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A B S T R A C T   

Aiming at detecting COVID-19 effectively, a multiscale class residual attention (MCRA) network is proposed via 
chest X-ray (CXR) image classification. First, to overcome the data shortage and improve the robustness of our 
network, a pixel-level image mixing of local regions was introduced to achieve data augmentation and reduce 
noise. Secondly, multi-scale fusion strategy was adopted to extract global contextual information at different 
scales and enhance semantic representation. Last but not least, class residual attention was employed to generate 
spatial attention for each class, which can avoid inter-class interference and enhance related features to further 
improve the COVID-19 detection. Experimental results show that our network achieves superior diagnostic 
performance on COVIDx dataset, and its accuracy, PPV, sensitivity, specificity and F1-score are 97.71%, 96.76%, 
96.56%, 98.96% and 96.64%, respectively; moreover, the heat maps can endow our deep model with somewhat 
interpretability.   

1. Introduction 

Corona Virus Disease 2019 (COVID-19) is a respiratory pandemic 
caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- 
CoV-2) [1]. It is reported that COVID-19 patients have a higher mortality 
rate due to the speed of transmission and high infection rate of the virus 
[2]. If the immune system is unable to fight the virus, the white blood 
cells will release cytokines and inflammatory mediators, making more 
immune cells, causing lung damage and possibly impacting other or-
gans. Symptoms of COVID-19 include nasal congestion, sore throat, 
diarrhea, and drowsiness, in addition to fever and cough. Critically ill 
patients may present with respiratory distress, acute respiratory distress 
syndrome (ARDS), organ failure, etc [3]. From the available epidemio-
logical characteristics, researchers have explored that the main routes of 
COVID-19 transmission are droplet and close contact transmission with 
an incubation period of 1–14 days [4]. Patients usually have no obvious 
adverse reactions or even symptoms during the incubation period, 
which makes disease detection challenging. 

Nowadays, the main practice for diagnosing COVID-19 is Reverse 
Transcription-Polymerase Chain Reaction (RT-PCR) [5,6], which com-
bines Ribonucleic Acid (RNA) reverse transcription and polymerase 
chain reaction (PCR) techniques to detect viral RNA fragments, and only 

a positive nucleic acid test can confirm the diagnosis. However, RT-PCR 
depends upon expensive equipments and takes at least 24 h to generate 
findings [7]. Moreover, it is not reliable enough and cannot satisfiedly 
rule out the chance that the patient is infected with 2019-nCoV. How to 
improve the efficiency of COVID-19 diagnosis and lower its cost become 
more emergent. To save limited medical resources, early diagnosis of 
COVID-19 can be detected by the cheap radiographic images instead of 
expensive RT-PCR indeed. Chest X-ray (CXR) and computed tomography 
(CT) are two typical kinds of radiographic images of the lungs. These 
two types of images are yielded because different organs have different 
ability to absorb X-rays, and then the abnormalities can be detected 
based on the contrast in these images. Comparing with CXR, CT has 
multiple levels of grayscale; but CXR is a more accessible, affordable, 
and popular method for diagnosing lung infections [8]. Furthermore, 
artificial visual interpretation of these images is time-consuming and 
relies heavily on the subjective judgment of the physician. For example, 
medical images are first annotated by a physician to generate a radio-
logical findings report, and subsequently, the imaging findings are 
analyzed in conjunction with clinical experience to obtain a diagnosis. 
With an increase in the number of patients, they cannot be ensured to 
receive timely and effective treatment. Therefore, an effective and effi-
cient CXR image understanding method of COVID-19 diagnosis becomes 
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urgent to prevent the virus continues to spread. 
With the emerge of deep neural networks (DNNs) [9–14], especially 

convolutional neural networks (CNNs), they leverage multi-level layer 
neural networks for representational learning and are widely used for 
image classification [15,16], object detection [17,18] and semantic 
segmentation [19]. Naturally, DNNs are very good at detecting 
COVID-19 [20–25]. However, mainly due to lack of interpretability and 
practical skills, applying DNNs into CXR images for COVID-19 clinical 
diagnosis has run into obstacles [26]. Some literatures have reported 
that DNNs have achieved competitive performance in lung cancer [27, 
28], corneal endothelial cells [29], pancreas [30,31], polyp segmenta-
tion [32,33], etc. But, they are always prone to overfitting [34,35], poor 
robustness [36] and lack of generalization [37–39]. Furthermore, the 
lesion area of COVID-19 is usually small and blurred in CXR images, 
which needs us to pay more attention to these critical regions. More 
importantly, the “black box” [40–42] prevents DNNs from being plau-
sible. For effective detection of COVID-19, Huang et al. [43] proposed a 
lightweight network LightEfficientNetV2, by using fewer parameters to 
overcome data shortages and obtain higher performance. Kumar et al. 
[44] combined graph convolutional network and convolutional neural 
network for determining the presence of COVID-19 infection in CXR 
images. Tang et al. [45] introduced the additional momentum method in 
the traditional BP neural network and enhanced the feature represen-
tation by adaptive histogram equalization, morphological processing, 
etc., which is beneficial to reduce the noise but fails to deal with the 
large scale focal lesion interference effectively. In this study, we propose 
the CNN-based multi-stage framework with multiscale class residual 
attention (MCRA) composed of feature representation enhancement and 
class spatial attention, which is an auxiliary inspection means for 
high-precision and automatic detection of COVID-19. Our major con-
tributions are as follows:  

1. Our MCRA network is with pixel-level mixing of local region. By 
mixing samples and focusing on critical regions, it can improve the 
feature area localization and the robustness of our model.  

2. MCRA owes to multi-scale feature fusion and class residual attention. 
Multi-scale feature fusion facilitates the network to capture global 
contextual information at different scales and enhance feature rep-
resentation, and class residual attention focuses more on category 
space region assignment to make more effective prediction.  

3. The gradient-weighted class activation map is introduced, which 
takes into account of patch-wise disease probability to generate 
global heat map and endows our deep model with somewhat 
interpretability. 

This paper is structured as follows: section 2 shows the works related 
to detecting COVID-19. Section 3 describes the proposed network. Sec-
tion 4 provides the experiments, which contains the setup, experimental 
results and comparisons. Section 5 summarizes the full text. 

2. Related work 

This section presents the works related to our detecting COVID-19 
method, including X-ray of COVID-19, pixel-level mixing of local re-
gion, attention mechanism and multi-scale feature fusion. 

2.1. COVID-19 X-ray diagnosis 

CXR is a common imaging modality that can provide an effective 
medical diagnosis. To achieve effective screening of patients with 
COVID-19, many experiments using deep learning to detect COVID-19 
have been conducted [46–52]. However, the shortage of labeled data 
may affect the detection performance of COVID-19. Oh et al. [53] ach-
ieved volume expansion by using data augmentation, classifies the lung 
region after segmentation, and diagnoses COVID-19 with fewer training 
parameters to overcome the shortage of labeled X-ray images. 

Meanwhile, Wang et al. [54] proposed a novel CNN network, called 
“COVID-Net”, and create a dataset of 13,975 X-ray medical images from 
13,870 patients for the classification of CXR images in three categories: 
normal, pneumonia and COVID-19, reaching COVID-19 detection ac-
curacy of 93.3%. Lu [55] applied the neural network to recognize the 
endoscopic image of upper digestive tract, by regarding 1335 cases of 
digestive tract endoscopic images as the dataset, and achieve an accu-
racy rate of 94.20%. Su et al. [56] put forward a multi-level thresholding 
image segmentation method, which introduces horizontal and vertical 
search mechanisms into Multi-Verse Optimizer, and achieves the 
improvement of global search and the ability to jump out of local opti-
mum, but it is more time-consuming and ignores classification and 
prediction of lesions. Therefore, Ieracitano et al. [57] integrated CXR 
images with fuzzy features to overcome the uncertainty of CXR edge 
images, achieving COVID-19 classification accuracy rate of 81%. He 
et al. [58] employed artificial neural network (ANN) to construct a lung 
cancer recognition model and applied it into lung cancer lesion areas 
segmentation, assisting in the diagnosis of lung cancer. 

2.2. Local region pixel-level mixing 

Using cut regions for training images and mixing pixel-level infor-
mation from other sample enables the network to identify targets from 
local views, which can improve localization and generalization capa-
bilities of the model [59–63]. Classical representative local region 
pixel-level mixing methods include Mixup [64], Cutout [65] and CutMix 
[66]. Specifically, CutMix crops a part of the region and randomly fills 
the region pixels of other value in the training sample, which can obtain 
a more accurate mixed sample than traditional Mixup and Cutout, and 
the classification results are proportionally distributed. 

2.3. Attention for DNNs 

Attention mechanisms are extensively adopted in computer vision 
community, such as classification [67–72], detection [73–76] and seg-
mentation [28,77–79]. On the basis of deep learning, CXR image clas-
sification can discriminates different pathologies by feature learning. Li 
et al. [80] integrated DenseNet with Graph Attention Network to reduce 
the amount of parameters in the network, achieving image classification 
accuracy rate of 94.8%. Feng et al. [81] presented condense attention 
(CDSE) and multi-convolution spatial attention (MCSA) to increase the 
redundancy of feature maps, and take full use of the relationship of the 
feature maps. Lin et al. [82] proposed an adaptive attention network 
(AANet), which pays attention to the context information via nonlocal 
interactions modeling, and needs less amount of parameters. Hence, 
attention mechanism could assist the deep network in quickly extracting 
key region information and improving visual representation. 

2.4. Multi-scale feature fusion 

Because CNN has a pyramidal multi-scale feature structure, it can 
build high-level semantic feature maps and improve the semantic rep-
resentation of visual information with feature fusion. Doubtlessly, se-
mantic information plays an important part in image classification [83], 
and performance of the image classification can be enhanced by asso-
ciating semantic information between locations and attributes [84]. FPN 
(Feature Pyramid Networks) [85] is a top-down network, which can 
enhance semantic information by upsample and integrate the bottom-up 
ResNet feature layers with the same spatial size by laterally connecting 
them, and finally the contextual information can effectively improve the 
image classification. In addition, U-Net [86] performs well in channel 
dimension by concatenating the feature skip connection. Wang et al. 
[87] improved the performance of FCN in GI Tract lesion segmentation 
by fusing global contextual and local spatial information of images, 
merely using an average fusion strategy on multi-scale features instead 
of considering the differences between features at different scales. Bai 
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et al. [88] proposed a multi-feature dictionary representation and 
ensemble learning method based on symbolic aggregate approximation, 
which is different from extracting diverse-shapelet for early classifica-
tion of time series [89]. Muralidharan et al. [90] adopted multiscale 
deep CNN with different combinations of modes, which is combined and 
merged by the fully connected layer for all features. He et al. [91] put 
forward an integrated framework COVIDNet, regarding ResNet [92] as 
the backbone and the spatial pyramid pooling(SSP) to enhance the 
middle-level features extraction; and the NetVLAD was employed to 
aggregate features from the low-level and context gating for learning. In 
this paper, we only leverage class residual attention integrated with 
multi-scale feature fusion to detect Covid-19 in CXR, and no any other 
level of feature fusion module is required. 

3. Method 

In this section, we proposed the framework of class residual attention 
(CRA) and multiscale feature fusion. The overview of our network 
structure is described in section 3.1. Class residual attention and multi- 
scale feature fusion are introduced in sections 3.2 and 3.3, respectively, 
and the class activation interpretable method is put forward in section 
3.4. 

3.1. Overview 

The overall pipeline of our network is shown in Fig. 1. 
As shown in Fig. 1, the proposed neural network algorithm is based 

on CRA mechanism. First, the input images are pre-processed, include 
data normalization and augmentation. Next, the model pre-trained on 
the ImageNet dataset are fine-tuned by transfer learning for feature 
extraction. Specifically, we propose multi-scale feature fusion to capture 
contextual information in CNN. Then, the feature maps obtained are 

feed into class residual attention module to obtain the spatial region 
assignment. Subsequently, the reassigned feature maps are input to the 
classifier to create three types of CXR image classification: COVID-19, 
Pneumonia and Normal. Finally, we conduct an interpretability study 
via the LayerCAM [93] visualization method. 

3.2. Class residual attention 

In COVIDx [54] dataset, each CXR image may contain one or more 
semantic feature lesion regions. While the location of the target lesion 
region usually cannot be detected directly or easily, we have to focus 
more on related regions for feature classification. With values ranging 
from 0 to 1, the attention module assigns an attention score to each 
category for allocating weights to the distinct feature spaces of each 
category. The higher the score value is, the higher the weight of the 
related position in the feature map is, and the feature representation at 
this position is thus enhanced, and vice versa. In short, the attention 
score can highlight relevant features while suppressing irrelevant ones. 

We predict the relevant region for each class by using residual 
attention, which is consist of 1 × 1 convolutional layers (Conv2d) and a 
non-linear normalization layer (SoftMax), and then output a class 
channel attention score and a spatial attention to generate a certain class 
feature. We predict the attention scores of each class and use them for 
feature weight assignment directly via feature maps F. Our class residual 
attention structure diagram is illustrated in Fig. 2. 

From Fig. 2, we can see the working procedure of CRA imple-
mentation. Specifically, we resize input image to 224 × 224; after 
convolution and feature extraction, the volume of feature map X is 256 
× 56 × 56 (d × h × w). Then, after a 1 × 1 convolution and flattening in 
the spatial dimension, the features are represented as x1, x2, x3,…, x3136 

(x ∈ R256). Subsequently, a spatial pooling layer is employed to obtain 
the score attention, then the features are weighted to extract an 

Fig. 1. Network framework. (a): Input image. (b): Preprocessing, which augments data of input image. (c): Transfer Learning, which is CNN (ResNet) or Transformer 
(ViT, Swin) model. (d): Multiscale Fusion, generating multi-scale features by CNNs. (e) Class Residual Attention, which generates spatial attention for each class. (f) 
Prediction, inferring image category probabilities. (g) Explainable Results, visualizing key features using class activation maps. 
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attention weight feature; pk is the classifier for the k-th class, and finally, 
the feature is regarded as the input to their classifier to yield the final 
logits. For the k-th class and j-th position, the class attention score values 
can be computed from equation (1). 

qk
j =

exp
(
xjpk
)

∑3136

i=1
exp(xipk)

(1)  

where qk
j is the probability for class k at position j, and 

∑3136
j=1 qk

j = 1. 
After obtaining the attention score values of the k-th category in each 

spatial location, its category features can be calculated from equation 
(2). 

f k =
∑3136

i=1
qk

i xi (2)  

where fk is the feature of each category with size d*1. 
Thus, the k-category features fk acquired by weighting the attention 

score are utilized in the output of logits classification, as described in 

equations (3) and (4). 

yk = pkf k (3)  

ŷ≜
(
y1, y2, y3,…, yn) =

(
p1f 1, p2f 2,…, pnf n) (4)  

where n means the number of classes. 

3.3. Multi-scale feature fusion 

For the input image I, the previous network structure usually does 
not take into account the spatial location relationship among local fea-
tures, and ignores the semantic feature at the lower level. In our view-
point, for the small size of COVID-19 pathology, it is the smaller target 
region information that is often missing after multiple convolutions that 
results in the decrease of accuracy. 

Therefore, we add a multi-scale convolutional network to the con-
volutional layer of ResNet, connecting laterally in the {C1, C2, C3, C4} 
convolutional layers with top-down feature pyramid layers {P2, P3, P4, 
P5}. For ResNet-50, the feature maps with 256 * 56 * 56, 512 * 28 * 28, 

Fig. 2. The proposed class residual attention (CRA) is used to obtain the feature map of the input and predict the k-th classification result.  

Fig. 3. Structure of feature fusion.  
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1024 * 14 * 14 and 2048 * 7 *7 resolutions are utilized for fusion; the 
structure of feature fusion is demonstrated in Fig. 3. 

As shown in Fig. 3, C2, C3, C4 and C5 are different scale feature 
maps. The feature map is indicated by F ∈ Rc×h×w, where c, h and w 
denote the number of the channel, height and width, respectively. F can 
be calculated from equation (5). 

F = φ(I; θ) (5)  

where θ is the parameter in the convolutional neural network. 
Attention map is generated by operating 1*1 convolutional layer on 

each feature map, then upsample it to the resolution of 256 * 56 * 56. 
The final multi-scale feature maps are obtained by P2, P3, P4 and P5 via 
residuals connection with resolution of 256 * 56 * 56. Especially, we 
take ResNet-50 as the backbone, the resolution of input image is 224 ×
224, and the resolution of the output feature vector is 256 × 56 × 56. 
Thus, F ∈ Rc×h×w is input into classifier, and class residual attention 
learns spatial weight allocation for information enhancement of related 
features. 

3.4. Visualizing heatmaps of class activation 

Deep model cannot be applied into clinical diagnosis plausibly for 
mainly lack of interpretability, so we utilize LayerCAM, an attribution- 
based (back propagation, gradient) visualization method, to make our 
deep model plausible. Unlike existing class activation maps GradCAM 
[94] and GradCAM++ [95], they can only generate class activation 
maps from deeper layers of the network, LayerCAM can obtain class 
activations for all layers of convolutional network, and endow our model 
with interpretability via hierarchical class activation maps. Therefore, 
the last convolutional layer of backbone network is replaced by Layer-
CAM’s target-layer to create the final gradient-weighted class activation 
mapping in our model. 

Since positive gradient is the predication of the class, it can be 
regarded as weights for each location in a feature map; if locations with 
negative gradients is set to be 0, then the weight of a coordinate (m, n) in 
the d-th feature map can be calculated as follows: 

wdc
mn = ReLu

(
gdc

mn

)
(6)  

where c means the category of targets, gdc
mn denotes the variance of the 

gradients. 
The weight wd is multiplied by the activation value of each position 

Md, and the class activation map for each layer can be thus generated 
(see equation (7)). 

Td
mn = wdc

mn⋅Md
mn (7)  

where Td stands for the activation value with weight. 
Finally, the activation weight values of all layers are accumulated to 

yield class activation map, which can be descripted by equation (8). 

Lc = ReLu

(
∑

k
Td

)

(8)  

where Lc refers to the class activation map by fusing channel dimension. 
Hence, a variety of channels and spatial locations are obtained, and 

the weight can represent the relevance of distinct locations on a multi- 
class feature map. 

4. Experiments 

In this section, amounts of experiments are carried out to evaluate 
the performance of the proposed MCRA method. The dataset and the 
data augmentation strategy are introduced in section 4.1. The evalua-
tion metrics are described in section 4.2. In section 4.3, the setup of the 
experiments is provided. The evaluation results of the MCRA method are 

presented in section 4.4. In section 4.5, a comparison with other state-of- 
the-art (SOTA) methods is discussed. In section 4.6, the ablation 
experiment is conducted to verify the performance of MCRA. The 
interpretability of our model is further analyzed by the visualizing heat 
map of the classification features in section 4.7. 

4.1. Dataset and preprocess 

We use the COVIDx dataset, which contains COVID-19, Pneumonia 
and Normal lung images from five different sources. In addition, we 
divided the dataset into training, validation and test sets in the ratio of 
6:2:2 and then conducted several experiments to evaluate our model. 
Some example images of the COVIDx dataset are demonstrated in Fig. 4, 
and the number of images in each category is listed in Table 1. 

As shown in Table 1, the total number of images in the COVIDx 
dataset is 30530. For the training dataset, the total number of images is 
18318, with 4911 in Normal, 3393 in Pneumonia and 10014 in COVID- 
19. In either validation set or test set, the numbers of Normal, Pneu-
monia and COVID-19 images are 1637, 1131 and 3338, respectively. 

The image names, paths and labels of the dataset are stored in arrays, 
and the labels are arranged for each image. It should be noted that the 
labels of Normal, Pneumonia and COVID-19 are represented as ‘0’, ‘1’ 
and ‘2’, respectively, and the images and labels are then converted into 
arrays. 

More the number of training images is, less the overfitting occurs 
during the training period. With respect to vertical flip, horizontal flip, 
random affine, color of brightness and contrast variation of the image, 
let the probability p = 0.5. Data augmentation strategy involves Trivi-
alAugment [96] and CutMix [66]. TrivialAugment doesn’t require any 
retrieval, just a simple augmentation strategy chosen at random; while 
CutMix can crop a part of one image and overlay it on another image to 
achieve the aim of the image enhancement. The final mixed results of 
Normal, Pneumonia and COVID-19 is resized to 224 × 224 and regarded 
as train samples, and some representative mixed results are shown in 
Fig. 5. 

In Fig. 5, there are some example images’ preprocessing, which 
consists of geometric transformation, cropping and mixing of images. 
While the image is fused with other parts, its soft label can be generated 
because the labels are statistically distributed probabilistically accord-
ing to the image resolution. Please note that soft labels are one-hot 
vectors that consist of a series of successive floating-point values, 
rather than integer values such as 0, 1, 2, and so on. 

4.2. Evaluation metric 

Accuracy, Positive Predictive Value (PPV), Sensitivity, Specificity and F1- 
Score are adopted as evaluation metrics to verify COVID-19 diagnosis of 
the proposed method. 

Accuracy is employed in medical analysis to measure the model’s 
recognition effect, and it is defined by equation (9). 

Accuracy =
TP + TN

TP + TN + FP + FN
(9)  

where TP, TN, FP and FN are the numbers of true positives, true nega-
tives, false positives and false negatives, respectively. 

The true positive result vs. the whole positive result is called the PPV 
(see Equation (10)). If the PPV value is smaller, it is impossible to 
confirm the diagnosis of COVID-19, and a more accurate test is needed to 
make a definite diagnosis. 

PPV =
TP

TP + FP
(10) 

Sensitivity of a disease is the percentage of people who successfully 
identify a disease, as described in equation (11). If the Sensitivity value is 
too low to screen COVID-19 cases effectively, patients will miss the early 
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proper treatment. 

Sensitivity =
TP

TP + FN
(11) 

Specificity denotes the proportion of people who have the correct 
diagnosis among those ones who do not have the disease, as described in 
equation (12). 

Specificity =
TN

TN + FP
(12) 

F1-Score measures the accuracy of the classification model by 
calculating the summed average of PPV and Sensitivity, which can be 
calculated from equation (13). 

F1 − score =
2 × PPV × Sensitivity

PPV + Sensitivity
(13)  

4.3. Experimental setup 

Software environment: operating system, Ubuntu 22.04; program-
ming language, Python 3.9; deep learning framework, PyTorch 1.11.0. 
Hardware environment: CPU, Intel i7-4790; GPU, NVIDIA RTX 3090 Ti 
(video memory, 24 G); RAM, 32 G. 

The optimizer is Ranger, which is a co-optimizer combining RAdam 
(Rectified Adam) [97], LookAhead [98] and Gradient Centralization 
(GC) [99]; Loss is CutMixCrossEntropyLoss; learning rate (lr) is 1e-4 and 
weight decay is 1e-3. Furthermore, we resize the input image to 224 ×
224, with a batch size of 64, for 50 epochs. 

4.4. Experimental results 

We regard ResNet-50, ViT-T/16 and Swin-T as backbone and load 
pre-trained models for training, respectively, while incorporating the 
proposed CRA into their own classification networks; specifically, we 
introduce a multi-scale feature fusion module in the ResNet. Moreover, 
we plot the loss and accuracy curves to evaluate the model performance. 
Loss is the value calculated by the loss function, and accuracy is the 
evaluation result of the model on the dataset according to the labels. The 
accuracy and loss curves of training and validation are shown in Fig. 6, 
where the horizontal coordinates stand for the training epoch and the 
vertical coordinates refer to the loss or accuracy values. 

From Fig. 6, we can see that the learning curve of the model has a 
high training loss and a low accuracy at the beginning. As the training 
epoch increases, the loss value decreases, suggesting that the model is 
converging; and the accuracy value increases, showing that the accuracy 
of the model is improving. However, with the training loss and valida-
tion loss approaching each other, the training and validation losses will 
flatten out after a certain time, and the validation loss is slightly higher 
than the training loss. Comparing to Transformer (ViT, Swin) training 
process with oscillations for loss and accuracy, CNN is more robust, 
indicating that CNN model has better adaptability to the training set. 
After training completed, we select the best models from ResNet + CRA, 
ViT + CRA, Swin + CRA, and ResNet + MCRA for subsequent 
evaluation. 

To evaluate the generalization ability of related models, we further 
evaluate the trained model on the test set, computing the evaluation 
metrics for COVID-19, Normal and Pneumonia images in terms of ac-
curacy, PPV, sensitivity, specificity, and F1-Score. So, these numerical 
indices are listed in Table 2. 

As shown in Table 2, CRA mechanism along with CNN (ResNet) 
improves the detection accuracy of COVID-19 from 96.87 to 97.25%, 
obtaining a gain of 0.38%; along with Transformer (ViT and Swin), the 
improvements of the accuracy are 0.36% and 0.26%, reaching 97.18% 
and 97.20%, respectively. But most importantly, the improvement of the 
accuracy reaches up to 0.84% in ResNet if we further introduce the 
multiscale feature fusion module: MCRA. It is worth noting here that 

Fig. 4. Data samples: normal (top row), Pneumonia (middle row), and COVID-19 (bottom row).  

Table 1 
The COVIDx dataset.  

Type Normal Pneumonia COVID-19 Total 

Train 4911 3393 10014 18318 
Valid 1637 1131 3338 6106 
Test 1637 1131 3338 6106  
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MCRA cannot be added to transformer methods (ViT and Swin) because 
of their patches structure. Why does CNN (ResNet) achieve superior 
performance than Transformer (ViT and Swin)? This is because that 
CNN extracts semantic features from local to global information by using 
stacking convolutional layers, and the stacked convolutional layers can 
keep expanding the field of perception until the whole image is covered. 
In contrast, Transformer extracts from global information, which is more 
difficult; furthermore, it also requires a larger amount of labeled data 
and a stronger data augmentation strategy to achieve better training 
results. For the three types of recognition, COVID-19 can achieve 
99.85%, 99.52%, 99.81% and 99.68% for PPV, sensitivity, Specificity 
and F1, respectively. Comparing with Pneumonia and Normal, COVID- 
19 has the highest recognition accuracy and the best detection effect. 

The ROC (Receiver Operating Characteristic) curve is a visual rep-
resentation to evaluate the classification ability of a model. In our study, 
the ROC curves are for three categories. On the basis of four feature 
extraction networks (ResNet, ResNet-FPN, ViT, and Swin), the ROC 
curves of the proposed CRA for image classification are shown in Fig. 7. 

As shown in Fig. 7, the ROC results are almost consistent, all close to 
the upper left, with higher sensitivity. A larger ROC means better clas-
sification of the model and more accurate detection. Hence, all of the 

four models perform well on the COVIDx dataset, with AUC (Area Under 
Curve) of at least 0.99. Especially for COVID-19 diagnosis, it has the 
maximum AUC of 1.00, proving that the models are able to recognize 
COVID-19 correctly from other pneumonia and uninfected individuals. 

As far as image classification task is concerned, confusion matrix is 
the most popular way to analyze misclassification, where true positives, 
false negatives, true negatives and false positives are adopted together to 
verify the relationship between actual and predicted values. For the 
multi-classification, it is a 3 × 3 table to record the number of samples 
from different categories that are correctly and incorrectly classified. 
The confusion matrices for each of the proposed ResNet + CRA, ResNet 
+ MCRA, ViT + CRA and Swin + CRA models, to evaluate their image 
classification performance on the test set, are illustrated in Fig. 8. 

As shown in Fig. 8, the main diagonal element indicates the number 
of samples of different categories that are correctly classified. 
Comparing with ResNet + CRA, the ResNet + MCRA correctly predicted 
3322 COVID-19 patients, which is higher than ResNet (3315 patients); 
ViT + CRA and Swin + CRA correctly predicted 3315 and 3313 patients, 
respectively, suggesting that MCRA has a better representation in a 
sample of 3338 COVID-19. Furthermore, ResNet + CRA and ResNet +
MCRA also have lower errors than ViT + CRA and Swin + CRA for the 

Fig. 5. (a) Original images. (b) Transformed images. (c) Mixed images.  
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detection of pneumonia. The reason that Pneumonia is often mis-
classified as Pneumonia is because their CXR images are extreamly 
similar, and so is COVID-19. Moreover, especially for normal, comparing 
with others, ResNet + MCRA has a maximum of 1596 correct classifi-
cations, which means that the misdiagnosis rate would obtain a notable 
reduction. As a result, ResNet + MCRA achieves the best performance, 
demonstrating the multi-scale feature fusion module constructs 

adequate feature representations. 
The values of Accuracy, PPV, Sensitivity, Specificity, and F1-Score of 

seven models mentioned above, four of which were derived from CRA, 
are listed in Table 3. 

From Table 3, we can see that our MCRA method achieves the 
highest accuracy in the ResNet, and its accuracy, PPV, sensitivity, speci-
ficity and F1-score reach up to 97.71%, 96.76%, 96.56%, 98.96% and 

Fig. 6. Loss and Accuracy. (a) ResNet + CRA network with epochs. (b) ViT + CRA network with epochs. (c) Swin + CRA network with epochs. (d) ResNet + MCRA 
network with epochs. 
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96.64%, respectively. Without CRA, ResNet has the accuracy of 96.87%; 
Swin has 96.94%; and Vit has 96.82%. With CRA, ResNet has the ac-
curacy of 97.25%, which is improved the most; ViT and Swin have 
97.18% and 97.20%, respectively. We can also see that the CRA unit and 
multi-scale feature fusion module are effective in image classification 
and can improve the accuracy while lowering misclassification rates. It 
is worth noting again that MCRA cannot be integrated with transformer 
methods (ViT and Swin) because of their patches structure. 

4.5. Comparing with SOTA methods 

To compare the performance of ResNet-50-MCRA with previous 
state-of-the-art methods, we have established a comprehensive bench-
mark. The benchmark contains 17 state-of-the-art classification 
methods, including COVID-Net [54], VGG [102], DenseNet [103], 
Xception [104], Inception [105], ResNet [92], RegNet [106], Effi-
cientNet [107], ViT [100], TNT [108], DeiT [109], Swin [101], VOLO 
[110], ConvNeXt [111], ConvMixer [112], CSWin [113] and Pool-
Former [114]. The quantitative results are presented in Table 4. 

As shown in Table 4, We calculated and compared the parameters 

Table 2 
Accuracy, PPV, Sensitivity, Specificity, and F1-Score of seven related models on each classes (i.e., COVID-19, Pneumonia and Normal).  

Method Acc (%) COVID-19 Pneumonia Normal 

PPV Sen Spe F1 PPV Sen Spe F1 PPV Sen Spe F1 

ResNet-50 [92] 96.87 99.55 98.98 99.43 99.26 93.78 90.63 98.63 92.18 93.62 96.88 97.57 95.23 
ViT-S [100] 96.82 99.58 99.31 99.46 99.45 92.01 91.69 98.19 91.85 94.55 95.30 97.97 94.92 
Swin-T [101] 96.94 99.67 99.25 99.58 99.46 93.61 90.72 98.59 92.14 93.71 96.52 97.62 95.09 
ResNet-50+CRA(Ours) 97.25 99.82 99.31 99.77 99.56 93.57 92.66 98.55 93.11 94.59 96.21 97.98 95.40 
ViT-S + CRA(Ours) 97.18 99.73 99.31 99.66 99.52 94.48 90.80 98.79 92.61 93.92 97.25 97.68 95.56 
Swin-T + CRA(Ours) 97.20 99.79 99.25 99.73 99.52 93.96 92.13 98.65 93.04 94.22 96.52 97.82 95.35 
ResNet-50+MCRA(Ours) 97.71 99.85 99.52 99.81 99.68 95.53 92.66 99.01 94.08 94.89 97.50 98.07 96.17  

Fig. 7. ROC curves: (a) ResNet + CRA. (b)ViT + CRA. (c) Swin + CRA. (d) ResNet + MCRA.  
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and FLOPs of ResNet-50+MCRA with other methods, FLOPs means the 
efficiency of floating point operations, and networks with similar FLOPs 
do not necessarily perform at the same speed, but provide some refer-
ence since model complexity can be measured. For CNNs, the accuracy 
of VGG-19 is 96.54%, with the highest parameters and FLOPs of 139.58 
M and 19.63G, owing to its 3 fully connected layers. As DenseNet uses 

concatenate instead of ResNet’s addition operation for skip Layer, its 
number of params is minimum with merely 6.96 M while its accuracy 
reaches up to 96.56%. The smallest FLOPs model is COVID-Net, for 
0.42G, with an accuracy rate of 94.76%. The parameters and FLOPs of 
ResNet-50+MCRA with 97.71% accuracy are 26.85 M and 6.96G, 
respectively, similar to VOLO with 97.49% accuracy. Comparing to 

Fig. 8. Confusion matrix: (a) ResNet + CRA. (b) ViT + CRA. (c) Swin + CRA. (d) ResNet + MCRA.  

Table 3 
Accuracy, PPV, Sensitivity, Specificity, and F1-Score of seven models.  

Method Params(M) FLOPs(G) Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) F1-Score (%) 

ResNet-50 [92] 23.52 4.11 96.87 95.65 95.50 98.54 95.56 
ViT-S [100] 21.67 4.61 96.82 95.38 95.43 98.54 95.41 
Swin-T [101] 27.52 4.51 96.94 95.67 95.50 98.60 95.57 
ResNet-50+CRA (Ours) 23.52 4.11 97.25 96.00 96.06 98.77 96.03 
ViT-S + CRA (Ours) 21.67 4.61 97.18 96.04 95.79 98.71 95.89 
Swin-T + CRA (Ours) 27.52 4.51 97.20 95.99 95.97 98.73 95.97 
ResNet-50+MCRA (Ours) 26.85 6.96 97.71 96.76 96.56 98.96 96.64  
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ResNet-50, in terms of parameters and FLOPS of 23.51 M and 4.11G, 
ResNet-50+MCRA increases by 3.34 M and 2.85G, gaining the benefit of 
multi-scale feature fusion. Furthermore, our method is superior to most 
transformer-based methods, not only in terms of efficiency, but also 
regarding performance. In general, these methods obtain a larger 
perceptual field and contextual information by enlarging the depth of 
the network. However, the COVID-19 lesion regions are small and 
blurred in CXR images, many useful information would be lost. Never-
theless, our proposed multi-scale feature fusion network can contribute 
to capture global contextual information at different scales to improve 
feature representation. Meanwhile, The CRA assigns attention weights 
to enhance relevant features and suppress irrelevant features for specific 
categories, making our ResNet-50+MCRA excellent in terms of Accu-
racy, PPV, Sensitivity, Specificity, F1-Score metrics on the COVIDx. We 
attribute the performance improvement to our class residual attention 
and multi-scale feature fusion modules, which provide robust feature 
representation. Hence, our method achieves superior performance than 
previous methods. 

4.6. Ablation experiments 

To analyze the impact of each module within our method, we con-
ducted ablation experiments by taking ResNet-50 of CNN network as 
backbone, which includes using CutMix, CRA and multi-scale fusion 
module FPN. The ablation experimental results are listed in Table 5. 

In Table 5, First, to utilize all training data, we use CutMix to execute 
data augmentation, which includes converting the dataset from hard 
labels to soft labels and adding other objects to the cut region so that the 
model can recognize objects from the local view to enhance the model’s 
localization capability, achieving an increase in accuracy rate from 
96.50% to 96.87%. Secondly, the introduction of CRA leads to the ac-
curacy rate achieves 97.25%, gaining from the focus on category space 
region assignment, which resulting in more accurate predictions. 
Thirdly, the multi-scale fusion module FPN fuses low-level details with 
high-level semantic information to capture global contextual informa-
tion at different scales to improve the performance of classification, 
reaching up to 97.71% accuracy rate in detecting the COVID-19. Last but 

least, the PPV, sensitivity, Specificity and F1-Score have all improved after 
each module. 

4.7. Interpretability of deep model 

CRA is good at multiple object image classification, which can be also 
verified by heat map, a kind of attentional visualization. We leveraged 
class activation maps to illustrate the heat map. The heat map can find 
several object areas of an image easily by using different colors, indi-
cating the area is infected with COVID-19 or not; obviously, heat map is 
of somewhat interpretability for a deep model. The heat maps of ResNet, 
ResNet + CRA and ResNet + MCRA are shown in Fig. 9. 

In Fig. 9, on the basis of the attention score of CRA, we can visualize 
CXR image with different colors. For the deep neural model, the key 
infected area usually tends to be redder around with different colors, and 
often has dark red centers. The higher the attention score is, the darker 
the red center is and the greater the risk of the patient’s lungs infecting 
in that area is. On the fringes of infected area, the blue-green colors still 
distinguish the relevant area more carefully till the purple indicates the 
body organ or part has less influence on the model prediction. From 
Fig. 9 (c) & (d), we can see that our CRA unit and multi-scale feature 
fusion module can more accurately locate the feature regions which is 
very important to the diagnosis of COVID-19. 

That is to say, these heat maps can make our deep model plausible to 
some extent, because it is visual, accurate, generalized and traceable for 
its diagnosis processes or results. 

5. Conclusion 

In this study, we propose a class attention called CRA for the 
detection and classification of COVID-19 patients from X-ray medical 
images. Unlike previous work, our method utilizes attention for classi-
fication to minimize the disturbance of irrelevant categories, and focus 
more on the target category to improve multi-classification task pro-
cessing performance. The attention is applied to both CNN (ResNet) and 
Transformer (ViT and Swin) models. We also introduce strategies such 
as CutMix and multiscale feature fusion FPN (only for CNN) to solve the 

Table 4 
Comparison of quantitative results of seventeen state-of-the-art classification methods on COVIDx.  

Method Params(M) FLOPs(G) Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) F1-Score (%) 

EfficientNet-B5 [107] 28.35 2.40 94.15 91.86 92.10 97.22 91.96 
CSwin-T [113] 21.81 4.34 94.51 92.65 92.35 97.29 92.44 
COVID-Net [54] 12.07 0.42 94.76 92.93 92.28 97.42 92.55 
VGG-19 [102] 139.58 19.63 96.54 95.27 95.00 98.41 95.08 
DenseNet-121 [103] 6.96 2.86 96.56 95.08 95.16 98.44 95.10 
Xception [104] 20.81 4.57 96.66 95.23 95.43 98.46 95.33 
Inception v3 [105] 21.79 2.85 96.74 95.66 95.12 98.49 95.31 
ViT-S [100] 21.67 4.61 96.82 95.38 95.43 98.54 95.41 
ResNet-50 [92] 23.51 4.11 96.87 95.65 95.50 98.54 95.56 
Swin-T [101] 27.52 4.51 96.94 95.67 95.50 98.60 95.57 
DeiT-S [109] 21.67 4.61 96.95 95.53 95.57 98.61 95.55 
TNT-S [108] 23.37 5.24 97.02 96.05 95.30 98.58 95.62 
ConvNeXt-T [111] 27.82 4.47 97.13 96.02 95.73 98.65 95.86 
ConvMixer [112] 20.34 19.55 97.22 96.18 95.83 98.70 95.99 
RegNet-8GF [106] 37.17 8.0 97.33 96.31 95.94 98.77 96.10 
PoolFormer -S36 [114] 30.35 5.0 97.36 96.20 96.19 98.82 96.18 
VOLO-D1 [110] 25.86 6.87 97.49 96.34 96.22 98.87 96.28 
ResNet-50+MCRA(Ours) 26.85 6.96 97.71 96.76 96.56 98.96 96.64  

Table 5 
Impact of CutMix, CRA and FPN on COVIDx image classification for ResNet-50+MCRA(Ours).  

Method CutMix CRA FPN Accuracy (%) PPV (%) Sensitivity (%) Specificity (%) F1 (%) 

ResNet-50    96.50 94.84 95.38 98.42 95.10 
✓   96.87 95.65 95.50 98.54 95.56 
✓ ✓  97.25 96.00 96.06 98.77 96.03 
✓ ✓ ✓ 97.71 96.76 96.56 98.96 96.64  

S. Liu et al.                                                                                                                                                                                                                                       



Computers in Biology and Medicine 149 (2022) 106065

12

problem of low detection or classification accuracy of COVID-19 caused 
by small data samples. Numerous experimental results show that the 
image classification of CXR by using CRA and FPN is effective. Our 
method reaches the highest accuracy of COVID-19 CXR image classifi-
cation, whose accuracy, PPV, sensitivity, specificity and F1-Score are 
97.71%, 96.76%, 96.56%, 98.96% and 96.64%, respectively. More 
importantly, our deep model is of a little interpretability because its 
visible and feasible working procedure or results. However, only three 
categories of chest images are recognized: COVID-19, Pneumonia, and 

Normal. As far as COVID-19 in concerned, once its clinical shape and 
characteristics have changed, more training data is required. Therefore, 
we are going to explore more varieties of COVID-19 diagnosis in future. 
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