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Abstract

Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain
morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures,
making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP)
based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is
used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in
previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed
to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by
comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze
specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze
brain images of Alzheimer’s disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological
differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying
structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related
structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects
from NC confirm that the morphological differences are reliably related to the groups of interest.
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Introduction

The morphometric analysis of volumetric magnetic resonance

images (MRI) of the brain has been widely applied by researchers

to detect and quantify anatomical differences between subject

groups, e.g., diseased and healthy brains [1]. Morphological

differences could be used clinically to investigate the effects of

pathology or treatment on anatomical structures [2,3,4]. They

could also be used as biomarkers for neurodegenerative diseases

(e.g. Alzheimer’s disease) in computer-aided diagnosis [5,6,7].

Various morphometry methods have been developed in the past

decade. One traditional way is to analyze morphological features

from regions of interest (ROIs) with an a priori hypothesis [5],

resulting in a wealth of findings pertaining to the particular ROIs.

However, disease-related differences are sometimes abnormal

from the ROIs and difficult to discover. In addition, abnormality

spanning over multiple ROIs would result in inaccurate

segmentation of the regions, therefore potentially reducing the

reliability of morphometric analysis. These limitations can be

effectively overcome by the morphometry methods that are based

on voxel-wise measure, such as tissue density (VBM) [8] or

deformation fields (DBM) [9]. Such methods assume that voxels

could correspond between subjects via deformable registration and

Gaussian smoothing. However, registration error still exists due to

inter-subject variability, particularly in the highly variable cortices

[10], and it is difficult to guarantee that images are not being over-

aligned. Recently, morphometry methods based on adaptive

regional elements [11,12] have been proposed to improve the

performance of traditional methods. The regional elements are

automatically extracted from the training data in order to adapt to

the pathology of interest, and thus a priori knowledge is not needed

anymore. Moreover, the morphological information from the

adaptive regional elements is more distinctive than voxels, hence

reducing the registration errors. All the methods aforementioned

make the same fundamental assumption that one-to-one corre-

spondence could be achieved between subjects, that is, every

corresponding unit for morphometric analysis, such as the voxel or

regional element, can be identified in all subjects to represent the

same anatomical structure. They neglect the fact that brain

structures may exhibit distinct, multiple localized patterns across a

population. Such localized patterns may only be partially present

in subsets of subjects, and the one-to-one correspondence could

not be achieved properly [13]. Thus the morphometric analysis

might utilize the incorrect correspondences of localized patterns.

Given that the sample size of training subjects is often limited,

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35745



incorrect correspondences would seriously disturb the distribution

of morphological features, and further reduce the reliability of the

morphometric analysis.

Feature-based morphometry (FBM) has been recently proposed

for the situation where the one-to-one correspondence of localized

patterns is ambiguous or difficult to achieve [13]. Two issues are

taken into consideration: what can be utilized to represent the

localized patterns for the purpose of eliminating incorrect

correspondences, and how statistical morphometric analysis can

be computed to identify morphological differences from the

partially present patterns. Local features have been used to

represent the localized patterns in previous studies [13,14]. Local

feature are salient image regions with high repeatability of

detection [15], so they are used to identify localized patterns of

the same underlying structure in different subjects. Local features

could also be very distinctive in terms of their locations and high-

dimensional appearance descriptors [16]. Thus incorrect corre-

spondences arising from different underlying patterns could be

eliminated to some extent. Moreover, local features could be

extracted in a scale-invariant manner using the scale-invariant

feature transform (SIFT) [17,18]. SIFT has been developed based

on the scale-space theory to handle image structures at different

scales [19], and widely used in the computer vision applications

such as object recognition[20], robotic mapping and navigation

[21], and action recognition [22]. In the scale-invariant manner,

localized patterns are described at their characteristic scales, rather

than at arbitrary scales such as voxel-level. Their correspondences

could hence be robustly identified despite that their scales vary

between subjects. In order to identify morphological differences

from the partially present patterns, FBM constructs a probabilistic

model on clusters of local features, and quantifies the statistical

regularity between localized patterns and groups by occurrence

likelihood [13,14]. The method has shown good performance in

identifying group-related structures with different occurrence

likelihoods. However, it can not characterize what kind of specific

morphological differences has happened to the structures, e.g.,

atrophy or enlargement as shown in traditional morphometry

method. This is because the correspondences for the same

localized patterns are often sparse and only present in a minority

of the training subjects [13]. The sparse correspondences are not

effective to reflect distributions of underlying anatomical struc-

tures, making it unreliable to evaluate the specific morphological

differences between two groups. On the other hand, localized

patterns are found to be more commonly present than they are

detected. Their correspondences are actually missed as the same

underlying patterns in many subjects are not detected as local

features. Therefore, denser detections of local features are required

so as to improve the effectiveness of the correspondences for a

specific morphometric analysis.

Although correspondences between subjects are identified

according to distinctive local features, two types of error should

be taken into consideration and reduced. False positives (FP) occur

when local features arising from different underlying anatomical

structures are accepted as correspondences, while false negatives

(FN) occur when local features arising from the same structure are

rejected as non-correspondences [13]. Matching techniques that

identify correspondences of local features between images have

been proposed to reduce error rates of both FP and FN [17]. More

precisely, in each subject, the best candidate correspondence of a

localized pattern is selected by identifying its nearest neighbor.

The nearest neighbor of a localized pattern is defined as the local

feature with the minimum Euclidean distance of the appearance

descriptors. Then, unreliable candidates that are likely to arise

from different underlying structures are discarded. Global

thresholds on distances to the nearest neighbor do not perform

well because the range of inter-subject variability is different as the

patterns of different structures vary [23]. An efficient algorithm

has been proposed based on the ratio of neighbor distances,

assuming that a good correspondence should make a significant

difference between the distance of the nearest neighbor and the

distance of the second-nearest neighbor [17]. The algorithm

rejects a match if the ratio of the nearest distance to the second-

nearest distance surpasses a given threshold. Such a ratio-based

matching algorithm performances well because incorrect matches

often have similar distances with a number of other neighbors.

However, for situations when local features are densely detected,

the nearest two neighbors overlap with each other and arise from

the same underlying structures, causing the distance ratio to

become higher. Correct matches could thus be rejected and the

error rate of FN may be increased.

This paper presents a new method, named Morphometry based

on Effective and Accurate COrrepsondences of Localized Patterns

(MEACOLP), in order to overcome certain limitations in the

previous morphometric analysis. The scale-invariant feature (SIF)

is used to represent localized patterns that may be partially present

in a population, and the morphometric analysis is based on the

correspondences of localized patterns. The emphasis of this paper

is to identify effective and accurate correspondences for a specific

morphometric analysis. Since the correspondences lost in FBM

[13] are mainly due to the detection procedure, the effectiveness of

correspondences is improved by enhancing the detection repeat-

ability of local features. This is achieved by a novel two-level scale-

invariant feature transform (2L-SIFT) which extracts denser

secondary SIF sets with relaxed constraint. The missed local

features in standard detection procedure could be thus recalled by

the 2L-SIFT. Template patterns are generated from the SIF sets to

serve as the basis for morphometric analysis, rather than the local

feature clusters in FBM [13]. Their correspondences are expected

to be identified in most subjects according to the distribution of

SIFs in training data. In order to identify accurate correspon-

dences for the template patterns, the ratio-based matching

algorithm is modified to adapt to the dense secondary set.

Specifically, the algorithm identifies correspondences by first

investigating all spatially neighboring SIFs, rather than the nearest

two, and then rejecting unreliable correspondences with thresholds

that are related to overlap extent of the neighbors. Accordingly, it

could enhance the accuracy of correspondences by not only

rejecting incorrect correspondences but also selecting better

correspondences from overlapped SIFs that arise from the same

underlying structures. Morphological features are then extracted

from the correspondences of the template patterns using the scale-

space parameters, and the two-sampled t-test is lastly performed to

detect and quantify morphological differences between groups.

According to the scale-space parameters, template patterns with

significant morphological features would be characterized as the

translation or scaling of the underlying structures. For validation,

the analysis of Alzheimer’s disease (AD) is used to demonstrate the

morphometry method.

Methods

This section describes the new MEACOLP method that is

based on effective and accurate correspondences of localized

patterns. MEACOLP begins with a set of subject images that have

been spatially normalized via global linear registration. The

registration aims to approximately align potential corresponding

structures in different subjects. A geometry constraint could thus

be applied to identify correspondences for underlying structures

Reliable Morphometry Based on Localized Patterns
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more precisely. The method first models each subject image as two

sets of SIFs using the 2L-SIFT. Template patterns are then

generated from the SIFs that are representative according to the

training data. Afterwards, morphological features are extracted

from correspondences of the template patterns for morphometric

analysis.

2.1 Two-level scale-invariant feature transform (2L-SIFT)
The 2L-SIFT aims to improve the density of SIFs detected by

the standard SIFT procedure. Sparse SIFs are not effective to

reflect specific morphological differences because as a matter of

fact some SIFs for the same underlying structures are lost [13].

The SIF-lost phenomenon comes from the fact that extrema in

discretely sampled scale-space are the precondition of SIFs

[17,18]. The underlying anatomical structures vary in geometry

and appearance from one subject to another. The extrema in the

discrete scale-space may thus vanish in some subjects, and the SIFs

based on these extrema would disappear. To deal with the SIF-lost

issue, the 2L-SIFT attempts to enhance the detection repeatability

by redefining the constraint for extrema. It consists of construction

of the difference-of-Gaussian (DoG) function, selection of two-level

candidates, candidate adjustment and description.

2.1.1 Construction of the DoG function. According to the

scale-space theory, the scale-normalized Laplacian of the Gaussian

is required for true scale-invariance, and its extrema produce the

most stable image features compared to a range of other possible

image functions [17,19]. In practice for a volumetric image, the

scale-normalized Laplacian of the Gaussian is approximated by

the four-dimensional DoG function D(g) which is expressed as:

L(x, s)~I(x) � G(x, s)

D(g)~L(x, k:s){L(x, s)

�
, ð1Þ

where x denotes the coordinate vector; and I(x) represents the

original image, G(x, s) the Gaussian kernel with variable-scale s,

and L(x, s) the discrete scale-space of the original image; k

denotes a constant factor for the discrete sampling of the scales,

and g~vx, sw a geometry vector in the scale-space.

2.1.2 Selection of two-level candidates. According to the

scale-space theory, the extrema of the DoG function could be

selected as candidates for SIFs. An extremum in D(g) is

determined by the standard SIFT if it is a local maximum or

minimum in its 3636363 discrete neighborhood, as shown in

Fig. 1 (4). Such an extremum may vanish due to disturbances from

inter-subject variability, leading to the SIF-lost phenomenon. It is

noted that the discrete neighborhood functions as a constraint of

the extremum. A wider neighborhood would strengthen the

constraint and reduce the number of extrema. Given that closer

voxels are more correlative, the disturbances mostly affect extrema

via farther voxels in the neighborhood. Accordingly, weakening

the constraint to a more compact neighborhood provides a

solution to reducing the disturbance from inter-subject variability

and increasing the detection repeatability.

The voxels in the 3636363 neighborhood are divided to

generate different levels of constraints according to the spatial

radius. The spatial radius r is defined as the maximum Euclidean

distance to the central voxel in the neighborhood. The level-R

constraint denotes that the neighborhood is composed of voxels

satisfying r2
ƒR, where R = 1, 2, 3, 4, as shown in Fig. 1. In 2L-

SIFT, only two of the four levels are select. Level-4 constraint,

which is the strictest, is used to extract a main candidate set for

SIFs which are very stable in scale-space. On the other hand, the

level-1 constraint, which is the lightest, is used to extract a

secondary candidate set for SIFs which are much denser than the

main set.

2.1.3 Candidate adjustment and description. Points in

the candidate sets are discrete in scale-space, and it is pointed out

that refining these points to a sub-voxel level would improve the

stability for matching local features [17]. Given that the four-

dimensional interpolations used for the standard SIFT could not

be used with solely the voxels from the level-1 constraint, a

refinement in 2L-SIFT is performed by one-dimensional

interpolation. Moreover, two kinds of unstable points in the

candidate sets are identified and discarded to further improve the

stability. They are the low contrast points which are sensitive to

image noise and the edge points which are located unsteadily on

the edge of image content (e.g. tissue surface) [17]. After that, each

candidate is described as a SIF f ~vg,aw in terms of a geometry

vector g~vx, sw and an appearance descriptor a. The

geometry vectors are assigned the refined values of interpolation,

and the appearance descriptors are resampled from voxel

intensities in a cubical region centered on the geometry vectors

[13].

Given a group of training subjects denoted as Si, the 2L-SIFT

procedure models each subject as two sets of SIFs: a main set of

SIFs MSi~ fj

� �
which are detected with the level-4 constraint to

represent more stable anatomical patterns, and a secondary set of

SIFs SSi~ f ’kf g detected with the level-1 constraint to extract

denser localized patterns.

2.2 Generating template patterns
Template patterns serve as potential group-related patterns for

morphometric analysis. They are generated according to the

distribution of the SIFs from the training data. Several issues are

taken into consideration. Firstly, group-related patterns may occur

in all of the anatomical structures with different locations and sizes.

All stable SIFs in the main sets would be hence treated as

candidates to construct the template patterns. Secondly, template

patterns should be representative in each group in order to

effectively reflect the distribution of potential group-related

patterns. Correspondences of the candidate patterns would be

identified from the training images to evaluate the performance of

candidates without bias. Thirdly, the template patterns should be

distinctive in order to identify accurate correspondences from the

same underlying structures as well as reject incorrect correspon-

dences from different structures. This requires a comprehensive

description of the template patterns, including the geometry,

appearance, and the variability learnt from the training data. We

will present in detail the automatic procedure for generating

template patterns as follows.

2.2.1 Identification of correspondences. For a candidate

fj~vgj ,ajw, its correspondence in each subject is identified from

the secondary set. Since potential correspondences have been

approximately aligned with a registration step, a geometry

constraint is first applied to obtain a geometrical neighbor set as:

Gi~ f ’k g’k{gj

�� ��ƒTg, f ’k[SSi

��� �
, ð2Þ

where Tg is the geometry threshold. This threshold is related to the

maximum registration error and is empirically set to 10 voxels in

our study. The correspondence is then identified according to the

appearance descriptors. The ratio-based matching algorithm [17]

is modified to adapt to the dense SIFs in the secondary set. The

modified algorithm investigates all spatially neighboring SIFs, and

makes a decision based on thresholds that are adjusted by the

overlap extent of the neighboring SIFs. Let f ’k0
represent the

Reliable Morphometry Based on Localized Patterns
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nearest neighbor in the geometrical neighbor set, and

Olk (0ƒOlkƒ1) represent the extent of the overlap between f ’k
and f ’k0

. Then, the correspondence is identified as:

cij~
f ’k0

, Vf ’k[Gi, pkƒTapz(1{Tap)|Olk

null, otherwise

(
, ð3Þ

where null denotes the rejection of the correspondence, and pk a

ratio of the Euclidean distances from the nearest neighbor to

another neighbor; Tap (0vTapv1) is an initial ratio-based

threshold and is empirically set to 0.8. Olk is computed as the

percentage of the volume of overlapped description region.

As a result, each candidate is associated with a set of

correspondences which could be seen as a cluster in the descriptor

space. In order to further reduce FP, outliers in each cluster are

eliminated based on the distribution of the correspondences which

is expected to follow a normal distribution. We compute the

Euclidean distances from the correspondences to the gravity center

of their cluster, and set a maximum permissible distance mdj as:

mdj~adjz3:vdj , ð4Þ

where adj and vdj denote the average and standard deviation of

the distances, respectively. The maximum permissible distance

denotes the confidence interval that is expected to include most of

the correspondences arising from the same underlying patterns.

2.2.2 Generating representative within-group

patterns. The sizes of the correspondence sets are used to

evaluate the effectiveness of the candidate, and the maximum

permissible distances are used to evaluate the accuracy of the

correspondences of the candidate. Based on the two measures, we

discard the ineffective candidates whose correspondences are

identified in no more than a half of the subjects, and select

representative candidates from overlapping candidates which arise

from the same underlying anatomical structures. Here, two

candidates are determined to be overlapping if one candidate

falls in the cluster range of the other.

The representative candidates and their correspondences

represent the patterns arising from the same anatomical structures

in a group, and form compact clusters in the space of descriptors

without overlap. Representative within-group patterns are then

described as:

rpl~Scrl ,rgl ,ral ,radl ,rmdlT, ð5Þ

where crl denotes the correspondence rate defined as the percent

of the subjects where correspondences of the same underlying

patterns are identified; rgl and ral specify the average geometries

and appearance descriptors of the correspondences, respectively;

radl denotes the average distances from the correspondences to

ral , and rmdl the maximum permissible distance as in formula (4).

2.2.3 Constructing the template. The template patterns

are constructed using the comparable patterns that are

representative within each group. Given RpSet(A) and RpSet(B)

denoting the representative pattern set in group A and B,

respectively, the template patterns are denoted as:

Cpm~Srplm ,rpl’mT, m~1,:::,NCp, ð6Þ

where rplm[RpSet(A), rpl’m[RpSet(B), and NCp denotes the total

number of template patterns. The comparable patterns could be

identified using a bi-directional matching algorithm which is also

ratio-based as described in formula (3); however, it accepts

Srplm ,rpl’mT if and only if the match of rplm is identified as rpl’m
and the match of rpl’m is identified as rplm .

2.3 Extracting morphological features
In this step, we extract morphological features for each subject

based on template patterns. This is achieved by firstly identifying

correspondences of the template patterns for each subject, and

then assigning specific morphological features to the correspon-

dences. For each template pattern Cpm~Srplm ,rpl’mT, its corre-

spondence c’im in subject Si is identified as:

Figure 1. Four levels of constraints for the extrema detection in discrete scale-space. The neighboring voxels for judging whether or not a
voxel (the central) is an extremum are shown in black. Level-1 to level-4 constraints consist of the closest 8, 32, 64 and 80 voxels, respectively.
doi:10.1371/journal.pone.0035745.g001
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c’ij~

f ’k0
, Vf ’k[G’i, pkƒTapz(1{Tap)|Olk

f ’k0
, a’k{ralmk kz a’k{ral’mk kvradl’mzradlm

null, otherwise

8><
>: , ð7Þ

where G’i is the neighbors set computed under the Constraint of

Geometry (CoG) and the Constraint of Appearance (CoA) defined

in formula (8); f ’k0
is the nearest neighbor. In formula (7),

radl’mzradlmð Þ denotes the average distance from correspon-

dences to the template pattern, and it is used to recall false

negatives of the ratio-based matching algorithm.

CoG : max( g’k{rglmk k, g’k{rgl’mk k)ƒTg

CoA : a’k{ralmk kvrmdlm _ a’k{ral’mk kƒrmdl’m

G’i~ f ’k CoG ^ CoA, f ’k[SSijf g

8><
>: : ð8Þ

Geometry parameters in terms of locations and scales are used

to describe each correspondence since they are stable patterns in

scale-space. The features vim for correspondence c’im are

computed as:

vim~
g’k0

{
rglm

zrgl’m
2

, if c’im=null

S0,0,0,0T, otherwise

(
, ð9Þ

where g’k0
~Sx’k0

, s’k0
T denotes the geometry of a non-null

correspondence. As a result, a vector with morphological features

is extracted for each subject.

2.4 Morphometric analysis
The analysis aims to detect and quantify significant differences

between groups of morphological features. A one-sided, two-

sample t-test is used to assess the significance of the feature

difference. The P-value measures the degree of association

between an individual feature and the group of interest, e.g.

Alzheimer’s disease. Morphometric features can be sorted

according to the P-values to identify the anatomical structures

most indicative of the group. In order to detect reliable group-

related features, a false discovery rate (FDR) control is used to

correct P-values for multiple comparisons to control the probabil-

ity of committing type I errors. Considering that the morpholog-

ical features are extracted from the scale-space parameters in

terms of locations and scales, each morphological difference is

characterized as a translation or scaling of its corresponding

template pattern.

2.5 Classifying new subjects
The MEACOLP framework has a potential to support

computer-aided diagnosis. More precisely, MEACOLP can be

used to identify morphological difference in new subjects and to

classify new subjects according to two groups of training subjects.

Classification of a new subject image begins with aligning the

image via the same transformation approach as the training

images. SIFs with the levle-4 constraint are then extracted, and

their correspondence sets are identified from the training subjects,

and effective sets with correspondences present in most training

subjects are selected. After that, a naive Bayes classifier is applied

under the assumption of conditional feature independence as

described in [13]. The classification is primarily driven by the

following data likelihood ratio (DLR):

DLR~P
j

p fj C,Tj
� �

p fj
�CC,T
��� �, ð10Þ

where fj are the SIFs with effective correspondence sets, C the

group label in the training data and T the transform of alignment.

Given a threshold, the DLR value above the threshold indicates

that the new subject belongs to group C. The threshold of DLR can

be adjusted to balance the sensitivity and specificity of classifica-

tion in clinical settings. Here, the conditional probability p(fj|C,T)

is estimated using the kernel density estimation which is expressed

as:

p̂p(fj DC,T)~
1

NCj

XNCj

k~1

K g’jk{gj

� �
, ð11Þ

where K is the Gaussian kernel function, NCj
the size of the

effective set, and g’jk the geometry vectors of the correspondences

in the effective set.

Results

3.1 Materials
In order to validate the performance of MEACOLP, we

performed experiments on a large, publicly available, cross-

sectional dataset in the OASIS project [24] (http://www.oasis-

brains.org/). The dataset includes MRI data from 100 probable

Alzheimer’s disease (AD) subjects and 98 normal control (NC)

subjects. The AD subjects are diagnosed clinically from very mild

to moderate dementia characterized by the Clinical Dementia

Rating (CDR) scales [25]. Subjects in the dataset are all right-

handed, with ages ranging from 60 to 96 years. The two-sample t-

test (DoF = 196) indicates there are no significant differences

(t = 0.73, P = 0.47) between the age distributions for the NC group

(75.9268.99) and the AD group (76.7667.12). For each subject, at

least three T1-weighted magnetization-prepared rapid gradient

echo (MP-RAGE) images have been obtained according to the

following protocol: 128 sagittal slices, matrix = 2566256,

TR = 9.7 ms, TE = 4 ms, flip angle = 10u, and resolu-

tion = 1 mm61 mm61.25 mm. Moreover, the images have been

gain-field-corrected and averaged in order to improve the signal-

to-noise ratio. Images from all subjects have been aligned within

the Talairach reference frame (voxel size = 16161 mm3) via the

affine transform, and the skulls have been masked out in the

OASIS project [24]. We then adjusted abnormal voxel intensities

to normal levels via histogram analysis in order to make all images

in similar intensity range, i.e., lower the intensities of the top

0.05% voxels that may arise from the residual skulls. Subsequently,

we normalized the range of voxel intensity to [0, 1] for all images.

The 2L-SIFT was then applied to extract a main SIF set and a

secondary SIF set for each image. An analysis of the Hessian

matrix was used in 2L-SIFT to identify and discard edge points

from the SIF sets, as described in the previous study [13].

However, the threshold in the analysis was lowered, since it was

excessively strict for our method. As a result, averagely 1300 SIFs

were extracted from each image for the main set, and 5100 SIFs

for the secondary set.

3.2 Template patterns
On the training subjects, MEACOLP generated 408 represen-

tative patterns in the AD group and 482 in the NC group, and

constructed 294 template patterns, as shown in Fig. 2. According

Reliable Morphometry Based on Localized Patterns
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to the training data, correspondences of the template patterns were

expected to be identified in most of the subjects in each group.

In order to further illustrate the template patterns, we list the

twelve most stable template patterns in Fig. 3 in terms of their

corresponding regions in subject images. These template patterns

have the most correspondences in both groups and the most

compact clusters in the descriptor space. Some template patterns

are approximately symmetrical in pairs in Fig. 3. For instance,

patterns (A, B) denote the right and left 3D corner regions in front

of the temporal poles and beneath the orbitofrontal cortex.

Patterns (F, I) denote two big regions in the left and right

hemispheres, respectively. They are centered at the posterior limbs

of the right and left internal capsules, mainly including the internal

capsules, thalamus, basal ganglia, and insular lobe. Note that there

might be some localized differences between symmetrical template

patterns. For example, while pattern (F) centers on the left of the

body of the third ventricle, its symmetrical pattern (I) centers on

the right of the taenia thalami, a little more anterior and upper

than (F). Five template patterns are centered between the two

hemispheres. Pattern (C) denotes the 3D corner in front of the

pons and between the left and right parahippocampal gyrus,

pattern (D) the region including anterior parts of both lateral

ventricles, pattern (E) the cisterna interpeduncularis, pattern (G)

the genu part of the corpus callosum, and pattern (H) the fourth

ventricle. There are three unilateral template patterns whose

contralateral patterns were not identified in the twelve most stable

template patterns, namely pattern (J) denoting a region of the

external capsule near the claustrum, pattern (K) the 3D corner on

the left of the medulla oblongata and beneath the left cerebellum,

and pattern (L) a corner region of the left lateral sulcus.

3.3 Comparison between 2L-SIFT and standard SIFT
The standard SIFT models each volumetric image as a main set

of SIFs. In contrast, the novel 2L-SIFT additionally extracts a

denser secondary set of SIFs with a relaxed constraint. In the

experiment, 2.616105 SIFs were extracted for the main sets and

1.016106 SIFs for the secondary sets from all the 198 training

images. The 2L-SIFT are proposed to recall the local features that

may be missed by the standard SIFT. Furthermore, 2L-SIFT

could be used to identify more accurate correspondences by

selecting more similar SIFs from the secondary set, as illustrated in

Fig. 4. For the underlying anatomical structure of template pattern

(A), the standard SIFT extract a SIF (A1) while the 2L-SIFT

extract (A1) and (A2). We can find that (A2) is a better and more

accurate correspondence than (A1) by comparing their appear-

ance distances to the template pattern. We compared the 2L-SIFT

with the standard SIFT according to the effectiveness and

accuracy of their correspondences. Correspondences for each

template pattern were identified from the main sets and the

secondary sets, respectively. The correspondence rates were

computed and used to measure the effectiveness. The distribution

of the appearance distances from correspondences to the template

pattern, expressed as mean6standard deviation, were computed

and used to measure the accuracy. Table 1 shows the results for

the twelve most stable template patterns. The correspondence

Figure 2. Template patterns. Each template pattern consists of two representative within-group patterns, shown in a grid with the central sagittal,
coronal, and axial slices. In each grid, the upper and the lower slices are from the representative patterns of the Alzheimer’s disease group and the
normal control group, respectively.
doi:10.1371/journal.pone.0035745.g002
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rates from the 2L-SIFT are higher that those from the standard

SIFT for most of the template patterns, demonstrating that more

effective correspondences have been identified for potentially

group-related patterns. All distances from the 2L-SIFT are not

larger than those from the standard SIFT, revealing that the

effectiveness has been improved without losing any accuracy.

Moreover, most distances from the 2L-SIFT are in fact a bit

Figure 3. Correspondences of the twelve most stable template patterns. They are illustrated in subject images with the sagittal, coronal,
and axial slices. The squares indicate 3D regions for the descriptors of the correspondences. L = left; R = right.
doi:10.1371/journal.pone.0035745.g003

Figure 4. More accurate correspondences. The squares indicate
3D regions for the descriptors of localized patterns. A is a template
pattern shown in subject image. A1 and A2 show two local features
extracted from the same training subject, both arising from the same
underlying anatomical structure as A. A2 is a more accurate
correspondence than A1 according to the location and the scale.
doi:10.1371/journal.pone.0035745.g004

Table 1. Comparison of correspondences between 2L-SIFT
and SIFT.

2L-SIFT Standard SIFT

No. CR (AD) CR (NC) DIST CR (AD) CR (NC) DIST

A 94% 98% 0.0860.02 77% 78% 0.0860.02

B 97% 96% 0.0960.02 86% 89% 0.1060.02

C 94% 93% 0.1860.05 41% 40% 0.1960.06

D 97% 87% 0.3360.10 96% 88% 0.3460.10

E 92% 92% 0.2260.06 93% 88% 0.2860.07

F 93% 90% 0.2660.07 62% 32% 0.2760.06

G 95% 94% 0.3460.10 91% 92% 0.3460.10

G 92% 92% 0.2360.06 89% 92% 0.2560.08

H 94% 87% 0.2560.07 77% 49% 0.2860.08

I 92% 96% 0.3760.07 87% 92% 0.3860.07

J 88% 92% 0.2260.06 84% 82% 0.2360.07

K 84% 91% 0.3460.08 88% 82% 0.3860.09

The twelve most stable template patterns were used for the comparison. The
corresponding rates (CR) for both the Alzheimer’s disease group (AD) and the
normal control group (NC) demonstrate the improvement of the effectiveness
of the 2L-SIFT. The appearance distances (DIST) in terms of mean 6 standard
deviations demonstrate the improvement of accuracy of the 2L-SIFT.
doi:10.1371/journal.pone.0035745.t001
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smaller, indicating that the correspondences identified by 2L-SIFT

are more accurate. In some cases, a trade-off was achieved

between effectiveness and accuracy. For example, the correspon-

dence rate of the 2L-SIFT for template pattern (K) is slightly lower

than that of the standard SIFT in the NC group; however, the

correspondences are more accurate according to the distances.

3.4 Morphological differences
As described in section 2.3, we extracted morphological features

from the correspondences of the template patterns. There were

291 template patterns with correspondences identified in most

subjects of both the AD and NC groups. A 1164-dimensional

feature vector was extracted for each subject using the four-

dimensional scale-space parameters. The one-sided, two-sample t-

test was performed to assess the statistical significance of the

relationship between an individual feature and subject groups.

There are 28 morphological features identified as significantly

group-related (P,0.05, FDR corrected). For these 28 features, 26–

27 could thus be expected to result from valid group-related

anatomical structures. We illustrated 19 example features in terms

of specific modifications of the corresponding template patterns in

Fig. 5, and listed their P-values in Table 2.

The group-related template patterns are consistent with brain

regions known to differ between the AD and NC groups, involving

enlargement of ventricles and atrophy of cerebral cortex. Eight

template patterns were modified due to AD in terms of scaling,

indicating atrophy or enlargement of their underlying anatomical

structures. Patterns (B, K) demonstrate enlargement of the

extracerebral space adjacent to the right hippocampal sulcus,

reflecting atrophy of different parts of the right parahippocampal

gyrus [26]. Pattern (C) demonstrates atrophy of a cortical region

which includes the dorsal posterior cingulate gyrus and the

precuneus of the parietal lobe in both hemispheres [26,27].

Patterns (D, O, E, J) demonstrate enlargement of the anterior and

the posterior parts of the third ventricle, the posterior body of the

right ventricle, and the anterior parts of both lateral ventricles,

respectively. The enlargement of ventricle system reflects atrophy

of the surrounding structures [28,29]. Pattern (Q) demonstrates

atrophy of the anterior cingulate cortex and the anterior prefrontal

cortex [26,30]. Eleven template patterns were modified in terms of

translation, indicating atrophy or enlargement of their adjacent

structures. Patterns (A, F) demonstrate forward shifting of the

rostrum and the genu of the corpus callosum, reflecting

enlargement of the anterior parts of lateral ventricles [28] and

Figure 5. Group-related template patterns. The patterns are illustrated in subject images with the sagittal, coronal, and axial slices. The squares
indicate the 3D regions for the descriptors of the correspondences. The arrows demonstrate the morphological differences of AD in terms of
translation or scaling. L = left; R = right.
doi:10.1371/journal.pone.0035745.g005
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atrophy of the anterior cingulate gyrus [12,31]. Patterns (E, R)

demonstrate rightward and leftward shifting of the center of the

two posterior bodies of the lateral ventricles, reflecting symmetrical

enlargement of the ventricles and atrophy of the adjacent temporal

cortex. Pattern (G) demonstrates rightward shifting of the anterior

limb of the right internal capsule, reflecting enlargement of the

anterior part of the right lateral ventricle [28]. Pattern (H)

demonstrates leftward shifting of the posterior limb of the left

internal capsule, reflecting enlargement of the third ventricle [29]

and atrophy of the adjacent insular cortex [26,32]. Pattern (I)

demonstrates backward shifting of a posterior part of the callosal

sulcus, reflecting the atrophy of the posterior cingulate gyrus [27].

Patterns (L, P) demonstrate downward shifting of the right

posterior temporal stem and the left anterior temporal stem,

reflecting atrophy of the right hippocampus and the parahippo-

campal gyrus [26,33]. Pattern (M) demonstrates leftward shifting

of the left internal capsule around the body of the lateral ventricle,

reflecting enlargement of the left ventricle [28]. Pattern (N)

demonstrates downward shifting of the extracerebral space around

the right hippocampal sulcus, reflecting atrophy of the right

parahippocampal gyrus [26].

Spatially neighboring template patterns arising from different

anatomical structures are often modified by the same factors,

resulting in consistent morphological changes. For example, the

four patterns (A, F, J, Q) all demonstrate enlargement of the

anterior lateral ventricles and atrophy of anterior cingulate gyrus,

and the four patterns (B, K, L, N) demonstrate the atrophy of the

right parahippocampal gyrus, and the three patterns (D, H, O)

demonstrate the enlargement of the third ventricle.

3.5 Classification
MEACOLP can be used to classify new subjects in a computer-

aided diagnosis scenario. As suggested by Toews [13], we took into

account the clinical and demographic information of the

experimental subjects so as to illustrate the effects of age and the

severity of clinical diagnosis on classification performance. Three

different divisions of the OASIS subjects were used as follows.

1) Subjects aged 60–80 years, CDR = 1 (66 NC, 20 AD);

2) Subjects aged 60–96 years, CDR = 1 (98 NC, 28 AD), to

illustrate classification of elderly subjects;

3) Subjects aged 60–80 years, CDR = 0.5 and 1 (66 NC, 70

AD), to illustrate classification of very mild AD.

On these divisions, we compared our method (M1) to the

Toews’ method [13] (M2). In order to analyze the effect of the

Table 2. Statistics of the group-related template patterns.

P-value

No. x1 x2 x3 x4

A 3.9E-01 (q) 1.7E-06 (Q) 7.0E-03 (q) 2.2E-01 (Q)

B 1.3E-01 (Q) 2.0E-01 (Q) 9.1E-02 (Q) 2.5E-05 (q)

C 1.0E-01 (Q) 4.3E-01 (q) 2.8E-01 (q) 3.8E-05 (Q)

D 2.8E-01 (q) 3.9E-02 (q) 2.8E-01 (q) 7.7E-05 (q)

E 1.3E-04 (Q) 1.7E-02 (q) 6.2E-03 (Q) 9.0E-05 (q)

F 4.3E-01 (Q) 1.1E-04 (Q) 4.5E-01 (q) 3.9E-01 (Q)

G 2.4E-04 (Q) 4.1E-01 (Q) 5.0E-01 (q) 3.0E-01 (q)

H 2.4E-04 (q) 4.1E-01 (Q) 2.8E-01 (Q) 4.9E-01 (q)

I 5.0E-01 (Q) 2.5E-04 (q) 2.4E-01 (Q) 4.7E-01 (q)

J 3.1E-01 (Q) 3.8E-01 (Q) 8.6E-02 (q) 5.8E-04 (q)

K 7.7E-03 (Q) 4.3E-01 (Q) 4.2E-01 (Q) 6.3E-04 (q)

L 9.8E-03 (Q) 5.4E-02 (Q) 6.7E-04 (Q) 1.4E-01 (q)

M 7.2E-04 (q) 2.8E-01 (Q) 2.8E-01 (q) 3.3E-01 (q)

N 1.0E-01 (Q) 1.0E-01 (Q) 7.7E-04 (Q) 1.3E-02 (q)

O 1.1E-01 (q) 2.6E-02 (Q) 3.7E-01 (Q) 9.0E-04 (q)

P 3.4E-01 (q) 3.1E-01 (Q) 9.9E-04 (Q) 1.5E-03 (Q)

Q 4.4E-01 (q) 4.8E-02 (Q) 4.4E-02 (Q) 1.1E-03 (Q)

R 1.2E-03 (q) 5.5E-02 (q) 2.4E-02 (Q) 3.1E-02 (q)

One-sided, two-sample t-tests were applied to each individual feature. Features
x1, x2, x3 and x4 denote the four-dimensional scale-space parameters. For each
feature, the up arrow indicates (AD.NC) and the down arrow indicates
(AD,NC), where AD denotes the Alzheimer’s disease group, and NC the normal
control group. Significant features (P,0.05, FDR corrected) are shown in bold.
doi:10.1371/journal.pone.0035745.t002

Figure 6. ROC curves for three methods on three different divisions. M1, M2, and M3 denote the proposed method, Toews’ method, and the
proposed method without the secondary set, respectively. M1 outperforms M2 a little, and performs much better than M3. Including wider range of
age (B) or severity of clinical diagnosis (C) both result in reduced classification performance.
doi:10.1371/journal.pone.0035745.g006
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secondary SIF set proposed in this paper, we designed a

classification procedure (M3) which is the same as our method

except the SIF sets for correspondences. In M3, the correspon-

dences were identified from the main SIF sets instead of the

proposed secondary sets. Classification was performed in a leave-

one-out manner, where each test subject in turn was kept aside

and classified according to all other subjects as training subjects.

The receiver operating characteristic (ROC) curves of the three

divisions are plotted in Fig. 6. We also reported the equal error

classification rate (EER) and the area under the ROC curve

(AUC) as threshold-independent measures from the ROC curve.

EER is defined as the classification rate where misclassification

rates for both AD and NC subjects are equal. The ROC curves on

the three divisions demonstrate that our method outperforms the

Toews’ method, with average AUC values higher 0.03. The curves

also have similar trends under the effects of age and the severity of

clinical diagnosis. Maximum classification rate is achieved for

subjects with mild AD and within 60–80 years of age, and

including wider range of age or severity of clinical diagnosis both

result in reduced classification performance. On the other hand,

the M3 procedure leads to much lower classification performance,

indicating that the secondary set is necessary to improve the

parameter estimation of specific morphological features. The

results reveal that the effective correspondences and the morpho-

logical differences identified from the secondary feature sets are

reliably related to the AD groups.

Discussion

This paper presents and validates MEACOLP, a new

morphometry method for detecting group-related structures in

volumetric images. Correspondences of underlying anatomical

structures are identified from distinctive local features to quantify

the statistical regularity. The primary difference between MEA-

COLP and other morphometry techniques is that MEACOLP

explicitly addresses the effectiveness as well as the accuracy of the

correspondences for a specific morphometric analysis. A clinical

validation has been performed on a set of 198 NC and probable

AD subjects from the public OASIS dataset [24]. Experimental

results demonstrate that MEACOLP improves both the effective-

ness and the accuracy of the correspondences by using the

proposed 2L-SIFT instead of the standard SIFT. Based on the

improved correspondences, group-related anatomical structures

known to be affected by AD are automatically discovered and

well-characterized as specific morphological differences. In

addition, MEACOLP is potentially useful for computer-aided

diagnosis, and leave-one-out classification trials demonstrate that

MEACOLP outperforms the recent FBM method [13]. The

classification performance would be much lower if the secondary

set from the 2L-SIFT is not used. These results reveal that the

secondary set of the 2L-SIFT is effective for specific morphometric

analysis, and the morphological differences are reliably related to

the group of interest.

MEACOLP and FBM [13] are both based on local features, and

are proposed for the situation where the inter-subject registration of

underlying structures is ambiguous or difficult to achieve. However,

most of the group-related patterns identified by MEACOLP are not

the same as those patterns reported in FBM. For the most significant

AD-related structures that are located in brain hemispheres,

MEACOLP identifies majority of the structures (eight out of the

ten) in only a single hemisphere while FBM identifies minority of

them (two out of the eight). This demonstrates the difference between

morphometric analysis based on the feature occurrence (FBM) and

that based on the specific feature properties (MEACOLP), and the

results of MEACOLP suggest that the specific feature properties

statistically significant AD-related structures are primarily asymmet-

rical in nature. Two reasons are responsible for the difference. Firstly,

the bases for morphometric analysis are different. MEACOLP uses

the stable template patterns whose correspondences should be

robustly identified in most subjects, and FBM uses a large number of

model features whose correspondences are often fragment in a

minority of training subjects. That is, most of model features would

not be treated as template patterns. For instance, the temporal horns

of the lateral ventricles are identified as group-related in FBM [13];

however, they are not stable enough to become a template pattern.

Secondly, the morphological features for MEACOLP are scales and

locations of the correspondences, while those for FBM are the feature

occurrences. The group-related patterns of MEACOLP are caused

by scaling or translation of the underlying structures. In contrast, the

group-related patterns of FBM could be caused by various

morphological distortions, so it is difficult to determine what kind

of specific differences has happened. In conclusion, MEACOLP and

FBM are two complementary morphometry methods, since

MEACOLP could be used to quantify specific morphological

differences for stable patterns, and FBM could be used to analyze

local patterns which only occur in minority. FBM has identified some

anatomical patterns that are present primarily in a single subject

group. Such patterns could not be identified directly in MEACOLP.

However, these patterns might be reflected on translation of its

neighboring patterns, and thus be identified indirectly by analyzing

the geometric properties of their neighboring template patterns.

A limitation of this study is that the number of template patterns

is not sufficient for discovering more group-related structures,

especially in regions of highly variable cortices. Some cortices are

shown to be group-related in previous studies [13]; however, they

are not detected in MEACOLP. Patterns fail to generate template

patterns mainly due to the ambiguous situations where the same

underlying cortices vary from subject to subject yet different

underlying cortices look alike. Although a geometry constraint has

been applied to reduce the ambiguous situations, it is not strict

enough for the cortical regions. Our future work will include

performing more sophisticated techniques to generate template

patterns in cortical regions. In particular, we plan to compare the

performances of various description methods for local features, e.g.

histogram of gradients [18], in order to extract more distinctive

appearance descriptors. Moreover, the topology of local features

[17] and non-linear registration which can align potential

correspondences with small registration error [23,34] will be

taken into consideration to enhance the geometry constraint.

Finally, the influences of the preprocessing steps in OASIS dataset,

i.e. averaging of multiple images and skull stripping, were not

taken into account in current study. In the future, we will consider

the influences, and further improve the current method for clinical

analysis of neurological diseases.
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