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Background. Of the machine learning techniques used in predicting coronary heart disease (CHD), neural network (NN) is
popularly used to improve performance accuracy. Objective. Even though NN-based systems provide meaningful results
based on clinical experiments, medical experts are not satisfied with their predictive performances because NN is trained
in a “black-box” style. Method. We sought to devise an NN-based prediction of CHD risk using feature correlation
analysis (NN-FCA) using two stages. First, the feature selection stage, which makes features acceding to the importance in
predicting CHD risk, is ranked, and second, the feature correlation analysis stage, during which one learns about the
existence of correlations between feature relations and the data of each NN predictor output, is determined. Result. Of the
4146 individuals in the Korean dataset evaluated, 3031 had low CHD risk and 1115 had CHD high risk. The area under
the receiver operating characteristic (ROC) curve of the proposed model (0.749 +£0.010) was larger than the Framingham
risk score (FRS) (0.393 +0.010). Conclusions. The proposed NN-FCA, which utilizes feature correlation analysis, was found
to be better than FRS in terms of CHD risk prediction. Furthermore, the proposed model resulted in a larger ROC curve

and more accurate predictions of CHD risk in the Korean population than the FRS.

1. Introduction

According to the World Health Organization (WHO), coro-
nary heart disease (CHD) is one of the most dangerous dis-
eases in the world. According to the WHO, around 17.7
million people died from CHD in 2015 [1]. CHD includes
hyperlipidemia, myocardial infarction, and angina pectoris
[2-4]. In general, medical experts arrive at diagnoses based
on electrocardiography, sonography, angiography, and blood
test results. CHD is not easily diagnosed during the early dis-
ease stage [5-8], but for effective treatment, its early diagno-
sis is important [9]. However, diagnoses are made based on
medical experts’ personal experiences and understanding of
the disease, which increase the risks of errors, delay appropri-
ate treatment, increase treatment times, and substantially
increase costs. In order to solve these problems, many studies
have been conducted on clinical decision support systems

[10] using various techniques, such as data mining and
machine learning [11-15]. Of the machine learning
techniques that have been used to predict CHD, neural
network (NN) is popularly used to improve performance
accuracy [9, 16-20]. NN is good at generalizing data with-
out domain knowledge of CHD prior to training. In addi-
tion, by analyzing complex data, NN makes it possible to
discover new patterns and information related to CHD
[21-23].

Although the NN-based systems mentioned above have
provided meaningful results based on clinical experiments,
medical experts remain dissatisfied with NN, because of its
“black-box” characteristics [24-26], that is, predictors are
trained without knowledge of relationships between input
features and NN outputs. Many CHD-related features are
used to train CHD predictors. Unnecessary or unimportant
features for predicting CHD can be included during predic-
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FIGURE 1: Study design.

tor training. In this case, when the new data is input, it does
not predict correctly.

In this paper, we propose an NN-based CHD risk predic-
tion method based on feature correlation analysis (NN-
FCA), which includes two processes, that is, feature selection
and feature correlation analysis.

(i) First, during the feature selection stage, we ranked
features with respect to their importance for predict-
ing CHD risk. Rankings were calculated using feature
sensitivity in a trained NN. Based on these rankings,
NN was retrained after eliminating the lowest ranked
features in a stepwise manner. This process was con-
tinued until the performance of the NN degraded as
compared with the previous stage. Once necessary
features were obtained using this process, we analyze
the NN to know relationship between the features in
generating NN output in order to model an NN pre-
dictor which can avoid the black-box style training.

(ii) Second, during the feature correlation analysis stage,
we analyzed features to identify feature relations and
determine whether they were correlated with NN
predictor outputs. If features were affected on contri-
bution to predictor output by changing in any of
them, features were considered correlated. The NN-
based CHD predictor using feature correlation anal-
ysis is trained in the way that correlated features are
connected in coupled and uncorrelated features are
decoupled.

To prove the predictive accuracy of our method, we used
the 6th Korea National Health and Nutrition Examination
Survey (KNHANES-VI) dataset [27] and evaluated the
performances between Framingham risk scores (FRSs)
[28, 29], other machine learning techniques, and pro-
posed NN-FCA.

The remainder of this paper consists of the following:
Chapter 2 describes the proposed method; Chapter 3 detains
results; Chapter 4 provides a discussion; and finally, our
conclusions are stated in Chapter 5.

2. Method

The study design is shown in Figure 1. During step 1,
KNHANES-VI dataset was examined and data was
selected. In step 2, statistical analysis was performed to
identify features related to CHD risk. In step 3, predictors
of CHD risk were selected using feature sensitivity-based
feature selection. In step 4, NN-based CHD risk predictors
were trained using feature correlation analysis of features.
In step 5, performance measurements were made to vali-
date NN-based CHD risk predictions using feature corre-
lation analysis.

2.1. Dataset. The KNHANES-VI was conducted by the Korea
Centers for Disease Control and Prevention. KNHANES
identifies the health and nutritional status of the popula-
tion that provides the statistics required to assess whether
health policies are being effectively delivered. It also pro-
vides statistical data on smoking, drinking, physical
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activity, obesity, and disease requested by the World
Health Organization (WHO) and the Organization for
Economic Cooperation and Development (OECD) [27].

We use the KNHANES-VI dataset to perform CHD
risk prediction. Input variables for training were age, sex,
body mass index (BMI), total cholesterol (To_chole),
HDL cholesterol, systolic blood pressure (SBP), diastolic
blood pressure (DBP), triglyceride, hemoglobin, thyroid
disease (TD), chronic renal failure (CRF), hepatitis type
B (H_B), hepatitis type C (H_C), cirrhosis, smoking, and
diabetes. The output variables used were CHD risk-
related variables, that is, hypertension, dyslipidemia,
stroke, myocardial infarction, and angina. When these five
diseases are not present and do not exist, CHD is of low
risk, but if one of the five is present, CHD is of high risk.
8108 record set of KNHANES-VI was used for the exper-
iment. We excluded 3324 uncertain (nonrespondent,
“Null” value) respondents and 638 records of individuals
under 30 years old. The final CHD-related dataset com-
prised 4146 records.

2.2. Statistical Analysis. The nonparametric Mann-Whitney
U test (continuous features) and the chi-square (categorical
features) were used to compare age, sex, BMI, To_chole,
HDL, SBP, DBP, triglyceride, hemoglobin, TD, CRF, H_B,
H_C, cirrhosis, smoking, and diabetes in the low- and high-
risk groups. The statistical analysis was performed using
IBM SPSS Ver. 22.0 [30]. Several preoperative features were
compared to determine the most effective method of CHD
risk prediction.

Confusion matrix and receiver operating characteristics
(ROC) curve [31] were used for performance comparison.
Confusion matrix provides a means of evaluating the perfor-
mance of the classifier as shown in Table 1 [32]: positive pre-
dictive value (PPV), negative predictive value (NPV), and
accuracy (1). PPV and NPV are the proportions of positive
and negative results with true positive or true negative
results, respectively. PPV and NPV describe the performance
of diagnostic tests or other statistical measures [33]. The
accuracy of a measurement system is the degree of close-
ness of measurements of a quantity to that quantity’s
true value [34]. It is constructed for output variable
(CHD low risk, CHD high risk) in the validation dataset
of each analysis. The limit of significance for all tests
is P<0.05.

TP
PPV=_
TP + FP
N
NPV=__— 1
TN + FN v
TP+ TN

Accuracy = .
Y TP+ FP+ EN + TN

2.3. Feature Selection. From n features extracted for classify-
ing low and high risks, we select features based on impor-
tance in contribution to good classification. The importance
of each feature is measured by feature sensitivity from a
trained NN predictor. The ith feature sensitivity, denoted as

TaBLE 1: Confusion matrix.

Confusion matrix Prediction
Positive Negative
Actual Positive True positive (TP) False positive (FP)
ctua
Negative  False negative (FN)  True negative (TN)

Sen(X, x;), is calculated by an average of NN output changes
between original dataset and noisy dataset which is generated
by adding a very small noise (denoted as §) to x;. The ith
feature sensitivity is

1
Sen(X, x;) = N Z ‘NNoutputk (X<xi +5)) -NNoutput, (X)/|,
A
(2)

where NNoutput,(X) and NNoutput,(X,; , 5)) are the out-
puts for the input, k, with an original input dataset, X, and
the output with a noisy input (X,;, 5)) obtained by adding
a very small amount of noise d to the ith feature, respectively.
All feature sensitivities were calculated individually with one
feature sensitivity. The & value was generated randomly
within the range [al, 0.0010]. Figure 2 presents a schematic
diagram of the methodology for calculating the feature
sensitivity using NN. All feature sensitivities were sorted
in a descending order, and the feature with the lowest sen-
sitivity of the feature set was eliminated. The NN was
retrained using the remaining features and then verified
to determine whether the performance is not degraded
compared to that of the original NN trained using all fea-
tures. If the performance is not degraded, then the afore-
mentioned process repeats until the necessary features
are determined.

2.4. Feature Correlation Analysis. To overcome the perfor-
mance limitation of NN due to the characteristics of
black-box training [24-26], prior information on the cor-
relation relationship among the features was acquired
using the feature sensitivity change in generating NNout-
puts. The correlated features are connected to the hidden
layer in a coupled connection. On the other hand, the
uncorrelated features are connected in uncoupled connec-
tion. The sensitivity of a feature in a trained NN means
the relative importance index in generating NNoutput.
This contains the intention that if the magnitude of a fea-
ture increases, the importance of the feature increases
while training NN. Moreover, if the magnitude of the
increase in the feature affects the other features signifi-
cantly, the corresponding features can be considered to
be correlated with each other. To determine if the features
are correlated or uncorrelated, this study examined the
changes in feature sensitivity, as seen in the algorithm in
Pseudocode 1. Figure 3 gives an example of the NN pre-
diction model trained based on the feature relations, such
as correlated and uncorrelated.
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FIGURE 2: A schematic diagram of calculating the feature sensitivity using NN.
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3. Result

3.1. Characteristics. Table 2 lists the distribution of the preop-
erative parameters between the people at low risk and high
risk of CHD.

The median age of the 4146 subjects was 52 years (range:
30-92; mean: 52.501). The median low-risk age and high-risk
age were 47 years (range: 30-87; mean: 48.60) and 64 years
(range: 30-92; mean: 63.11), respectively. The median BMI
was 23.68 (range: 15.302-41.304; mean: 23.969). The median
low-risk BMI and high-risk BMI were 23 (range: 15-40;
mean: 23.594) and 25 (range: 16-41; mean: 25.004), respec-
tively. The median To_chole level was 189 mg (range: 79-
525; mean: 190.974). The median low-risk To_chole level
and high-risk To_chole level were 190 mg (range: 89-384;

DOCODE 1

mean: 191.738) and 185mg (range: 79-525; mean:
188.898), respectively. The median HDL was 50 mg (range:
22-118; mean: 51.843). The median low-risk HDL and
high-risk HDL were 51 mg (range: 22-111; mean: 52.642)
and 48 mg (range: 23-118; mean: 49.671), respectively. The
median SBP level was 117 mmHg (range: 75-219; mean:
118.979). The median low-risk SBP level and high-risk SBP
level were 113 mmHg (range: 75-209; mean: 155.583) and
127mmHg (range: 88-219; mean: 128.209), respectively.
The median DBP was 75mmHg (range: 10-137; mean:
75.822). The median low-risk DBP level and high-risk DBP
level were 75mmHg (range: 44-137; mean: 75.61) and
76 mmHg (range: 10-118; mean: 76.397), respectively. The
median triglyceride level was 112.5mmol/L (range: 20-
1868; mean: 139.236). The median low-risk triglyceride level



Journal of Healthcare Engineering

Input dataset [ X, X(xi + )]

Learned NN, [X, X(,;, )]

Uncorrelated

X2
/ X | Xareo)| Xezrs)| - X(xi+0)
X Sen(X,X)
X(x1+8) Calculate the
sensitivity Xii1
X change of
(x2+9) feature
Xit2
X(Xi+5) .- Sen(X(xi+8,X(xi+8))
—

NNOutput, (X x4 5)) - NNOutput (X, 1 5))
=Sen(X (41 1 5y X(xi+6))

FIGURE 3: An example of NN predictor using the feature correlation analysis.

and high-risk triglyceride level were 106 mmol/L (range: 20—
1868; mean: 131.570) and 129 mmol/L (range: 28-1397;
mean: 160.0744), respectively. The median hemoglobin level
was 13.9 mg/dl (range: 6.7-19.1; mean: 13.981). The median
low-risk hemoglobin level and high-risk hemoglobin level
were 14mg/dl (range: 7-19; mean: 14.057) and 14 mg/dl
(range: 7-18; mean: 13.989), respectively. The difference
between the 2 groups (low risk and high risk) in age,
BMI, To_chole, HDL, SBP, DBP, and triglyceride was sig-
nificant (independent f-test): P=0.001 (age), P=0.001
(BMI), P=0.024 (To_chole), P=0.001 (HDL), P=0.001
(SBP), P=0.035 (DBP), P=0.001 (triglyceride), and P =
0.206 (hemoglobin). The 4146 subjects were classified accord-
ing to sex as female (1777) and male (2369). The TD was
classified as no (4073) and yes (73). The CRF was classified as
no (4134) and yes (12). The H_B was classified as no (4117)
and yes (29). The H_C was classified as no (4143) and yes
(3). Cirrhosis was classified asno (4136) and yes (10). Smoking
was classified as no (3322) and yes (824). Diabetes was classi-
fied as no (2625). An impaired fasting glucose was classified
as no (994) and yes (527). The difference between the 2
groups (low risk and high risk) in sex, TD, CRF, H_B,
H_C, cirrhosis, smoking, and diabetes triglyceride was signif-
icant (chi-square test): P =0.893 (sex), P=0.370 (TD), P =
0.022 (CRF), P=0.933 (H_B), P=0.801 (H_C), P=0.349
(cirrhosis), P =0.001 (smoking), and P = 0.001 (diabetes).

3.2. Feature Sensitivity-Based Feature Selection Result.
NN,.(X) consisted of 16 input nodes, 4 hidden nodes, and
one output node. Noisy data (x;-0) were applied to the
trained NN (X) to calculate the sensitivity of each
feature. Figure 4 outlines the calculation process of the
feature sensitivity.

Table 3 presents the results of the feature sensitivity.
From the Table, To_chole (0.100), age (0.081), SBP
(0.073), and DBP (0.049) are considered the important fea-
tures for CHD risk predictor. The NN is retrained by
removing the lowest ranked feature one at a time until
the performance of the NN degrades, as shown in
Table 4. The best performance was obtained when only
seven features (sex, hemoglobin, TD, CRF, H_B, H_C,
and cirrhosis) were removed, with an 81.163% accuracy of
predicting CHD.

3.3. NN-Based CHD Risk Predictor Using Feature Correlation
Analysis. From the result in Section 3.2, the nine features
(age, BMI, To_chole, HDL, SBP, DBP, triglyceride, smok-
ing, and diabetes) were selected and used for feature cor-
relation analysis, as shown in Figure 5. The correlated
features of each feature were determined according to
the mutual effects on the sensitivity changes. In other
words, the correlated features influenced their sensitivity
changes in one another due to the amplification of a sin-
gle feature. For example, the change in feature sensitivity
of SBP was 0.017 when it was amplified, which is
denoted as X(gpp,s), as listed in Table 5. The amplifica-
tion on SBP is believed to have been affected by the sen-
sitivity changes of three features, such as BMI (0.025),
To_chole (0.042), and DBP (0.017), because they showed
much or higher sensitivity changes than the average sen-
sitivity change (0.017) of all the features. To verify the
mutuality of the correlation, the sensitivity change of
SBP was analyzed according to the amplification on
BMI, To_chole, and DBP, respectively. For the amplifica-
tion on BMI (X(spp,s)), the sensitivity change of SBP is
0.007, which is much less than the average sensitivity



TaBLE 2: Characteristics (continuous variable: mean; categorical
variable: count).

Low risk High risk

Feature (3031 people) (1115 people) P value
Age 48.600 63.110 0.326
Sex 0.893
Male 1301 476
Female 1739 639
BMI 23.594 25.004 0.001
To_chole 191.738 188.898 0.024
HDL 52.642 49.671 0.001
SBP 115.583 128.210 0.001
DBP 75.610 76.397 0.035
Triglyceride 131.570 160.074 0.001
Hemoglobin 14.057 13.989 0.206
TD 0.370
No 2981 1092
Yes 50 23
CRF 0.002
No 3027 1092
Yes 4 23
H_B 0.933
No 3010 1107
Yes 21 8
H_C 0.801
No 3029 1114
Yes 2 1
Cirrhosis 0.349
No 3025 1111
Yes 6 4
Smoking 0.001
No 2350 972
Yes 681 143
Diabetes 0.001
No 2167 458
Impaired fasting glucose 671 323
Diabetes 193 334

change (0.012) of all features. Therefore, BMI is not con-
sidered to be correlated with SBP. For the amplification
on To_chole (X(1y cholers))> SBP was not correlated,
similar to the BMIL On the other hand, for the amplifica-
tion of DBP (X(ppp,s))> the sensitivity change of SBP
was 0.035, which is larger than the average sensitivity
change (0.022) of all features. Overall, the analysis
showed that the SBP and DBP are correlated with each
other. The correlated features for the remaining features
were examined in the same way. Based on the correla-
tion of features, the NN-based CHD risk predictor, in
which the correlated features are coupled in connection
to the hidden layer, was modelled, as seen in Figure 6.

Journal of Healthcare Engineering

For example, BMI and DBP were coupled in connection
to the hidden layer because both are correlated with
each other.

3.4. Performance Measure. The performance of the proposed
NN-based CHD risk prediction was examined using feature
correlation analysis, and the results were compared with
those obtained by feature correlation analysis (NN_FCA)
with logistic regression (LR), neural network (NN), and
Framingham risk score (FRS) [28], using the performance
metrics, such as confusion matrix (positive predictive value
(PPV), negative predictive value (NPV), and accuracy) and
ROC curve. The experimental dataset was divided into train-
ing set (70%) and validation set (30%). Table 6 lists the results
of the performance measure.

From Table 5, FRS showed a lower performance with
an accuracy of 28.87%. LR and NN gave high performance
(80.32% and 81.09%, resp.), but the performance was
lower than that of NN_FCA. NN_FCA showed the best
performance compared to the other models in both the
training set and validation set (87.63% and 82.51%). The
PPV and NPV also showed the highest NN_FCA
(71.29% and 85.70%, resp.) than the other models. The
accuracy of NN_FCA was highest at 82.51% because the
correlation relationship of the features is trained while
training NN_FCA.

The results of the ROC curve are shown in Table 7 and
Figure 7. As shown on the left of the figure, FRS has a very
low ROC area of 0.393+0.010. Because FRS is a statistical
method suitable for a specific population and environment,
it appears to be unfit for the Korean population. LR and
NN were 0.713 +£0.010 and 0.735 +0.010, respectively. Here,
NN was found to be effective for predicting the CHD risk,
as reported in a previous study [17, 35]. On the other
hand, as shown on the right of the figure, NN_FCA was
0.749 +0.010, which was better than the existing NN, because
it removes the unnecessary features when training the predic-
tion model. In other words, the sensitivity-based feature
selection can effectively detect the features associated with a
prediction of the risk of CHD.

As a result, the error rate can be reduced using NN_FCA
because it removes the unnecessary connections between the
nodes in NN. Therefore, NN_FCA is excellent in terms of the
performance accuracy. The proposed NN_FCA is effective
for predicting the risk of CHD.

4. Discussion

NN is a training method that imitates the human brain and is
a very successful technique for predicting the relationship
between the input values and target values. In addition, it is
a predictive model for supporting a back propagation
method and a powerful technique that can help in determin-
ing the support involved in the problems of classification,
inference, prediction, and sequential reasoning [36, 37]. Sub-
stantial research has attempted to predict the CHD risk; LR
and NN are used typically in machine learning. The predic-
tion performance degrades because unnecessary features are
considered during training LR and NN [9, 16-20]. The
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proposed method solves this problem by removing the
unnecessary features using sensitivity-based feature selection.

The most popular decision support of the risk of CHD is
the Framingham risk score (FRS) [28], which provides the
CHD risk index with a statistical technique using the
patients’ demographics and various medical examination
information. Currently, the accuracy of the FRS is 28.87%,
as evaluated using the KNHANES-VI dataset [27]. The FRS
has difficulty in reflecting the environments, which change
with time, and is limited to patients in a specific region
because it uses the U.S. patients’ data collected from 1960
to 1970 [29].

Many studies have been conducted to predict the risk of
CHD using machine learning. Arabasadi et al. [35] proposed
a hybrid neural network genetic for a CHD risk prediction in
2017. In this work, the input features were selected using a
genetic algorithm and the CHD predictor was then modelled
with a neural network. Narain et al. [9] developed a CHD risk

prediction system modelled with the quantum neural net-
work in 2016. This work increased the quantum interval
according to the error value of the output layer during train-
ing and provided weights to the sigmoid function. Verma
et al. [16] proposed a novel hybrid method, in which feature
selection, particle swarm optimization, and K-means were
used for a CHD prediction in 2016. They finally employed
supervised learning, such as NN, LR, and fuzzy unordered
rule induction as well as a C4.5 decision tree for classification.
Zhao and Ma [17] proposed an intelligent noninvasive diag-
nosis system based on empirical mode decomposition-
Teager energy operator to estimate the instantaneous
frequency of diastolic murmurs and back propagation NN
to classify the murmurs in 2008. They worked on classifying
a normal group and CHD group according to the electrocar-
diogram (ECG) signal for diastolic murmurs. Akay [18] pro-
posed a CHD predictor modelled using a NN in 1992. They
presented a clinical demonstration from the data of 100
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TaBLE 3: Results of feature sensitivity analysis.

Features Sensitivity NNoutput-NNoutput(xi + &) Rank
NN (X) 0815
NN (X o age)) 0.734 0.081 2
NN X aiseny) 0.726 0.008 11
NN, (Xiuipan) 0.769 0.038 5
NN (X(si-To_chole)) 0.677 0.100 1
NN, (X 1pry) 0.703 0.013 8
NN (Xisispy) 0.729 0.073 3
NN (Xai_pp) 0.693 0.049 4
NNUX i riglyeeride)) 0.753 0.013 7
NN(X - hemoglobiny) 0.796 0.006 12
NN, (X i-7)) 0.806 0.003 13
NN (X(yi—crpy) 0.802 0.010 10
NN (Xisit1_5) 0.813 0.001 15
NN (X1 o) 0.813 0.001 16
NN (X ri_cirrhosio)) 0.812 0.002 14
NNL(X i smoking) 0.802 0.012
NN, (X i diabetes) 0.786 0.024

TaBLE 4: Results of NNs eliminating the lowest ranked features (%).
Without features Accuracy
Without 1 (H_C) feature 77.743
Without 2 (H_C and H_B) features 78.518
Without 3 (without 2 features and cirrhosis) features 80.644
Without 4 (without 3 features and TD) features 80.920
Without 5 (without 4 features and hemoglobin) features 81.120
Without 6 (without 5 features and sex) features 81.141
Without 7 (without 6 features and CRF) feature 81.163
Without 8 (without 7 features and smoking) features 81.018
Without 9 (without 8 features and HDL) features 80.921
Without 10 (without 9 features and triglyceride) features 80.222
Without 11 (without 10 features and diabetes) features 79.522
Without 12 (without 11 features and BMI) features 79.209

patients. Kukar et al. [19] proposed a CHD prediction system
using the ECG data and modelled it with a Bayesian NN.
Detrano et al. [20] developed a CHD prediction system
modelled from the data of 425 patients using the LR tech-
nique. As mentioned above, CHD prediction studies using
NNs are ongoing.

This study was conducted to predict the risk of CHD in
Koreans. In general, heart disease is influenced by age, sex,
BML, total cholesterol, HDL, systolic blood pressure, diastolic
blood pressure, smoking, and diabetes [38-46]. In Koreans,
CHD was not found to be associated with sex, hemo-
globin, thyroid disease, H_B, H_C, or cirrhosis disease

(P value<0.05). On the other hand, triglyceride and CRF
were associated with CHD (P value =0.035). Triglyceride is
an important factor in predicting the risk of CHD. This study
confirmed that triglyceride is a very important factor for
CHD in Koreans. In addition, the results of NN-based
CHD risk prediction using feature correlation analysis
showed that SBP and DBP are correlated. This is reasonable
because both have similar characteristics. In addition, BMI
and DBP are closely related, that is, obese people have high
blood pressure in general [47]. In addition, the relationship
between DBP and total cholesterol affects CHD [48]. The
proposed NN-based CHD risk prediction using feature
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FIGURE 5: The process of feature correlation analysis.

TaBLE 5: Nine features (age, BMI, To_chole, HDL, SBP, DBP, triglyceride, smoking, and diabetes) are selected and used for feature correlation

analysis.
Learned NN
Input dataset Xagers)  XM1ss)  X(To_cholers)  X(HDL+o) X(sBp+3) kX(DBP+8) X (triglyceride+3) X(smoking+3) X(diabetes+5)
Age 0.080 0.009 0.016 0.004 0.011 0.008 0.009 0.022 0.019
BMI 0.031 0.038 0.019 0.013 0.025 0.026 0.037 0.010 0.036
To_chole 0.021 0.012 0.094 0.017 0.042 0.070 0.013 0.013 0.064
HDL 0.011 0.010 0.011 0.011 0.010 0.008 0.009 0.009 0.002
SBP 0.012 0.007 0.001 0.020 0.041 0.035 0.008 0.013 0.016
DBP 0.496 0.013 0.043 0.017 0.017 0.021 0.001 0.029 0.045
Triglyceride 0.009 0.005 0.008 0.008 0.003 0.005 0.009 0.005 0.006
Smoking 0.005 0.004 0.004 0.003 0.003 0.008 0.002 0.012 0.007
Diabetes 0.002 0.006 0.003 0.007 0.008 0.019 0.005 0.009 0.019
Average 0.074 0.012 0.022 0.011 0.017 0.022 0.010 0.014 0.024
. BMI, BMI, BMI, BMI,
S(?rr;glljtit;sf;fture DBP ToI_)célI()) le, DBP To_chole, To_chole, To_chole, To_chole Age, DBP  To_chole,
SBP, DBP DBP SBP DBP

correlation analysis showed higher accuracy (82.51%) in a
CHD prediction compared to the other models and proved
to be more useful than the FRS applied in the past.

5. Conclusion

This paper proposed an NN-based CHD risk prediction
using feature correlation analysis (NN-FCA) and

experimented with the KNHANES-VI dataset. The proposed
model will improve the CHD risk and decision support for
suitable treatment. Sex, hemoglobin, thyroid disease, H_B,
H_C, and cirrhosis were not associated, whereas triglyceride
and CRF were closely related to CHD. In addition, triglycer-
ide is a very important factor in the risk of CHD in Koreans.
Furthermore, the correlated features are BMI and DBP, DBP
and total cholesterol, and SBP and DBP. The proposed model
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Correlation feature list: layer e e
(1) BMI, DBP BMI (x2)
(2) DBP, To_chole Coupled
(3) DBP, SBP oupile DBP (x6) (x;) NN_FCAoutputx (X)
(xﬁ) >
To_chole (x3)
(y1)  CHDrrisk (y1)
(x3)
SBP (x5)
(xs)
Uncorrelation feature list: Age (x1)
e
(1) Age Uncoupled
(2) HDL ncouple (x))
(3) Triglyceride HDL (x4)
(4) Smoking
(5) Diabetes (x4)
Triglyceride (x7)
LRAd A4
(x7)
Smoking (x8)
(xs)
Diabetes (x9)
(xg) (hs)
FIGURE 6: NN-based CHD prediction using feature correlation analysis.
TABLE 6: Results of performance measure with training set (%).
Training set Validation set
PPV NPV Accuracy PPV NPV Accuracy
LR 57.24 87.63 86.11 67.53 83.63 80.32
NN 63.04 88.67 87.04 67.55 85.08 81.09
FRS 2.54 85.48 6.67 21.49 54.41 28.87
NN_FCA 67.57 89.00 87.63 71.29 85.70 82.51
TaBLE 7: Results of ROC curve using validation set.
95% Confidence Interval
ROC curve P value Lower bound Upper bound
LR 0.713+0.010 0.001 0.693 0.732
NN 0.735+0.010 0.001 0.716 0.754
FSNN 0.741£0.010 0.001 0.722 0.760
FRS 0.393+0.010 0.001 0.373 0.414
NN_FCA 0.749 £ 0.010 0.001 0.731 0.768

was as good as FRS in terms of the CHD risk prediction.
Compared to the validation of the FRS for the Korean popu-
lation, the proposed model resulted in a larger ROC curve
and more accurate CHD risk prediction.

The proposed model acknowledging such characteristics
was developed, which may aid in the prevention of heart dis-
ease in these individuals. This might deliver great benefit to
people in terms of predicting, beyond a simple prediction
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FIGURE 7: Result of ROC curve (a) compared to LR, NN, and FRS; (b) compared to NN and NN_FCA.

risk of death or acute myocardial infarction in patients with
unstable or stable angina pectoris or acute myocardial infarc-
tion,” The American Journal of Cardiology, vol. 89, no. 2,
pp. 145-149, 2002.

[5] W. B. Kannel, T. Gordon, W. P. Castelli, and J. R. Margolis,
“Electrocardiographic left ventricular hypertrophy and risk of
coronary heart disease. The Framingham study,” Annals of
Internal Medicine, vol. 72, no. 6, pp. 813-822, 1970.

[6] S.Cook, E. Ladich, G. Nakazawa et al., “Correlation of intravas-
cular ultrasound findings with histopathological analysis of
thrombus aspirates in patients with very late drug-eluting stent
thrombosis,” Circulation, vol. 120, no. 5, pp. 391-399, 2009.

[7] S.E. Nissen, E. M. Tuzcu, P. Libby et al., “Effect of antihyper-
tensive agents on cardiovascular events in patients with coro-
nary disease and normal blood pressure: the CAMELOT
study: a randomized controlled trial,” JAMA, vol. 292, no. 18,
pp. 2217-2225, 2004.

[8] R. O. Bonow, B. A. Carabello, K. Chatterjee et al., “2008
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lines for the management of patients with valvular heart dis-
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American Heart Association Task Force on Practice Guide-
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management of patients with valvular heart disease) endorsed
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of the CHD risk and the quantitative survival time. Further-
more, a self-diagnosis algorithm or a similar clinical decision
support system could be developed and applied meaningfully
if the NN-FCA can be applied to diseases other than CHD.
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