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ABSTRACT: Designing molecules for drugs has been a hot topic for many
decades. However, it is hard and expensive to find a new molecule. Thus, the
cost of the final drug is also increased. Machine learning can provide the fastest
way to predict the biological activity of druglike molecules. In the present work,
machine learning models are trained for the prediction of the biological activity
of aromatase inhibitors. Data was collected from the literature. Molecular
descriptors are calculated to be used as independent features for model training.
The results showed that the R2 values for linear regression, random forest
regression, gradient boosting regression, and bagging regression are 0.58, 0.84,
0.77, and 0.80, respectively. Using these models, it is possible to predict the
activity of new molecules in a short period of time and at a reasonable cost.
Furthermore, Tanimoto similarity is used for similarity analysis, as well as a
chemical database is mined to search for similar molecules. Nonetheless, this
study provides a framework for repurposing other effective drug molecules to prevent cancer.

1. INTRODUCTION
Recently, aromatase inhibitors have gained considerable
attention in the field of drug design and other pharmacological
applications because of several distinctive characteristics, such
as high enzyme specificity, prolonged inhibitory action, and
minimal toxicological effects.1 They have been developed to
exhibit competitive, mechanism-based, and irreversible kind of
inhibition in various pathologies such as breast cancer.2 The
number of breast cancer patients is increasing in many
countries, leading to an economic burden. One-third of
carcinomas are found to be hormone-dependent where the
cell proliferation is affected directly by the estrogen hormones.
Either targeting the estrogen receptor directly (first) or
inhibiting the aromatase (second) activity are the two
approaches that have been used to control or block the
tumor progression of the said hormone.3 An important
approach to reducing tumor growth is the inhibition of the
enzyme aromatase (the key enzyme (CYP19) for estrogen
biosynthesis), a member of subfamilies of cytochrome P450s
(a family containing more than 60 important metabolizing
enzymes).4 It is responsible for the catalytic conversion of
androgen to estrogen, where the reaction is progressed in the
active sites of this enzyme using ferric ions in haem.5

Considered to be the mainstream treatment method for the
estrogen receptor-positive breast cancer treatment regimen,
aromatase inhibitors have been continuously used under the
title of first-, second-, and third-generation aromatase
inhibitors as approved by the FDA. The third-generation

inhibitors comprise of letrozole, anastrozole, and exemestanea,
which are used in the standard treatment of postmenopausal
breast cancer these days.6,7 In many studies, their use has been
reported in reproductive technology,8 endometriosis,9 gyneco-
mastia,10 ovarian cancers,11 male infertility,12 and many
others.13

Although the treatment using both steroidal and non-
steroidal aromatase inhibitors as third-generation aromatase
inhibitors has gained tremendous attention, a few major side
effects such as arthralgia, myalgia, hot flashes, night sweats, loss
of sex drive, and vaginal dryness were observed in case of their
prolonged clinical usage.14 Furthermore, the situation gets
worse in patients with liver, kidney, or adrenal insufficiency,
leading to excessive hair loss.15 Therefore, it is urgent to
develop a new kind of efficient aromatase inhibitor with
minimum side effects. Therefore, it is important for the
researchers to investigate some more structural properties of
these enzymes to get a better understanding of the quantitative
structure−activity relationships (QSARs) to open horizons for
new drug discovery. Machine learning seems to be famous in
biological science.16 Quantitative structure−activity relation-

Received: September 24, 2022
Accepted: December 2, 2022
Published: December 13, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

48139
https://doi.org/10.1021/acsomega.2c06174

ACS Omega 2022, 7, 48139−48149

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Ishfaq"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammad+Aamir"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Farooq+Ahmad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abdelazim+M+Mebed"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sayed+Elshahat"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c06174&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06174?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06174?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06174?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06174?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06174?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/51?ref=pdf
https://pubs.acs.org/toc/acsodf/7/51?ref=pdf
https://pubs.acs.org/toc/acsodf/7/51?ref=pdf
https://pubs.acs.org/toc/acsodf/7/51?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c06174?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


ship (QSAR) is considered one among these. Compared with
density functional theory calculations, machine learning
requires much less time for prediction.17−19

Virtual design and prediction of single- or multitarget
inhibitors of cancer-related proteins, including aromatase is
also a hot topic.20 A molecule able to simultaneously inhibit
many different cancer cells will be better than a molecule that
inhibits a few cancer cells.21 In addition, the heterogeneity of
the tumor is also a well-established fact and varies from person
to person and lays the foundation of precision medicine. Of
note, during the drug discovery process, we always move from
one common target to a complicated multitarget strategy.
Therefore, in this preliminary study, we focus on one target
rather than multiple targets for the sake of simplicity.
The molecular docking studies were quite important and

helpful in understanding the structural and functional proper-
ties of human aromatase because the information about the
three-dimensional (3D) structure of this enzyme was also a
result of its molecular docking studies.22 Its three-dimensional
structural information was reported based on a hypothetical
theoretical 3D model of the enzyme aromatase.23 3D-QSAR
studies on nonsteroidal aromatases as aromatase inhibitors to
analyze their synthesis, structural features, and inhibitory
activities have been performed.3,24

Lone et al. synthesized novel testololactam and testolactam
(nitrogen congeners), whose structural and electronic proper-
ties were studied by theoretical density functional theory
(DFT) studies. Although the computational and molecular
docking studies predicted a relatively lower therapeutic
efficacy, they could appreciably be used as steroidal aromatase
inhibitors.25 Another study was carried out by Banjare et al.,
who utilized structure-guided molecular docking-assisted
alignment-dependent three-dimensional QSAR to analyze a
set of 22 compounds to search novel, less toxic, and potent
molecules.26 The compounds having aromatase inhibitory
activity were studied for antibreast cancer properties. In
another study, steroidal aromatase inhibitors were evaluated
using docking studies to rationalize the quantitative structure−
activity relationships.27 Recently, Giampietro et al. performed
computational studies to design and prepare novel phenyl-
diazenyl sulfonamides and provided a sound rationale at a
molecular level.28 In addition, Osmaniye et al. used molecular
docking and molecular dynamic studies to design and
synthesize novel furan or thiophene ring containing

triazolothiazine derivatives, which could have been used as
anticancer agents.29 Moreover, these computational studies are
important to save time and resources, whereby the expected
outcomes are predicted theoretically rather than directly
engaging with the experimental complications.30,31 Machine
learning as a subfield of computer science and statistics
provides a platform for strong artificial intelligence and
optimization concepts (delivering methods, theory, and
domain of a wide range of applications), with the main focus
on providing data to improve patient outcomes.32−34

In the present work, multiple machine learning models have
been trained for the prediction of the biological activity of
aromatase inhibitors. Molecules from PubChem are extracted
and their biological activity is predicted through machine
learning models. In addition, the ChEMBL database is
explored to find similar molecules using RDkit. The framework
of the present study is given in Figure 1.

2. METHODOLOGY
2.1. Data Collection. The data for machine learning is

collected from research papers and contains more than 400
data points. The smiles of molecules, aromatase inhibitor
activity, and DOI of papers from where the data has been
collected constitute the data. The acquired data is given in
Table S1.
2.2. Molecular Descriptor Calculation. Various types of

molecular descriptors for molecules are calculated using
Dragon software.35 The 3D geometries of compounds in
structure data file (SDF) format are used as input. About 4000
descriptors are generated. These descriptors are exported in
comma-separated values (.csv) file. Best descriptors are
shortlisted using univariate regression. These descriptors are
used for training machine learning models.
2.3. Training the Model.We have imported the necessary

packages of Python such Scikit-leran, Pandas, Scipy, Numpy,
Seaborn, and Matplotlib. These packages are necessary for data
visualization and analysis. The molecular descriptors and
biological activity in the comma-separated values (.csv) file are
imported with the help of the Pandas module. Linear
regression, random forest regression, gradient boosting
regression, and bagging regression are used for machine
learning analysis. The linear regression model predicts the
target variable by analyzing the relationship between the target
variable and independent variables. The random forest model

Figure 1. General framework of the current study.
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uses multiple decision trees to make a prediction. The results
from individual trees are averaged to provide output
predictions from the whole forest. The gradient boosting
model also uses multiple decision trees. Compared to random
forests, it builds relatively simple trees, which are sequentially
incorporated into the ensemble. Bagging regression consists of
two parts: bootstrapping and aggregation. In bootstrapping,
multiple subsets are derived from the whole data set using the
replacement procedure. In aggregation, all possible outcomes
of the prediction are combined. The cross_val_score function
of Scikit-leran is used for cross-validation. The GirdSearchCV
library in Scikit-leran is used to tune hyperparameters.
2.4. Similarity Analysis. Similarity analysis is performed

using RDKit, which is a cheminformatics software.36 Many
types of operations can be performed on chemical compounds
using this software. Similarity analysis is a straightforward

method to find similarities between reference structure and
structure in the database.37,38 For this purpose, pharmaco-
phores, distances, fingerprints, etc. can be used. In our work,
Tanimoto similarity is used. For this purpose, extended
connectivity fingerprints (ECFP4) are selected. RDkit
compares the fingerprint of the query structure (reference
structure) with the fingerprints of each compound within the
database and calculates the Tanimoto index.

3. RESULTS AND DISCUSSION
3.1. Molecular Descriptors. The chemical structures of

the molecules determine their role in various applications.39−41

Machine learning through molecular descriptors is a good way
to link the chemical structure of molecules with biological
activities. Molecular descriptors are calculated to feed the
machine learning models.42 These descriptors are easy and fast

Figure 2. Distribution plot of descriptors (features) and dependent variable (pIC50).
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to calculate compared with quantum chemical descrip-
tors.43−45 The distribution plots of descriptors and pIC50 are
given in Figure 2. Many descriptors have two types of values: 0
and 1.

The Pearson correlation between different parameters is
calculated and their heatmap is plotted. The obtained graph is
given in Figure 3. The correlation between different parameters
is not high. The role of different descriptors in model training

Figure 3. Heatmap of the Pearson correlation between descriptors and pIC50.

Figure 4. Feature importance calculated using the random forest model.
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is determined using feature importance. It is done using the
random forest model. The majority of descriptors have less
importance (Figure 4). B09[N−N] is the most important
descriptor. It is a topological distance descriptor. B09[N−N]
encodes the presence or absence of nitrogen atoms with a
topological distance of 9. VE1sign_B(s) is the second
important descriptor. It is a two-dimensional (2D) matrix-
based descriptor. VE1sign_B(s) represents the coefficient sum
of the last eigenvector from the Burden matrix weighed by I-
State. GATS4s is the third important descriptor. It is a 2D
autocorrelation-based descriptor. GATS4s represent the Geary
autocorrelation of lag 4 weighed by I-state.

3.2. Regression Analysis. Classification and regression are
two important categories of machine learning. In classification,
the data set is divided into predefined groups. The range of a
group controls the classification accuracy.46−48 Classification
only predicts the group in which the biological activity of a
particular molecule will fall. To predict the biological activity
value of a molecule, regression analysis is performed. For this
purpose, multiple regressors are used. Various machine
learning models have been tried. A 10-fold CV shows higher
performance. Table 1 presents the performance parameters of
different models, including the root mean square errors
(RMSEs) and the r-square values. It is clear that the random
forest regressor and the bagging regressor showed higher
performance. The hyperparameters of these models were
optimized. The accurate prediction can decrease the depend-
ence on expensive experimental methods.49−52 The scatter plot
between true and predicted values for different models are
given in Figure 5. Several approaches are reported in the
literature to check the reliability of machine learning
models.53−55 We have checked the reliability of machine
learning models using the prediction on an external data set.

Table 1. RMSE and R2 Values for Different Machine
Learning Models

model RMSE R2

linear regression 2.07 0.71
random forest regression 1.14 0.93
gradient boosting regression 1.76 0.85
bagging regression 1.45 0.91

Figure 5. Scatter plot between true and predicted values (pIC50).
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Figure 6. Distribution of the predicted pIC50.

Figure 7. Top 20 molecules from the PubChem database.

Figure 8. Top five molecules in the training set.

Figure 9. Gasteiger atomic charges of the top five molecules from the collected data (training set).
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The data collected for the external validation is given in Table
S3 and is not part of training and test sets. Linear regression
has shown the lowest value.1
More than 5000 molecules have been extracted from

PubChem, which is a free chemical repository of small organic
molecules.56 It is maintained by the National Library of
Medicine. The biological activity of the extracted molecules is
predicted using the already trained random forest model. The
distribution of the predicted pIC50 values is given in Figure 6.
The best molecules are shortlisted. The top 20 molecules are
given in Figure 7.
3.3. Similarity Analysis. A similarity analysis based on the

chemical structure is a useful method to identify potential

compounds in drug discovery. It is because two molecules with
similar structures are likely to show similar bioactivities.57

However, exceptions also cannot be ignored.58 Once a lead
compound has been found, a series of structural analogues also
can be designed. In the present study, the five best molecules
(with the lowest pIC50 values) from the training set are
selected. These structures are given in Figure 8. These
molecules are selected individually as a reference to search
for similar compounds. The ChEMBL database is used to find
similar compounds. The database is managed by EMBL’s
European Bioinformatics Institute.59

Gasteiger charges are simple and fast to compute, requiring
only the knowledge of the topology of a molecule. The blue

Figure 10. Top 14 molecules similar to compound 1.

Figure 11. Top 14 molecules similar to compound 2.

Figure 12. Top 14 molecules similar to compound 3.
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color represents a negative charge and the yellow color
represents a positive charge (Figure 9). The structures of the
top five molecules suggest that they might develop strong
interaction with the haem iron in the active site through a
nitrogenous Sigma-donor ligand. This strong Fe−N interaction
reduces the enzyme’s intrinsic flexibility.60 The loss of
flexibility of the activity site also blocks the substrate channel,
effectively putting a stop to the generation of a product
responsible for tumor progression.61 The prime advantage of
these newly suggested molecules is the extremely lower
systemic toxicity with elevated AI activity. Therefore, it is
safe to say that the ML-based discovery and prediction of other
drug molecules is an effective strategy.
The chemical and biological behavior of the molecules

strongly depends on the chemical structure of the mole-
cules.62,63 The comparison of their structures can be used to
design and screen better drugs. The similarity analysis is based
on the comparison of structures. The highly similar molecules
given as a reference (1−5) are given in Figures 10−14.
There is no doubt that the similarity score is not very high,

but it is still much better than the random screening. Even the
chance of finding a few potential candidates through this
cheaper method is valuable.

4. CONCLUSIONS
Developing drugs requires a more time- and cost-efficient
method and fast models to generate the best inhibitor for a
given target protein.In the present study, molecular descriptors

are calculated and shortlisted using various measures. Various
machine learning models are trained. More than 5000
molecules from PubChem are extracted and their biological
activities are predicted using already trained models. Using the
collected data set, five of the best molecules are selected and
their chemical properties are calculated. These selected five
molecules are selected one by one to perform similarity
analysis. Moreover, the present study provides new insight to
find potential lead compounds for the targeted inhibition of
aromatase-associated disorders.
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