.e., modifying
the zeolite surface during acid-base pretreatment or ion exchange
with TM cations. It is noteworthy that most of the NOFmolecules
are larger than the zeolite micropores. Recently, zeolites have
been expanded in NOF conversion by introducing mesopores
into the zeolite crystals. The mesoporous nature of the catalyst
provided several advantages like: 1) rapid mass transfer, favorable
adsorption, desorption and surface diffusion of reagents and
products, 2) access of acid sites to bulky oligomer, 3)
synergistic effect between acid sites in mesopores and
micropores. These properties of the zeolites boost the catalytic
activity, product selectivity, and catalyst life (Wang L. et al., 2017).

The best bi-functional zeolite-based catalysts for approaching
the composition of oils to aviation fuel will be the ones containing
transition metals that provide hydroprocessing which includes
hydrodeoxygenation, hydrocracking, hydrogenation and
hydroisomerization. Previous studies indicated that zeolite-
supported noble metal catalysts have incomparable
performance owing to the combining of superior
hydrodeoxygenation ability of noble metals with the tunable
acidity of zeolite supports (Snåre et al., 2006; Philippaerts
et al., 2011; Sotelo-Boyás et al., 2011; Van Aelst et al., 2016;
Yang and Carreon, 2017; Crawford and Carreon, 2018; Niu et al.,
2020). This section considers the main processes of NOF and
utilization by-product of the biodiesel industry, for which zeolite-

based catalysts can be successfully used. However, it is hard to
conclude the best catalyst since various experimental conditions
were reported in the literature.

Among the base TM in the composition of TM/Z catalysts of
natural oil hydrotreatment, the most significant attention in the
literature is paid to nickel. Ni is a well-known catalyst for
hydrotreatment, in addition, it has a strong capacity to cleave
C-C bonds. The combination of the catalytic properties of Ni and
zeolite opens up interesting prospects for biofuel production and
is currently being actively studied (Niu et al., 2020). Ni NPs
supported on hierarchical meso-Y (Cheng et al., 2019a),
sulfonated meso-Y (Cheng et al., 2019b), and desilicated
meso-Y (Zhang Z. et al., 2019) were applied for hydrocracking
conversion of microalgal oil to jet fuel range hydrocarbons and
the reaction parameters were optimized to achieve iso-alkanes.
The effect of zeolite as support for the hydrotreatment of
vegetable oil was studied by varying the Ni or loading on
various zeolites (Wang et al., 2014). The 8 wt% Ni/SAPO-11
catalyst exhibited superior activity with high selectivity towards
isomerized product due to moderate acidity and balanced meso-
micropore channels. Diesel-range alkanes production was
performed over Ni/zeolite from different feedstock for
example, Ni/Hβ used for fatty acid methyl esters (Chen et al.,
2014), Ni/micro-mesoporous β for methyl palmitate
(Papanikolaou et al., 2020), Ni/β for vegetable oil (Wang et al.,
2014), Ni/ZSM-5 for palmitic acid (Ojeda et al., 2018) and Ni/
MOR for stearic acid (Crawford et al., 2020), etc. For
hydrogenation of waste cooking oil into jet fuels,
multicomponent Ni-contained zeolite-based materials like
NiMo core-shell supported on hierarchical USY@Al-SBA-15
(Zhang et al., 2018) and NiCoMo oxides supported on an
A-type zeolite (Asiedu and Kumar, 2019). The catalytic

FIGURE 4 | Catalytic transformation of natural oils and fats.
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pyrolysis of the lipid-extracted residue of Tribonema with a
maximum yield of alkylbenzene was reported over 6% NiO-
2% MgO/ZSM-5 (Ji et al., 2017). The low-temperature selective
cracking-dehydrogenation-aromatization of tree-borne oils to
xylene-rich aromatics was performed by Zn/Y (Singh et al.,
2020). Also Zn or Cr ion-exchanged with MFI was applied as
a catalyst of rapeseed oil hydroconversion to aromatic
hydrocarbons (Dedov et al., 2016).

Fatty acids are long chains aliphatic carboxylic acids naturally
occurring in the form of triglycerides, cholesteryl esters and
phospholipids. Apart from a dietary source, fatty acids and
their esters are the primary sources for the soap, detergent,
and lubricant industries. Therefore, utilization of nonedible
fatty acids/oils for the production of valued products is more
advantageous as it does not impact on human life (for example,
increase of food cost). The bimetallic FeSn/BEA catalyst was used
to convert microalgae residue into lactic acid under mild reaction
conditions (Xia et al., 2021). Various metal ions like Mo, Co, Fe,
Cr supported on HZSM-5 were used as catalysts for vegetable oils
hydrolysis with different lipid compositions into polyunsaturated
fatty acids (Robin et al., 2017).

Glycerol Valorization
Glycerol is produced on a large scale as a byproduct in the
biodiesel production industries. Several routes reported to
transform glycerol, such as hydrogenation, dehydration,
dehydrogenation, oxidation, aromatization, esterification, etc.
Zeolite is the one of the catalysts reported for the
transformation of glycerol into value-added products
(Figure 5). Due to their mesoporosity, zeolite crystals
improved their catalytic performance in glycerol
transformation (Wang L. et al., 2017). Several valued products

are derived from glycerol, however in this section we discuss the
role of zeolite in the transformation of glycerol by oxy-
dehydration, hydrogenolysis, aromatization techniques etc.
Also, few reports on production of syngas and fuel additives
from glycerol using zeolites are discussed.

Among biomass feedstock, glycerol has much attention,
because it is a co-product during the triglyceride
transesterification process to produce biodiesel. Oxy-
dehydration of glycerol is one of the most interesting
economic processes because it can produce acrolein, an
important chemical used in various industries. The ZSM-5
gives high catalytic activity and outstanding selectivity in oxy-
dehydration of glycerol but deactivates rapidly due to coke
formation. However, the space velocities used in reported
works are usually low and blockage of the pores by formation
of carbonaceous deposits is favored. Recently, TM/Z have been
investigated as potential catalysts for the oxidative dehydration of
glycerol because of their acid and redox properties. Most studies
of TM/Z catalysts in the literature suggest mixed metal (W, V,
Mo) oxides, which presented the higher selectivity to acrylic acid.

Zeolites of different topologies: FAU, FER, MEL, MFI, MOR,
MWW and OFF were synthesized and further impregnated with
5% vanadium and they showed high conversions of glycerol
(100–78%). The acrolein selectivity decreased with the total
density of acid sites in these zeolites. The selectivity of acrylic
acid was related to the ability of each topology of stabilizing the
redox pair V5+/V4+. The best performances were observed for
zeolite catalysts with MWW, BEA, and MFI topologies (Silva
et al., 2017). The main advantage of these catalysts was that they
present similar acrylic acid selectivity operating under more
drastic conditions than those employed for the catalysts based
onmixed oxides, the main disadvantage is still the deactivation by
coke. Mixed oxides of MoxVyOz/H-ZSM-5 were applied for gas-
phase glycerol dehydration-oxidation coupled reactions in which
acrylic acid was the main product. This catalyst demonstrated
only 6% of deactivation during 8 h under reaction conditions,
while bulk mixed oxide and the pure ZSM-5 zeolite activities
decreased by 20 and 31%, respectively (Possato et al., 2020).

Iron is an alternative active component for V which allows the
activation of the catalyst by the reduction by glycerol of part of
Fe(III) into Fe (II) species, which stabilizes glycerol conversion.
The Fe/H-MCM-22 catalyst showed better performance
compared to the Fe/zeolite and V/zeolite bi-functional
catalysts (dos Santos et al., 2019). In the case of Fex-BEA-Y,
the Fe(III) species in the framework of zeolites was highlighted,
moreover, the Fe(III) tetrahedral species are thought to be the
main active redox sites for the formation of acrylic acid (Diallo
et al., 2016). The production of allyl alcohol from glycerol on
ZSM5-supported iron catalysts, modified by rubidium deposition
was reported and differences in product distribution and catalyst
performance were explained by the combined effects of iron
loading, catalyst acidity and changes in porosity of the catalysts
(Sánchez et al., 2016).

Recently, phosphorus was included in catalyst composition to
modify the acidity of the zeolite. For acrolein production, the
secondary hydroxyl group of glycerol needs to be removed first to
from 3-hydroxypropanal (3-HPA) as an intermediate, which was

FIGURE 5 | Glycerol transformation over TM/Z catalysts.
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later converted to acrolein by the second dehydration step.
Brønsted acid sites typically catalyze the first step, and the
strength of the Brønsted acid is influenced by the Si/Al ratio.
By introducing another acid component, two advantages were
obtained: enhancement of the Brønsted acid, which accelerated
the first step and more available Lewis acid, which promoted the
second reaction.

The hydrogen phosphates of transitionmetals (CuHPO4,Mo1/
3HPO4, ZnHPO4, NiHPO4, MnHPO4) supported on meso-
HZSM-5 hybrid catalysts generated an improvement of strong
acid sites and acrolein yield. Thus, the yield of acrolein and the life
time of catalysts increased by controlling the reaction pathways
and reducing coke formation (Ren et al., 2019). The oxi-
dehydration of glycerol was catalyzed by H5PV2Mo10O40

loaded on to the ZSM-5 zeolite with high selectivity to acrylic
acid. In-situ IR analysis suggests that acrolein molecules adsorbed
on H5PV2Mo10O40/ZSM-5 were converted into acrylic acid due
to the inhibition of side-reactions such as polymerization and
auto-condensation, which induced coke formation, compared
with the other Mo and V-based oxides loaded on ZSM-5
zeolite (Suganuma et al., 2018). In the case of phosphotungstic
acid (PTA) supported Y-zeolite the total acidity and pore size
increased with a raise in loading up to 20 wt% and decreased
beyond this limit. PTA/Y application showed a total conversion
of 100% glycerol and 79% selectivity towards acrolein among all
tested catalysts (Viswanadham et al., 2018).

Propanediol is a monomer for the production of polymers and
can be produced from glycerol by the hydrogenolysis technique.
The hydrogenolysis of glycerol yields products such as ethylene
glycol and the valuable 1,2-propanediol (1,2-PDO), 1,3-
propanediol (1,3-PDO), β-carotene, lactic acid, propionic acid,
epichlorohydrin, ethanol, syngas, and H2, which are used in the
manufacture of polymers, resins, functional fluids, foods and
cosmetics, while also being important for the food and beverage
industries. Hydrogenolysis of glycerol is generally performed over
supported metal catalysts like Cu, Pt, Ru, Ir, Re, and Rh.
Ruthenium has proved to be the most active catalyst to obtain
1,2-PDO although it promotes excessive C-C cleavage and the
subsequent formation of undesired products, mainly methane.
However, selectivity toward 1,2-PDO has been improved by
adding acid co-catalysts such as TM/Z (Jin et al., 2014;
Gallegos-Suarez et al., 2015). Limited reports are available on
the selective formation of 1,3-PDO provided by the zeolite-
supported Pt, Cu, and Ir (Priya et al., 2016a; Priya et al.,
2016b; da Silva Ruy et al., 2020).

Since Ru and Pt are expensive, many researchers have studied
and developed catalysts based on transitionmetals such as Ni, Cu,
Co, Zn, which have lower cost and show promising results.
Among transition metals, copper-based catalysts appear to be
very efficient in the hydrogenolysis of glycerol due to their high
activity in C-O bond cleavage. Highly dispersed copper oxide
species supported on a Y-zeolite with different Si/Al ratios (from
5 to 60) were active in glycerol hydrogenolysis showing 92%
conversion of glycerol and 83% selectivity to 1,2-PDO (Mitta
et al., 2018). The dealumination of ultrastable Y-type zeolite
resulted in good dispersion of Cu and selective molecular
diffusion to 1,2-PDO (Niu et al., 2014).

Nickel-based catalysts promote hydrogen formation because
of their high catalytic activity in the cleavage of C-C, O-H, C-H
bonds of oxygenated organics, and also promote the removal of
adsorbed carbon monoxide by the water-gas shift reaction. Since
Ni and Cu have a different role in the process of glycerol
hydrogenolysis without external H2 addition their combination
with a zeolite support seems prospective. Bimetallic CuNi
catalysts supported on hierarchically porous SAPO-11 zeolite
showed extraordinary catalytic activity in hydrogenolysis of
glycerol. The mesopores generated in M-SAPO-11 alleviate the
diffusion barriers of reactants that are present in conventional
SAPO-11 microporous channels during the liquid-phase
reaction. Besides, the added Ni promotes the formation of a
highly dispersed Cu active phase, which makes the bimetallic
catalyst superior to the monometallic one. Also, the temperature
has a more significant impact on glycerol conversion for various
technological parameters (Li et al., 2019b). Again, the CuNi/Y
catalysts also exhibited good catalytic stability (de Andrade et al.,
2020).

Aromatization of glycerol is one of the promising routes to
obtain aromatics, which would not only solve the problems of the
crude oil conversion but also the transformation of the glycerol
waste from the biodiesel industry into valid chemicals. Zeolite
catalysts exhibited higher yield of aromatics than other catalysts,
which can be explained by their synergetic acidity and
mesoporosity. HZSM-5 has proved to be the most efficient
catalyst for the production of aromatics due to its tunable
acidity and three-dimensional, 10-ring micro pores matching
the size of the aromatic molecules. However, bare HZSM-5 zeolite
has poor activity and aromatics selectivity. Generally, the
introduction of metal species in HZSM-5, such as Mo, Zn, Ag,
Ni, Cu, Sn, either on the external surface or in the framework, is a
frequently-used method to improve activity and aromatics yields
during the aromatization reaction (Wang F. et al., 2017).
Comparison of the catalytic properties of Sn incorporated
hierarchical HZSM-5 and HZSM-5 in the glycerol
aromatization showed that the remarkably improved
performance in catalytic activity and stability observed for the
H[Sn, Al]ZSM-5 catalyst can be attributed to the synergy between
Sn species doped into HZSM-5 and the generated micro-
mesoporous structure by alkali treatment (Yang et al., 2018).
Zn species were introduced by the atomic layer deposition
method in the form of thin-film into HZSM-5, where Sn
incorporated into the framework improved the reusability of
catalysts in glycerol aromatization. The synergistic effect of
hybrid metal species and the interaction between metals and
supports improved the performance in aromatization of glycerol
(Wang F. et al., 2017).

Some reports are available on syngas production from
glycerol, for which the most studied metal catalyst is Ni. The
Linde-type 5A zeolite was used for Ni dispersion to produce
synthesis gas (Huang et al., 2014). However, the strong
interaction between the zeolite and Ni was modified with
multi-metal ions (La, Ca, Mo), which reduced the acidity of
the catalyst and enhance the glycerol conversion to syngas rather
than to methane formation. Glycerol was used as a source for the
production of olefins at high temperatures using Fe, Nb, and Mo
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containing HZSM-5 catalyst (Lima and Perez-Lopez, 2019).
Among the studied metals Fe exhibited high selectivity
towards propylene due to its relatively acidic strength at low
temperatures higher than the Nb-ZSM-5. The latter case
produced ethylene at high temperatures. As discussed in the
above section, acrolein is formed due to the dehydration of
glycerol over zeolite-based catalysts. The selective reduction
(by hydrogen transfer) of acrolein to allyl alcohol was reported
by Almeida et al. (2019) using vanadium supported beta zeolite,
without adding of an external reductant.

The application of zeolites is not only limited to the glycerol
valorization techniques, but also are used in the synthesis of bio-
fuel additives (Solketal and t-butylethers of glycerol), olefins,
glycerol carbonate, glycedol, glycerol oxidation, etc. For the
acetalization of glycerol, among the reported various
polyvalent metal ion incorporated on MOR catalysts, the
synergistic effect of Cu and MOR made it the most effective
catalyst for the production of solketal with high selectivity (Priya
et al., 2017). In another report, V2O5 deposited in lamellar
ferrierite and ITQ-6 zeolites were reported for the solketal
synthesis from glycerol (Vieira et al., 2018). The high activity
and selectivity achieved in the case of ITQ-6 is due to the presence
of meso/micro pores and better diffusion compared to the
ferrierite zeolite. One of the fuel additives with high octane
numbers is the ether of glycerol, for which Y-zeolite is used as
a support for phosphotungstic acid dispersion (Srinivas et al.,
2014). The high selectivity obtained for mono-ether rather than
bi-/tri-ethers products that the Y-zeolite pore might control.
Another important product from glycerol is lactic acid and/or
its esters obtained by oxidation of glycerol. Metals such as Au, Sn,
CuO incorporated in zeolites (beta and USY) have been employed
as catalysts for the single-step conversion of glycerol to methyl
lactate (Lu et al., 2017; Zhou L. et al., 2019). The Au/Sn-USY
catalyst exhibited high selectivity of methyl lactate due to high
dispersion of Au to the Sn-Au interactions, where Sn contributed
to the modification of acidic zeolite property (Vieira et al., 2018).
Interestingly, Fe-MFI zeolites were used as catalysts for the gas
phase oxidation of glycerol to dihydroxyacetone (an intermediate
for lactic acid production) using molecular oxygen (Lari et al.,
2015). The Fe-zeolite prepared by hydrothermal synthesis
followed by steaming resulted in well-dispersed FeOx species
in the framework that displayed enhanced activity compared with
the impregnated catalysts. Metal (Sn, Zn, Ag) impregnated
Y-zeolites are more efficient than the parent one in the
synthesis of glycerol carbonate using CO2 (Ozorio et al.,
2015). Also, glycidol can be derived from glycerol carbonate or
glycerol.

H2 Production and Storage
In the last decades, technological research and development have
been directed towards the implementation and production of
clean energies to achieve zero-carbon emissions (Ni et al., 2007;
Chou et al., 2013; Voldsund et al., 2016). It is estimated that
hydrogen could largely replace fossil fuels (Midilli and Dincer,
2008). Thus, hydrogen is predictable as a clean fuel and represents
a potential solution for energy storage. However, one of the main
problems with the use and management of hydrogen is its low

volumetric energy density, which, for instance, limits its
implementation in fuel cells for use in the electronics and
automotive industries. In general, hydrogen as an energy
source represents a challenge to solve the problems related
with its production, storage, transportation, distribution, and
economic viability (Abe et al., 2019; Nazir et al., 2020). This
section will discuss recent examples found in the literature related
to the production and storage of hydrogen with TM/Zeolites.

It is well known that noble metal-based catalysts such as Ru,
Pt, Rh, Pd, etc. exhibit the best catalytic performance of H2

production in different processes (Hu et al., 2019; Siang et al.,
2020). However, the high costs of these metals limit their research
and applications. In this sense, transition metals such as Co, Ni or
Cu are the alternative for a new generation of catalysts to produce
this fuel of interest (Luconi et al., 2019; Ogo and Sekine, 2020). In
order to obtain a good dispersion and availability of the active
sites, several zeolites must be explored to improve catalytic
performance.

Currently, the primary sources of hydrogen production at an
industrial scale is steam reforming of natural gas or light
hydrocarbons (Cheekatamarla and Finnerty, 2006). However,
other methods continue to be explored for production, such as
photolysis, electrolysis, and thermal processes, etc. (Wan et al.,
2019; Zhu et al., 2020a; Holade et al., 2020). Among the methods
for hydrogen production with a great potential is the
decomposition of methane, since it can contribute to the
reduction of CO2, in addition to being a more energy-efficient
process (endothermic). Metal catalysts for hydrogen production
via decomposition of methane as Ni, Fe and Cu have achieved
very promising results due to the high catalytic activity and
stability in this process (CH4 conversions above 50% and H2

production above 60%) in the 600–900°C temperature range
(Ashok et al., 2007; Ashik et al., 2015). In terms of TM/Z, for
instance, Nasir Uddin et al. (2015) reported H2 production with
Ni catalysts supported on zeolite Y through thermocatalytic
descomposition (TCD) of methane. They showed that Ni/Y
catalysts with a metal loading of 30 wt% achieved the highest
hydrogen production at 650°C.

Other alternatives to produce H2 are compounds with -OH
groups. Very recently, H2 production utilizing aqueous phase
reforming (APR) with transition metals supported on zeolites
from compounds derived from biomass showed a high potential.
Gogoi et al. (2020) reported the catalytic activity of Ru exchanged
on NaY zeolite in the APR using glycerol and ethylene glycol. The
authors found that Ru/NaY catalysts with 3 wt% of the metal
presented a glycerol conversion >80% and H2 selectivity >70%,
associated with the suitable metal loading, good dispersion, high
availability of Ru0 active sites and high activity for water gas shift
reaction. They suggest that these catalysts have good potential for
H2 production. According to Contreras et al. (2014) in their
literature review about H2 production by ethanol steam
reforming (ESR), the catalysts based on Ni, Co, Fe, and Cu
supported in different matrices are the most studied and much
cheaper than catalysts based on noble metals. Grzybek et al.
(2020) reported Co-based catalysts supported on USY and ZSM-5
zeolites for ESR, in which both catalysts achieved a 100% ethanol
conversion, meanwhile the Co/ZSM-5 catalyst exhibited high
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selectivity (75%). In any case, the selectivity to H2, CO2, and C2H4

depended on the ethanol-water molar ratio and the catalytic
activity was associated with the reoxidation of Co0/Co2+ sites. In
the case of nickel-based catalysts, the high activity to dissociate
the C-C bond has generated various investigations. Lately, Wang
et al. (2020) tested bioethanol steam reforming using a new kind
of Ni core-shell catalysts supported on hierarchical beta zeolite.
The conversion of ethanol and selectivity of hydrogen was higher
than 85 and 70%, respectively. These results were associated with
the role of morphology, Ni metal charge and its dispersion in the
zeolite. Li et al. (2019c) tested a group of core-shell catalysts in the
ESR, they prepared core-shell structures based on BEA and MFI
zeolite crystals with Ni, Cu, and Co incorporated in several stages.
All the catalysts showed a hydrogen selectivity greater than 50%
associated with good metallic dispersion in the core-shell
structures and the presence of Cu and Ni centers.

A possible solution for hydrogen storage are solid-state
materials capable of efficiently capturing and releasing it. In
this sense, aluminosilicates represent a viable low-cost
alternative (Regli et al., 2005; Jhung et al., 2007; Chung, 2010;
Kumar et al., 2020). The incorporation of transition metal cations
can improve hydrogen adsorption capacity as they function as
binding sites for hydrogen molecules (Kubas, 2007; Kozyra and
Piskorz, 2016). Altiparmak et al. (2019) investigated the H2

storage capacity of Cu-exchanged ZSM-5 zeolites using
adsorption calorimetry. According to H2 adsorption isotherms,
Cu supported on mesoporous ZSM-5 sample with H2/Cu ratio of
1.03 achieved the highest H2 storage capacity around 0.03 wt% at
50 kPa, associated with Cu(I)-sites. Similar materials were studied
by Ipek et al. (2018), and they reported that Cu-exchanged over
SSZ-13 zeolites achieved H2 adsorption of 0.05 wt% at 1 atm.

Theoretical Studies of Transition Metals on
Zeolites
The use of zeolites as carriers on their surface or in the form of
inclusions within their voids of atomically dispersed transition
metals is of considerable interest in catalysis. Much attention to
such systems is associated with the manifestation of synergistic
effects between the applied metals’ components and the zeolite
matrix. In this sense, the theoretical studies carried out in terms of
calculations of first principles have played a significant role since
they have provided important information on the electronic
structure of different zeolitic frameworks and various
transition metals deposited in the channels. In general,
catalytic performance of zeolites is characterized theoretically
by evaluating the activation barriers and the reaction energies of
the heterometallic sites in the presence of the molecule of interest.
Compared to ab-initio methods, the scaling/precision cost of
studies based on the density functional theory (DFT) method are
considerably lower (Nicholas, 1997). However, the correct
prediction of the catalytic performance of zeolites depend on
the type of pseudopotential used to minimize errors (Grecu et al.,
2018; Wang, 2018).

Due to the recognized impact that zeolites have on petroleum
refining, these are expected to have a potential application in the
direct conversion of MTM (Vermeiren and Gilson, 2009;

Choudary and Newalkar, 2011; Klerk, 2018). Thus, although
zeolites are the subject of many theoretical investigations, the
study of the inclusion of transition metals in zeolites has been
mainly aimed at understanding the nature of catalytic processes
in this field. In this direction, one of the most outstanding works
was that by Pannov et al. (1990), who reported experimentally
that iron loading in H-ZSM-5 zeolite could efficiently decompose
N2O at low temperatures (below 300°C). As a further effect of this
decomposition, highly reactive oxygen bonded to the zeolite
surface (termed α-O) could be involved in the oxidation of
CH4 at room temperature. It would not take long to confirm
the selective oxidation of methane to methanol in the Fe-ZSM-5
zeolite (Sobolev et al., 1995). In addition to Fe-ZSM-5 zeolite,
N2O decomposition has also been observed for zeolites such as
Fe-FER, Fe-BEA, and Fe-MOR (Centi et al., 2004; Jíša et al.,
2009). Of this group, the Fe-BEA zeolite presents the highest
intensity of the ligand-field bands, a fact from which Snyder et al.
(2016) took advantage to investigate the nature of the active site
[termed α-Fe(II)]. In particular, the results of magnetic circular
dichroism (MCD) revealed that the nature of the active site
α-Fe(II) is mononuclear (see Figure 6), high-spin, and
presents coordination with square-planar geometry. Similarly,
the reactive intermediate α-O showed a mononuclear nature and
high-spin species Fe (IV)�O. Besides, their studies based on DFT
(under cluster approach) suggest that this environment is stable
and viable only in a very particular six-membered ring (6MR)
configuration.

For other zeolites, it is challenging to determine
experimentally the nature of the active site and the factors that
influence its reactivity due to the presence of the inactive
spectator iron species. However, for the ZSM-5 zeolite, it has
been shown that in addition to the monovalent iron oxide cation
[FeO]+ (Yoshizawa et al., 2000), other cations such as the divalent
iron oxide cation [FeO]2+ (Yoshizawa, 2006; Rosa et al., 2010),
and dinuclear iron complexes (Yoshizawa and Yumura, 2003) are
stable and show potential applications for MTM conversion.
Mahyuddin et al. (2016) studied the inclusion of different
monometals [MO]+ (M�Fe, Co, Ni, Cu) in the zeolite ZSM-5
for the conversion of MTM, predicting that the reactivity toward
C-H bond dissociation presents the following trend [CoO]+-
ZSM-5 < [NiO]+-ZSM-5 < [FeO]+-ZSM-5 < [CuO]+-ZSM-5.
In contrast, the trend for methanol selectivity increases
according to [FeO]+-ZSM-5 < [CoO]+-ZSM-5 < [NiO]+-ZSM-
5 < [CuO]+-ZSM-5. In this work, the catalytic cycle that arises for
the MTM conversion is similar to the “rebound mechanism” (see
Figure 7) proposed for C-H bond activation by non-heme Fe(IV)
complexes (Shaik et al., 2004; Cho et al., 2012; Göltl et al., 2016).

Interestingly some Cu-exchanged zeolites (Groothaert et al.,
2005; Alayon et al., 2012; Narsimhan et al., 2016; Le et al., 2017)
have shown that the precursor can be activated with molecular
O2, which is less expensive than N2O. For Cu-exchanged Na-
ZSM-5 (Cu-Na-ZSM-5), theoretical-experimental results showed
that the active site is mono(μ-oxo)dicopper species [also referred
to as (Cu2O)

2+] (Woertink et al., 2009), the same active site is
found for Cu-Na-ZSM-5 (Vanelderen et al., 2015). According to
Sushkevich et al. (2017), this step can be excluded if the reaction is
conducted in the presence of water (or anaerobic condition),
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which acts as a source of oxygen atoms. Theoretical results
(Palagin et al., 2019) show that the reaction also occurs in a
similar way to the rebound mechanism, but the oxygen provided
by the water molecules reoxidizes the active centers of copper, re-
stabilizing them to facilitate the desorption of the product
(methanol). Due to the broad potential that Cu-exchanged
zeolites have for MTM conversion, other active sites such as
monocopper [Cu(II)OH]+ species (Kulkarni et al., 2016; Ipek
et al., 2017) and dicopper peroxo [Cu2O2]2+ species (Ipek et al.,
2017; Pappas et al., 2017; Oord et al., 2018) have also been
proposed. In addition to the conversion of MTM, there are other
exciting types of catalytic reactions where transition metals have
been studied. For instance, ZSM-5 has been loaded with cations of
Au, Be, Co, Cu, Mg, and Zn to study the conversion of CH4 and
CO2 into acetic acid (Panjan et al., 2012; Gerceker et al., 2017) or

for the dehydrogenation of ethanol to acetaldehyde (Maihom
et al., 2014). The methane conversion to ethylene and aromatics
has been evaluated in ZSM-5 when are loaded with Pt and PtSn
nanoparticles (Gerceker et al., 2017). Also, the adsorption of H2S
has been studied by including cations of different metals (Fe, Co,
Ni, Cu, and Zn) in ZSM-12 (Fellah, 2016). Recently, themigration
of Cu+ has been studied as an effect of introducing cations of
Mg2+, Ca2+, Sr2+, Ba2+, and La (OH)2+ species into Y-zeolite for
the synthesis of dimethyl carbonate (Zheng et al., 2020).

SUMMARY AND GENERAL CONCLUSION

Current challenges in the field of environmental protection and
sustainable energy production are inspiring the development of

FIGURE 6 | (A) Sketch of the BEA zeolite highlighting two six-membered rings (6MR), designated as A1 and A2, and (B) the energetically most favorable
configuration of the active site α-Fe(II) and its intermediate α-O in the A1 ring. In addition, the various tetrahedral units are marked with a capital T followed by a number.
The same numeric label represents tetrahedral units that satisfy the same symmetry rules. Reprinted with permission from Snyder et al. (2016). Copyright 2016 Nature.

FIGURE 7 | Illustration of the rebound mechanism for methane to methanol conversion. (A) CH4 molecule in the vicinity of the Fe-oxo site, (B) adsorption of
methane and detachment of one of the H’s by the a-O intermediate, and (C) the reconfiguration of both H and a-O. The latter configuration decreases the strength of the
a-O and a-Fe bond and, by the effect of thermal perturbations or momentum transfer from molecules present in the flow, can be desorbed, resulting in the desired
product. At the end, the active site is available to be occupied by a new a-O and as a consequence, the catalyst is regenerated. Reprinted with permission fromGöltl
et al. (2016). Copyright 2016 American Chemical Society.
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catalytic processes both for direct removal of pollutants and for
cleaner and less energy-intensive production. The existing focus
is on the development and implementation of processes inspired
by the growing understanding that humanity must turn
hazardous waste into valuable products, combining the
removal of pollutants with the production of vital materials.
Among the many catalysts, TM/Z materials based on
transition metals supported on zeolite supports have attracted
active attention.

The combination of such active substances as ions and
nanoparticles of transition metals, and such a nontrivial
carrier as zeolites in one material makes it possible to realize
synergistic effects created by the combination of their intrinsic
properties. Transition metals have long been known as useful
catalysts to cleave C-C, C-H, C-S, C-O, C-N and C-Metal bonds.
The well-known specific properties of zeolites are useful to create
highly dispersed active centers within their crystallographically
determined porosity. The result is a new generation of TM/Z
based catalysts with improved physicochemical properties. They

are capable of activating and converting methane, carbon dioxide,
plastic waste, biomass, etc. into useful raw materials.

Capturing CO2 by zeolites and generating added value
through converting it to chemicals is a very good alternative
to reduce atmospheric emissions. The steric properties of zeolite
matrices may be responsible for the selectivity towards
isoparaffins and products exceeding C5 in TM/Z bifunctional
catalysts.

The emerging alternative to converting methane into products
with higher added value through a partial oxidation process
involves reducing its emissions into the atmosphere. Various
TM/Z were tested and the multicomponent catalysts showed the
best performance in the catalytic reaction. It is believed that
zeolite acidity is a key factor in the methanol adsorption/
desorption process, allowing methanol to be desorbed before it
is completely oxidized to CO2; therefore, modification of the
zeolite matrices is an important task.

Recent theoretical studies have provided a deeper
understanding of the synergistic role of interactions between

TABLE 1 | Catalytic applications of distinct transition metals on zeolites (TM/Z).

Process Zeolite Transition metal References

CO2 capture Zeolite-4A, FAU, CHA, MER, RHO Pd, Fe, Co, Ni, Cu, Zn, Ag Sun et al. (2019), Debost et al. (2020), Panda et al. (2020), Kian
et al. (2021)

CO2 conversion MFI, BEA, CHA, LTA, USY Fe, Co, Ni, Cu, Ru, Rh, Pt
(promoters like Ce, Mg, Ca, Ba)

Sineva et al. (2015), Bacariza et al. (2017), Bacariza et al.
(2018), Bacariza et al. (2019), Sadek et al. (2019), Ashok et al.
(2020), Wei et al. (2021)

Conversion of methane to
methanol

ZSM-5, ERI, CHA, MOR Fe, Co, Ni, Cu, Rh, Au, Pd Narsimhan et al. (2016), Paolucci et al. (2016), Bunting et al.
(2020), Zhu et al. (2020b), Martini et al. (2020), Sajith et al.
(2020), Pappas et al. (2021)

SCR-deNOx MOR, BEA, MFI, FER, CHA, LTA Fe, Co, Ni, Cu, Ag Xin et al. (2018), Hamoud et al. (2019), Lee et al. (2019),
Shelyapina et al. (2020b), Gao (2020), Gramigni et al. (2020),
Lim et al. (2020), Lin et al. (2020), Ben Younes et al. (2021),
Zhao et al. (2021)

H2 storage ZSM-5, SSZ-13 Cu, Ag, Zn Kozyra and Piskorz (2016), Ipek et al. (2018), Altiparmak et al.
(2019)

H2 production ZSM-5, Y-zeolite, USY, hierarchical-
BEA, BEA

Ru, Pt, Rh, Pd, Co, Ni, Cu, Fe Contreras et al. (2014), Li et al. (2019c), Luconi et al. (2019),
Gogoi et al. (2020), Grzybek et al. (2020), Ogo and Sekine
(2020), Wang et al. (2020)

Hydrocracking of plastic
waste

H-ZSM-5, Y, FER, ITQ-6, ZSM-5-30,
BEA-25, Y-30, REY, SAPO-11

Pt, Ni (Ce, La, and Mn as a
promoters of Ni), Ga, Fe, Ce, Cu,
Sn, Zn

Escola et al. (2012), Anuar Sharuddin et al. (2016), Zheng et al.
(2017), Munir et al. (2018), Yao et al. (2018), Miskolczi et al.
(2019), Al-asadi et al. (2020)

Pyrolysis of biomass ZSM-5, H-ZSM-5, Y, β, SAPO-34,
MCM-22, ITQ-2

Ga, Ni, Co, Sn, Rh, Zr Cheng et al. (2012), Iliopoulou et al. (2012), Zheng et al. (2017),
Naqvi and Naqvi (2018), Li et al. (2019a), Cai et al. (2020),
Hernández-Giménez et al. (2021)

Transformation of natural
oils and fats

meso-Y, SAPO-1, β, Hβ, micro-
meso-β, ZSM-5, HZSM-5, MOR,
A, BEA

Ni, Mo, Co, Fe, Cr, Sn, Zn Dedov et al. (2016), Ji et al. (2017), Crawford and Carreon
(2018), Ojeda et al. (2018), Cheng et al. (2019a), Asiedu and
Kumar (2019), Cheng et al. (2019b), Zhang et al. (2019b),
Crawford et al. (2020), Niu et al. (2020), Papanikolaou et al.
(2020)

Oxy-dehydration of glycerol ZSM-5, FAU, FER, MEL, MFI, MOR,
MWW, BEA, BEA-Y, OFF, MCM-22

W, V, Mo, Fe, Fe modified by Rh Diallo et al. (2016), Sánchez et al. (2016), Silva et al. (2017),
Suganuma et al. (2018), Viswanadham et al. (2018), dos
Santos et al. (2019), Ren et al. (2019), Possato et al. (2020)

Glycerol hydrogenolysis Y, SAPO-11 Pt, Cu, Ir, Ru, Ni, Cu, Co, Zn Gallegos-Suarez et al. (2015), Priya et al. (2016a), Priya et al.
(2016b), Mitta et al. (2018), Li et al. (2019b), da Silva Ruy et al.
(2020), de Andrade et al. (2020)

Aromatization of glycerol HZSM-5, H[Sn, Al]ZSM-5 Mo, Zn, Ag, Ni, Cu, Sn, Fe, Nb, La Wang et al. (2017a), Yang et al. (2018), Almeida et al. (2019),
Lima and Perez-Lopez (2019)

Synthesis of bio-fuel
additives from glycerol

ITQ-6, Y, USY, β, MFI, MOR Au, Sn, Cu, Zn, Ag, Fe, W Srinivas et al. (2014), Lari et al. (2015), Ozorio et al. (2015), Lu
et al. (2017), Priya et al. (2017), Vieira et al. (2018), Zhou et al.
(2019a)

Frontiers in Chemistry | www.frontiersin.org August 2021 | Volume 9 | Article 71674516

Sánchez-López et al. Transition Metals on Zeolites

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


the various components and the zeolite matrix. The retention of
metal clusters and/or cations within a zeolite depends on its very
specific crystal structure and its chemical composition (e.g. Si/Al
ratio). The role of the spatial distribution of trivalent metals
(among which Al is the best known) such as Fe, Ga, Y, etc. in the
tetrahedra of the zeolite framework continues to be a topical issue
of research in the field of catalysis. The future of custom catalyst
development and catalyst tuning depends on a deeper
understanding of all of these factors. Furthermore, research
based on the use of artificial intelligence and machine learning
may become widely used methodologies for optimizing the
synthesis conditions of the most active, selective and stable
TM/Z catalysts based on an extensive database of experimental
studies.

Municipal solid waste can be an important source of
hydrocarbons as it contains plastics, plastic containers, food
packaging materials, paper, rubber, textiles and non-recyclable
packaging materials, as well as biomass (food waste) and other
solid waste from various sources. Plastics may be very convenient
for a variety of uses, but as a secondary result, a lot of plastics end
up in household wastes. The chemical structure of most plastics
makes them resistant to many natural degradation processes;
thus, they degrade slowly. Together, these two factors allow large
volumes of plastic to end up in the environment as misplaced
waste and to remain in the ecosystem.

Methods are being developed for converting waste to energy or
converting waste into a fuel source. Most processes produce
combustible fuels such as methane, methanol, ethanol, or
synthetic fuel. TM/Z are successfully used as typical catalysts
for the decomposition of polymer waste. Recent studies have
shown the importance of such catalysts, as well as the noble
metals supported on zeolite, for converting biomass to jet fuel due
to their superior hydrodeoxygenation capacity and controlled
acidity of zeolite carriers. In addition, zeolites with transition
metal species have turned out to be promising catalysts in the
production of fuel additives from glycerin. There are several ways
to convert glycerol using TM/Z catalysts. Hydrogenolysis of
glycerol leads to the formation of several valuable products,
including Ni-based catalysts successfully providing hydrogen
formation.

Among the new environmentally friendly clean energy
sources, hydrogen is the most interesting. The production of
H2 by reforming on TM/Z catalysts using biomass-derived
compounds is becoming an alternative to methane
decomposition or steam reforming of natural gas. Typically,
TM/Z catalysts have high conversions (>80%) and good H2

selectivity (>70%), which are associated with factors such as
suitable metal loading, good dispersion, high availability of
active sites, and high activity. Also, a number of studies have
been carried out on the storage of H2 on zeolites with transition
metal cations. These hybrid materials have demonstrated the
ability to adsorb hydrogen, with TM cations functioning as
binding sites for hydrogen molecules.

Finally, no matter how clean the fuel is, nitrogen oxides are
inevitably formed during combustion. Recent advances in the
removal of NOx emissions from exhaust gases using TM/Z
catalysts are based on the use of multimetallic materials.
Through their use it is possible to expand the range of
operating temperatures, which is usually 300–450°C.
Research is underway to optimize the synthesis parameters
and the optimal ratio of active phases. Parameters such as the
order of component deposition, metal loading and metal
deposition method strongly influence the final performance
of multimetallic catalysts.
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