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Abstract: Mitochondrial diseases are a heterogeneous group of diseases resulting from energy deficit
and reduced adenosine triphosphate (ATP) production due to impaired oxidative phosphorylation.
The manifestation of mitochondrial disease is usually multi-organ. Epilepsy is one of the most
common manifestations of diseases resulting from mitochondrial dysfunction, especially in children.
The onset of epilepsy is associated with poor prognosis, while its treatment is very challenging, which
further adversely affects the course of these disorders. Fortunately, our knowledge of mitochondrial
diseases is still growing, which gives hope for patients to improve their condition in the future. The
paper presents the pathophysiology, clinical picture and treatment options for epilepsy in patients
with mitochondrial disease.

Keywords: epilepsy; mitochondrial disorders; mtDNA; nDNA; treatment; antiepileptic drugs (AED)

1. Introduction

Mitochondria are organelles that are present in almost all cells of the body, which
are primarily responsible for producing energy (in the form of ATP) by the process of
oxidative phosphorylation (OXPHOS), play a role in the homeostasis of calcium ions, take
part in signal transduction between cells by producing reactive oxygen species, and also
participate in cell apoptosis [1,2]. Mitochondrial diseases (MDs) represent a clinically
and genetically heterogeneous group of diseases with a summary incidence estimated at
1.6:5000 live births, making them the most common diseases among inherited metabolic
diseases [2,3]. The diseases may result both from a pathogenic variant in all 37 genes of
mitochondrial DNA (mtDNA) and damage to nuclear DNA (nDNA). Currently, almost
400 genes related to MD are identified in nDNA [2,4,5]. The clinical picture of MD is very
varied, but typically the highly energetic tissues are affected, including the central and
peripheral nervous system, skeletal muscles, sense organs, heart, liver, gastrointestinal
tract, or endocrine system [2,4,5]. Central nervous system symptoms—regression in de-
velopment, delayed psychomotor development, or epilepsy—are dominant features in
children with MD. Epilepsy is nonetheless a most clinically significant problem among
MD patients since seizures are usually difficult to treat and often deteriorate the patient’s
cognitive development, leading to epileptic encephalopathy or a worse prognosis. The
incidence rate of epileptic seizures among MD subjects is estimated at 10–40%, but it may
even reach 60% in paediatric patients [6–10].

2. Pathophysiology of Epilepsy in Mitochondrial Diseases

Epileptic seizure is a sudden and excessive neural discharge resulting from uncon-
trolled depolarisation of the neural membrane, and its spread is caused by impaired
mechanisms regulating this transmission, e.g., balance between inhibitory (γ-aminobutyric
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acid, GABA) and stimulatory (glutamic and aspartic acid) neurotransmitters. Maintain-
ing membrane polarisation requires high energy input and primarily involves calcium
and sodium channels [11]. The pathophysiology of epilepsy in MD is not fully known
(Figure 1).
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ATPase, ROS: reactive oxygen species).

The occurrence of seizures is explained mainly by a deficit of energy, ATP, resulting
from impaired oxidative phosphorylation, which is the core of MD. ATP molecules are of
key importance for the function of sodium–potassium ATPase (Na+/K+ ATPase), which
ensures normal polarisation of the neural membrane and maintenance of resting membrane
potential. Impairment in the potential leads to neuronal hyperexcitability, which translates
into seizures.

Additionally, ATP deficit suppresses the effect of intermediate inhibitory neurons in
the hippocampus, facilitating the spread of excitation in the neuronal network [6,12,13].
Lack of ATP molecules also results in the reduced potential of GABA-ergic inhibitory
neurons, which leads to an impaired balance between excitatory and inhibitory neurons
and excessive cell excitation [13,14]. Moreover, ATP deficit leads to increased glutamate
release (excitatory neurotransmitter) from astrocytes to synaptic space and disturbance
of the glutamate–aspartate transporter [1,13,15]. Other hypotheses explain seizures in
MD by abnormal haemostasis of calcium ions, abnormal function of ion channels in the
neural membrane, or neurotransmitter disorders [15]. A growing amount of data suggest
that seizures occurring in MD patients may be caused by excessive amounts of reactive
oxygen species (ROS), resulting from abnormal mitochondrial function [1,16,17]. Seizures
occurring in the course of mitochondrial diseases may also have a structural background.
Severe forms of pyruvate dehydrogenase complex (PDHc) deficit involve damage to the
brain structure as early as in the intrauterine stage, which may be the source of seizure [18].

Moreover, the seizures themselves, especially those that are repeated or long-lasting,
lead to mitochondrial dysfunction and escalate energy deficit (epileptic seizures use large
amounts of energy), which provokes subsequent seizures and makes them difficult to
suppress. Such a self-perpetuating cycle may lead to the development of stroke-resistant
episodes common in MD, especially in mitochondrial encephalopathy, lactic acidosis, and
stroke-like episodes (MELAS) and POLG-related diseases (diseases resulting from damage
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to DNA polymerase gamma), and the occurrence of such episodes is often related to status
epilepticus [8,15].

Although the pathomechanism of epilepsy in MD patients mentioned above seems
probable, this does not explain why seizures only occur in some MD patients. Additionally,
there are changes in mtDNA (especially with variants m.3243A>G and m.8344A>G) and
nDNA (e.g., mutations in POLG) which predispose to the development of epilepsy. The
exact phenotypic manifestation is, however, difficult to predict (see Table 1). The degree of
heteroplasmy explains only to some extent the severity of mitochondrial diseases. More-
over, as supported by Tranah et al., the accumulation of a rare genetic disease mutation,
e.g., m.3243A>G, manifests as several ageing outcomes, and some diseases of ageing may
be attributed to the accumulation of mtDNA damage, leading to differing phenotypes [19].
Additionally, seizures are more common in complex I and/or IV of mitochondrial respi-
ratory chain failures than in complex II and III [9,10,20–22]. On the other hand, it was
observed that MD, depending on changes in specific genes (e.g., SURF1, OPA1, PEO1,
m.14709), does not involve epileptic seizures, and the pathomechanism of this phenomenon
is not known [8,22,23]. Finally, the role of other genetic variants or polymorphism has to
be defined. As discussed by Pickett et al., age, age-adjusted blood heteroplasmy levels,
and sex are poor predictors of phenotypic severity. Still, the provided results showed
good evidence for the presence of nuclear genetic factors influencing clinical outcomes in
m.3234A>G-related disease [24].

Table 1. The most frequent mitochondrial diseases with epilepsy (causative genetic variants are
cited from OMIM database, https://www.omim.org and MITOMAP, https://www.mitmap.org/
MITOMAP, accessed 2 June 2021).

Disease Gene Clinical Picture Treatment

Alpers–
Huttenlocher

syndrome (AHS)
[25,26]

POLG (nDNA)

Progressive neurodegeneration,
refractory seizures, movement

disorder, neuropathy and
hepatic failure, focal-onset
seizures predominate, but

seizure may also tonic-clonic, or
myoclonic; 68% developed status

epilepticus and 58% epilepsia
partialis continua, status

epilepticus is the leading cause
of death in children with AHS

In case of
refractory
seizures,

polytherapy is
necessary (with

no dedicated
drug; however,
valproic acid is

absolutely
contraindicated)

Pyruvate
dehydrogenase

complex deficiency
(PDHc)
[27,28]

PDHA, PDHB,
LIAS, LIPT1,
DLD, PDH,

(nDNA)

Epilepsy begins in infancy with
infantile spasms, clonic seizures

or refractory focal epilepsy,
developmental delay, ataxia,

hypotonia, hypertonia, abnormal
eye movements, dystonia,

axonal neuropathy

The ketogenic diet
is the treatment of

choice; in some
individuals,

improvement
after thiamine

supply possible

Leigh syndrome
(LS)
[29]

More than 90
genes (nDNA
and mtDNA)

Typical features include: (1)
developmental regression or

developmental delay, (2) specific
basal ganglia/brain stem

changes bilaterally, and (3)
abnormal mitochondrial energy
metabolism; epileptic seizures

are frequent, both focal
and generalised

Due to frequent
drug-refractory

seizures,
polytherapy is
often necessary

https://www.omim.org
https://www.mitmap.org/MITOMAP
https://www.mitmap.org/MITOMAP
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Table 1. Cont.

Disease Gene Clinical Picture Treatment

Myoclonic epilepsy
with ragged red
fibres (MERRF)

[30,31]

The most
common

pathogenic
variants in

mtDNA, MTTL1
(80%):

m.8344A>G;
MTTK (10%):
m.8356T>C,
m.8363G>A,
m.8361G>A

Onset usually in adults, 30% in
childhood. Progressive

myoclonic epilepsy is part of the
phenotype, but seizures can be

often generalised tonic, clonic or
atonic. Seizure was reported in

33% to 100% of patients;
co-occurs with cerebellar ataxia,
cardiac arrhythmias, myopathy,
diabetes, hearing loss, dementia

The combination
of levetiracetam

with
carbamazepine
may have the

strongest
beneficial effect
on myoclonic

seizures

Mitochondrial
encephalopathy,

lactic acidosis, and
stroke-like episodes

(MELAS)
[32]

The most
common

pathogenic
variants in

mtDNA,
MTTL1 gen:
m.3243A >G
m.3271T>C;
MTND5 gen:
m.13513G>A

Focal and generalised seizures
are possible, preceded by or

associated with migraine-like
headache; the most typical are

seizures in the course of a
stroke-like episode, focal status

epilepticus with a secondary
encephalopathy is common

L-arginine and/or
citrulline as

prevention and
treatment of
stroke-like
episodes

3. Clinical Picture of Epilepsy in Mitochondrial Diseases

The onset of seizures in MD patients may occur at any age. Seizures may be one
of the first symptoms of mitochondrial disease in children (in nearly 20%), but in most
patients, they occur as the disease progresses and changes in the central nervous system
(CNS) become more severe, e.g., in the course of recurrent stroke-like episodes, or with the
progression of other neurodegenerative changes [23]. Typically, epilepsy is one of many
other MD symptoms, and it is the most common feature of CNS involvement [8,33]. In cer-
tain mitochondrial diseases, seizures are part of a syndrome—e.g., in Alpers–Huttenlocher
syndrome (AHS) and other phenotypes associated with a pathogenic variant in the POLG
gene, in a deficit of pyruvate dehydrogenase complex (PDHc), myoclonic epilepsy with
ragged red fibres (MERRF), MELAS, or in Leigh syndrome. A short characterisation of the
diseases mentioned above is presented in Table 1 [25–32].

In patients showing epilepsy in the course of MD, the onset of the disease’s symptoms
occur much earlier than in subjects without seizures. Patients with MD and epilepsy
more often presented perinatal symptoms (e.g., disorders in the intrauterine development
or hypertrophic cardiomyopathy) and delayed or impaired development than subjects
without epilepsy [8–10].

MD patients most often experience myoclonus and various types of focal seizures,
but the seizure may also have any other morphology: tonic seizures, tonic–clonic seizures,
infantile spasms, or even, occasionally, typical absence seizures. From 20–60% of patients
experience various types of seizures [4,8–10]. Epileptic seizures may form specific epilepsy
syndromes—such as West syndrome, Ohtahara syndrome, Lennox–Gastaut syndrome,
and Landau–Kleffner syndrome [9,20,23,33]. In the majority of patients (>92%), seizures
frequently recur, and in 27%, their occurrence is considered very frequent (every day or
every week) [10].

Aside from refractory and frequently recurring seizures, MD patients experience status
epilepticus, including nonconvulsive status epilepticus and epilepsia partialis continua
(EPC)—a focal motor status epilepticus (spontaneous regular or irregular clonic muscular
twitching affecting a limited part of the body, sometimes aggravated by action or sensory
stimuli, occurring for a minimum of one hour, and recurring at intervals of no more than
ten seconds) [34]. They are difficult to diagnose and treat, thus resulting in a poor prognosis.
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Status epilepticus in MD is more common in patients with damage to mtDNA (especially in
MELAS and MERRF syndromes) and mitochondrial depletion syndromes (especially with
pathogenic changes in POLG) and are co-existent with stroke-like episodes [1,25,26,32,35].
EPC has been observed in subjects with pathogenic variants in POLG and mtDNA. In
addition, this may be the first epilepsy manifestation in these subjects. EPC is related to a
very poor prognosis—out of 12 paediatric patients with MD and EPC, in only two patients
were the seizures partially controlled, in 2/12 disease progression occurred, and 8/12 died
within a year of the EPC episode [34].

4. Diagnostics of Epilepsy in Mitochondrial Disease
4.1. Electroencephalography in Patients with Mitochondrial Disease

There is no typical EEG trace for seizures in MD. Background activity in most patients,
even without clinical symptoms, is disturbed: 109/165 (66%) of patients had abnormal
EEG, mainly in the form of slow background activity with a large proportion of delta
waves and lack of spatial differentiation or trace asymmetry [9,21]. Epileptiform changes
in EEG of MD subjects typically involve focal changes (23–71%) and multifocal changes
(35–56%), sometimes generalised changes (13–25%), or hypsarrhythmia [36,37]. Most
frequently, seizures are propagated from the occipital lobe and posterior quadrant of
temporal and parietal lobes. Myoclonic seizures involve spikes and polyspikes, which may
be activated by photostimulation or opening of the eyes. However, it must be remembered
that such seizures, especially in MERRF, are not always caused by epileptic activity, but
they may result from cerebellar or medullary dysfunction [15,35]. On the other hand,
Alpers–Huttenlocher syndrome typically involves occipital rhythmic high-amplitude delta
with superimposed (poly)spikes (RHADS), but this is not a pathognomonic trace for this
syndrome only [38]. About 10% of MD patients show normal EEG despite epileptic seizures;
however, these are patients with occasional seizures [10].

4.2. Neuroimaging

Neuroimaging changes in MD are quite characteristic for this group of patients, but
they are not recognisable. MD′s typical features include bilateral symmetrical signal
abnormality in the basal ganglia, brain stem, thalamus, and/or cerebellum hyperintensities
in T2 and FLAIR [4,8,21]. White matter may be diffusely abnormal (leukodystrophy) [8,20].
There may also be structural brain abnormalities like agenesis of the corpus callosum,
and ventriculomegaly as an effect of energy deficiency during brain formation [29]. A
definite lactate peak is observed in MD by proton MR spectroscopy [21]. The analysis of
1467 patients with MD revealed that MRI abnormalities were significantly more common
(p < 0.001) in subjects with epilepsy than in MD patients without seizures (88 vs. 54%) [10].
Brain atrophy was also more common in the group of epileptic subjects [36,38]. Moreover,
patients with MD and epilepsy most often report stroke-like changes, as well as changes in
basal ganglia and white matter [33,36].

5. Pharmacological Treatment of Epilepsy in Patients with Mitochondrial Disease

Treatment of mitochondrial disorders is a challenge for physicians and researchers.
Most interventions and guidelines are related to symptomatic treatment, with supplemen-
tation of cofactors, vitamins, or antioxidants, and mild exercises are recommended. Despite
numerous studies, the efficacy of most of these interventions has not been confirmed [39–43].

There is also no established scheme of epilepsy treatment in mitochondrial diseases;
therefore, general principles of epilepsy treatment are applied [44]. First-line therapy often
includes levetiracetam (LEV), frequently combined with clonazepam (CZP), clobazam
(CLB), or topiramate (TPM). Zonisamide (ZNS) is also safe, but there are few literature
reports of patients treated with this medication [31,35,45]. Lamotrigine (LTG) may promote
myoclonic seizures and has not always been effective in patients with MD. Some experts
recommend phenobarbital (PB) or primidone (PRM), but there are few studies on the use of
these drugs, and not all of them showed efficacy [35]. There are also reports on perampanel
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(PER) efficacy in treating status epilepticus in subjects with MELAS [46]. In most patients,
seizures are intractable, which often require polytherapy with two or three medications.
Only 5–30% of patients had seizures controlled with one antiepileptic drug only. In nearly
8% of patients, it was possible to discontinue treatment [8,33].

Treatment of status epilepticus is also challenging. The management of MD patients
is similar to the management of status epilepticus in other patients, except for avoiding
the administration of valproic acid. First-line therapy includes benzodiazepines—e.g.,
midazolam and LEV (20–40 mg/kg, max 4500 mg) intravenous (iv), but the use of pheny-
toin (15–20 mg/kg), phenobarbital (10–15 mg/kg), or lacosamide (200–400 mg) is also
possible. One must bear in mind that MD patients are more susceptible to the development
of propofol infusion syndrome. Although propofol is not contraindicated in patients with
MD, caution is recommended while using this drug in this group of subjects [15,47,48].

Regarding contraindicated substances, the only absolutely contraindicated drug in
treating epilepsy in MD patients is valproic acid (VPA), which is especially relevant for
diseases associated with POLG pathogenic variants. The drug may induce fulminant
hepatic impairment in these subjects [25,49]. Additionally, VPA may cause secondary car-
nitine deficit, especially in patients with damage to complex I and IV of the mitochondrial
respiratory chain [6]. There are single reports of successful VPA treatment of epilepsy in
subjects with mitochondrial disease. However, caution is always recommended before
introducing this drug in patients with suspected MD [36,39]. Experts suggest VPA in
MD patients without a pathogenic variant in POLG, and without liver disease, for the
treatment of refractory epilepsy [47]. In patients with mitochondrial depletion syndrome,
one should avoid the use of vigabatrin (VGB), which inhibits the conversion of deoxyri-
bonucleoside diphosphate (ADP) to deoxyribonucleoside triphosphate (ATP), whereby
it increases mtDNA depletion. When using topiramate (TPM), it must be remembered
that it potentiates acidosis [39]. On the other hand, the toxicity of carbamazepine (CBZ),
phenytoin (PHT), or phenobarbital (PB) outweighs their efficacy, so these agents should be
avoided in the treatment of MD patients [50]. A list of safe antiepileptic drugs which may
be used in patients with mitochondrial disease is presented in Table 2.

Table 2. Safety of antiepileptic drugs in mitochondrial diseases.

Mitochondria-Safe AEDs AEDs to Use Carefully AEDs Which Could
Aggravate Myoclonus

Benzodiazepine [47,51]
Gabapentin [47,51]
Lacosamide [47,51]
Lamotrigine [47,51]

Levetiracetam [10,47,51]
Oxcarbazepine [10,47,51]

Peranpanel [46,47,51]
Rufinamide [47,51]

Stiripentol [10,47,51]
Zonisamide [47,51]

Valproic acid—contraindicated in
POLG mutations [25,39,51]

Vigabatrin—may need to be
avoided in patients with mtDNA

depletion syndromes [39]
Topiramate—may worsen

acidosis [39]
Phenytoin * [50]

Carbamazepine * [50]
Phenobarbital * [50]

Valproic acid [35]
Phenobarbital [35]
Lamotrigine [35]
Phenytoin [35]

Carbamazepine [35]
Oxcarbazepine [35]

Vigabatrin [35]
Tiagabine [35]

Gabapentin [35]
Pregabalin [35]

* Toxic effect on mitochondria outweighs the beneficial effect.

In patients with the m.3243A>G variant, the administration of L-arginine has been
confirmed to reduce the incidence of stroke-like episodes and thus reduce the risk of
epilepsy and status epilepticus in the course of such episodes [52]. There are also single
reports in subjects with epilepsy and Kearns–Sayre syndrome diagnosed with folate (5-
methyltetrahydrofolate) deficit, where folic acid supplementation in these subjects was
related to improvement in seizure control [53]. Next, high doses of co-enzyme Q10 in
patients with primary co-enzyme Q10 deficiency may reduce epileptic seizures in this
group of subjects [35].
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MD therapy must not exclude such diseases, where it is possible to apply causal
treatment or at least mitigation of disease symptoms. Examples of such conditions with
specific procedures are presented in Table 3.

Table 3. Currently available treatment options in mitochondrial diseases.

Disease
(Gene) Clinical Features Treatment

Primary co-enzyme Q10
deficiency (COQ2, COQ4,

COQ5, COQ6, COQ7, COQ9,
PDSS1, PDSS2)

Multisystem involvement with progressive neurological
dysfunction, seizures, encephalopathy, stroke-like episodes,

cerebellar ataxia, pyramidal dysfunction, cognitive
impairment renal failure, and steroid-resistant

nephrotic syndrome

High-dose oral CoQ10
supplementation (ranging from

5 to 50 mg/kg/day) [54]

Pyruvate dehydrogenase
complex (PDHc) deficiency

(PDHA1, PDHB, LIAS, PDP1,
PDHX, DLAT)

Epilepsy, developmental delay, ataxia, hypotonia,
hypertonia, abnormal eye movements, dystonia, ataxia,

axonal neuropathy, and poor feeding

Ketogenic diet 3:1–4:1 and
thiamine (50 mg/kg/day, max

300–900 mg/day) [18,27]

ACAD9 deficiency
(ACAD9)

Hypertrophic cardiomyopathy, lactic acidosis, exercise
intolerance, and occasional seizures

Riboflavin (vitamin B2)
20 mg/kg/day–max 400 mg/day

[55]

Impairment of thiamine
transport and metabolism

(SLC19A3, SLC19A2,
SLC25A19, TPK1)

Biotin–thiamine-responsive basal ganglia disease or Leigh
syndrome; subacute encephalopathy with confusion,

dysphagia, dysarthria, seizures, external ophthalmoplegia,
and generalised stiffness following a history of febrile

illness; progresses to severe quadriparesis, rigidity, dystonia,
coma, and death if early treatment is not administered

Biotin (5–10 mg/kg/day) and
thiamine (10–40 mg/kg/day,

between 300 and 900 mg/day)
[56]

AGC1 deficiency
(aspartate–glutamate carrier

isoform 1) (SLC25A12)

Severe hypotonia, arrested psychomotor development, and
seizures from a few months of age, a global lack of

myelination in the cerebral hemispheres
Ketogenic diet 3:1–4:1 [57]

Ethylmalonic encephalopathy
(ETHE1)

Early onset, progressive disorder, developmental delay,
generalised infantile hypotonia that evolves into hypertonia,
spasticity and dystonia; generalised tonic–clonic seizures;

and generalised microvascular damage

N-acetylcysteine in combination
with metronidazole [58]

Beta-hydroxyisobutyryl-CoA
deacylase deficiency

(HIBCHD)

Progressive neurodegenerative disorder, associated with
basal ganglia changes on brain magnetic resonance imaging;

elevated hydroxy-C4-carnitine levels

Low-valine and
high-carbohydrate diets,

antioxidants (co-enzyme Q10,
vitamin E, vitamin C), carnitine,

and N-acetylcysteine [59]

6. Non-Pharmacological Treatment of Epilepsy in Patients with Mitochondrial Disease

An alternative treatment for epilepsy, aside from standard antiepileptic drugs, is a
ketogenic diet (KD). This is a verified and recommended procedure both in adults and
children, including infants [60–63]. There are reports of successful epilepsy treatment
with a ketogenic diet in MD patients, especially those with impaired complex I of the
mitochondrial respiratory chain [21,64]. A ketogenic diet is based on the supply of small
amounts of carbohydrates to the benefit of fats. This leads to the formation of ketone bodies,
which represent an alternative source of energy for cells. The antiepileptic mechanism of
KD involves a reduction in the glutamate level in the sympathetic space, which reduces
neuronal excitation.

Additionally, decanoic acid present in KD is a strong direct receptor inhibitor for
glutamine—α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)—
which directly translates into reduced neuronal excitation. An additional benefit, especially
for MD patients, is that ketone bodies are a source of energy [13]. Although the mechanism
of action of KD in MD patients is not fully explained, it is known to improve the cell energy
profile, lead to the stimulation of mitochondrial biogenesis in skeletal muscles, prevent the
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formation of abnormal mitochondria, increase ATP production in the respiratory chain,
and reduce the number of COX-negative fibres (a marker of mitochondrial damage) in
skeletal muscle biopsy [65–67].

Numerous studies confirmed KD efficacy in patients with mitochondrial disease
(both in adults and children), mainly concerning reducing epileptic seizures. One showed
remission of epileptic seizures in 50% of patients (12/24) treated with a KD [21]. Moreover,
other studies showed that aside from better seizure control (seizure reduction >50% in
8/20 patients after one year and 7/20 patients after two years of a KD), all patients showed
improvement in cognitive functions [68]. A KD may also improve muscular strength and
reduce mtDNA heteroplasmy [67].

Other options for epilepsy treatment, especially in the case of refractory epilepsy, are
vagal stimulation, deep brain stimulation, or palliative surgical treatment [26]. There are
few literature data on the use of these approaches to treat epilepsy in patients with MD.
VNS implantation was effective in two patients, resulting in a reduction in seizures of
>50% [9]. Palliative neurosurgical treatment was described in 4/40 patients with MD and
Lennox–Gastaut syndrome [20].

7. Prognosis in Epilepsy in Patients with Mitochondrial Disease

Persistent seizures and status epilepticus lead to neural damage, astrocyte gliosis,
damage to myelin, and, as a result, brain atrophy [5]. As confirmed by neuroimaging in
subjects with MD and epilepsy, this group more often showed brain atrophy than those
with MD and without epilepsy [36,69]. The occurrence of seizures in children is related to
a worse prognosis regarding development and survival, especially if epilepsy occured at
<1 year. Seizures are often intractable, and epilepsy leads to progressive neurodegenerative
changes and epileptic encephalopathy [6,9,20]. In a group of 56 paediatric patients with
MD, 45% (22/56) of patients died, including half of the patients within nine months of
the first seizure [33]. In another study, in a group of 46 children with MD and epilepsy,
11 children died within one year of the occurrence of epilepsy [69].

8. Conclusions

The mechanism of epilepsy development in mitochondrial diseases is a subject of
ongoing studies, while the treatment of epilepsy is challenging for both physicians and
scientists. Current studies, primarily involving multi-omic analyses, provide a better
understanding of the mechanism leading to the development of such changes, which
gives a chance for future detailed diagnostics and knowledge of impaired metabolic
pathways, and, most of all, gives hope for the development of individualised treatment of
patients [2,70,71].
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