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Original Article

IntrodUctIon

The incidence of acute respiratory distress syndrome (ARDS) 
has reached up to 5.0–33.8/100,000 population per year 
according to the recent epidemiological studies.[1‑4] The 
overall mortality of ARDS remains at 40–50%. Therefore, 
it is still a big challenge for both critically ill patients and 
clinicians.[5‑7] New strategies are required urgently in ARDS 
management.

The uncontrolled inflammatory cascade has been considered 
to be the main cause of the ARDS and leads to multiple organ 
dysfunction syndrome.[8‑10] Earlier studies have tried to block 
some of the inflammatory mediators but failed to generate a 
significant therapeutic effect in ARDS.[11‑14] During the last 

decade, the inflammatory cascade was found to be activated 
through a rapid responding intracellular signaling system in 
the plasma.[15] c-Jun N-terminal kinase (JNK) was first found 
to be one of the intracellular signaling pathways related with 
stress and inflammation; therefore, it was originally named 
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as a stress‑activated protein kinase.[16] Now, JNK was known 
to be a member of mitogen‑activated protein kinase (MAPK) 
family responsible for the cytokine production in the stress 
progress.[15] Recently, studies confirmed that blocking JNK 
with a selectively JNK inhibitor SP600125 was a promising 
therapeutic strategy in inhibiting inflammatory process in 
brain injury, senile dementia, and Parkinson’s disease.[17]

Inhibiting JNK might also be beneficial in acute lung 
injury.[16,18,19] We therefore examined whether JNK inhibition 
could act as a new therapeutic strategy in preventing ARDS 
progression, particularly in pulmonary inflammation, edema, 
and fibrosis.

Methods

Experimental animals
Thirty‑six male Sprague‑Dawley rats aged 7–8 weeks 
(180–280 g) were purchased from the Medical Experimental 
Center of Southern Medical University, Guangzhou, 
China (License No.: SCXK[Guangdong]-2011-0015). The 
experimental protocol was approved by the Animal Care 
Committee of the Ethical Committee on Animal Research 
at Sun Yat‑Sen University. All procedures were performed 
strictly according to the National Institute of Health Guide 
for the Care and Use of Laboratory Animals.

Reagents
SP600125, the JNK inhibitor (C14H8N2O, powder, 
50 mg/bottle) was purchased from the Biomol Co., (Exeter, 
UK). Lipopolysaccharide (LPS) was purchased from 
Escherichia coli (Sigma‑Aldrich, St. Louis, USA). 
Masson trichrome staining solution was purchased 
from Sigma Chemical Co., (St. Louis, USA). The 
myeloperoxidase (MPO) determination kit was purchased 
from Nanjing Jiancheng Bioengineering Institute (Jiangsu, 
China). The mouse radioimmunoassay kit was purchased 
from Radioimmunoassay Institute of the General Hospital of 
Chinese People’s Liberation Army (Beijing, China). Soluble 
collagen kit was purchased from Biocolor Ltd., (Antrim, UK).

Experimental protocols
Thirty-six rats were divided randomly into three groups: 
control, LPS, and LPS + JNK inhibitor (SP600125). All 
rats were anesthetized with 10% chloral hydrate (300 mg/kg 
body weight) before any procedures. Sodium chloride (0.9%, 
0.5 ml) was given intratracheally in the control group. 
LPS (10 mg/kg, 0.5 ml) was given intratracheally in the 
LPS group. JNK inhibitor (SP600125, 10 mg/kg) was 
administered intravenously through caudal vein following 
LPS injection (10 mg/kg, 0.5 ml) intratracheally in the 
LPS + JNK inhibitor group. Moreover, an equal volume of 
the solvent of SP600125 (glycol, 20% polypropylene glycol, 
15% polyoxyethylated castor oil, 5% ethanol, and 30% 
normal saline) was injected intravenously in both control 
group and LPS group.

Bronchoalveolar lavage and lung tissue harvesting
All rats were sacrificed at 8 h after LPS administration. The 
bronchoalveolar lavage was performed with intratracheal 

instillation of 6 ml normal saline into the right lower lobe. 
BALF was collected for neutrophils counting. The right 
upper lobe was also used for Masson trichrome collagen 
staining. The right middle lobe was used to determine 
MPO activity. The left lower lobe was harvested for the 
measurement of wet‑to‑dry weight (W/D) ratio of the lung. 
The left upper lobe was fixed with 5% formaldehyde for 
hematoxylin and eosin (H and E) staining.

Pathologic observation of lung tissue
The lung sections were fixed in 5% formaldehyde solution 
and stained with H and E. Pathological changes of lung 
tissue were evaluated under a light microscope (Olympus 
BX51, Tokyo, Japan). A previously described scoring 
system was used for quantification of lung injury severity.[20] 
The pathological features were determined by the following 
changes: focal thickening of alveolar membrane, capillary 
congestion, intra‑alveolar hemorrhage, pulmonary 
interstitial neutrophil infiltration, and intra‑alveolar 
neutrophil infiltration. Each feature was scored from 0 to 3 
based on absence (0), presence or mild (1), moderate (2), 
and severe (3). A total histology score (THS) was then 
calculated.

Neutrophils count in the bronchoalveolar lavage fluid
The neutrophils in bronchoalveolar lavage fluid (BALF) 
were counted under a light microscope (Olympus BX51, 
Tokyo, Japan).

Myeloperoxidase activity of the lung tissue
Lung tissue (100 mg) was homogenized in 2 ml extraction 
buffer. MPO activity was then measured according to 
the instruction provided by the manufacturer (Nanjing 
Jiancheng Bioengineering Institute, Jiangsu, China). The 
optical density of the microplates was read at 460 nm in 
a plate reader (Thermo Multiskan MK3, Philadelphia, 
PA, USA).

Lung wet‑to‑dry weight ratio
The wet weight of lung tissue was measured once the lung 
was harvested. The dry weight was obtained by placing 
the lung tissue into an 80°C incubator (LW Scientific 
Incubator‑30L/1 Cubic ft, Lawrenceville, GA, USA) for 
48–72 h till the weight getting stable.

Collagen measurement in lung tissue
The lung tissue was homogenized in 1 ml of Sircol reagent 
for 30 min and then centrifuged at 5000 ×g for 10 min. 
The pellet was then transferred into 1 ml of soda reagent. 
Collagen was measured with Sircol™ Collagen Assay kit 
according to the manufacturer’s instruction (Biocolor Ltd., 
Carrickfergus, County Antrim, UK).

Masson’s trichrome staining of the collagen in lung 
tissue
The lung sections were fixed in 5% formaldehyde solution and 
stained with Masson trichrome staining solution according to 
the instruction provided by the manufacturer (Sigma Chemical 
Co., St. Louis, USA). Collagen deposition was evaluated 
under a light microscope (Olympus BX51, Tokyo, Japan).
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Statistical analysis
The SPSS 13.0 software (SPSS Inc., Chicago, IL, USA) 
was used for the data analysis. The normal distribution of 
quantitative data is tested by Kolmogorov‑Smirnov and 
Shapiro‑Wilk tests. The quantitative data were expressed as 
a mean ± standard deviation (SD) for normal distribution 
and median (interquartile range) for non‑normal distribution. 
These data were analyzed using one‑way analysis of variance 
(ANOVA) followed by a Tukey’s post hoc test for normal 
distribution data and Dunnet`s post hoc test for non‑normal 
distribution data. A value of P < 0.05 was considered to 
denote a significant difference for all analyses.

resUlts

Pathological observation of lung tissue
The structure of the alveoli in the control group was 
complete and there was no obvious pathological change 
under a light microscope [Figure 1a]. The structure of 
alveoli in LPS group was destroyed and the inflammatory 
cells, mainly neutrophils, were found widely spread 
in most alveoli. Red blood cells and fibrin were 
exuded into alveoli and spread along alveolar‑capillary 
membrane [Figure 1b]. In LPS + JNK inhibitor group, the 
structure of the alveoli was partially restored compared 
with that in LPS group. The neutrophils and red blood 
cells infiltration were reduced comparing with that in LPS 
group. The alveolar‑capillary interval was not as thick as 
that in LPS group [Figure 1c].

THS of lung injury was significantly higher in the LPS 
group comparing with that in control group (13.42 ± 4.82 vs. 
3.60 ± 0.55, P = 0.001). Meanwhile, THS decreased 
significantly in the LPS + JNK inhibitor group comparing 
with that in LPS group (7.00 ± 1.83, P = 0.001) [Figure 2].

Neutrophils in bronchoalveolar lavage fluid
The neutrophils in BALF increased significantly in LPS 
group compared with that in control group (255 ± 164.4/ml 
vs. 53 (58.5) ml, P < 0.05). It was significantly reduced 
in LPS + JNK inhibitor group comparing with that 
in LPS group (255.0 ± 164.4/ml vs. 127.0 ± 44.3/ml, 
P < 0.05) [Figure 3].

Myeloperoxidase activity in the lung tissue
MPO activity in the lung tissue increased significantly in 
the rats treated with LPS comparing with that in control 
group (1.26 ± 0.15 U/mg in LPS group vs. 0.77 ± 0.27 U/mg in 
control group, P < 0.05). Moreover, this increase was reduced 
significantly in rats treated with SP600125 (1.26 ± 0.15 U/mg 
in LPS group vs. 0.52 ± 0.12 U/mg in LPS + JNK inhibitor 
group, P < 0.05) [Figure 4].

Wet‑to‑dry weight ratio of lung tissue
No significant difference was found in W/D ratios of lung 
tissues among three groups (0.20 ± 0.02 in control group 
vs. 0.18 ± 0.02 in LPS group vs. 0.18 ± 0.02 in LPS + JNK 
inhibitor group, P > 0.05) [Figure 5].

Collagen content in lung tissue
Collagen content in lung tissue was significantly higher in 
LPS group than that in control group (45.08 ± 5.97 mg/g 
in LPS group vs. 8.65 ± 6.74 mg/g in control group, 
P < 0.05). However, there was no significant difference 
between LPS + JNK inhibi tor  group and LPS 
group (52.08 ± 14.06 mg/g in LPS + JNK inhibitor vs. 
45.08 ± 5.97 mg/g in LPS group, P > 0.05) [Figure 6].

Masson’s trichrome staining of the collagen in lung 
tissue
No collagen deposition was observed in control group [Figure 
7a]. Slight collagen deposition was found in both LPS group 
and LPS + JNK inhibitor group but no obvious difference 
was found between these two groups [Figure 7b and 7c].

Figure 1: Effects of the JNK inhibitor on lung injury in LPS‑treated 
rats. Representative lung specimens obtained from the control 
group (a: Control group; b: LPS group,and c: LPS + JNK inhibitor 
group, original  magnification ×100, Hematoxylin and Eosin Staining). 
The neutrophil counts in large and small airways, and hemorrhage 
markedly decreased on JNK inhibitor treated group. The red arrow 
points to the neutrophils and red blood cells infiltration. JNK: c‑Jun 
N‑terminal kinase; LPS: Lipopolysaccharide.

Figure 2: The total histology score was significantly lower in the 
LPS + JNK inhibitor group than that in the LPS group. The values 
presented are the mean ± SD (n = 12 in each group). *P < 0.05 
versus control. †P < 0.05 versus LPS group. JNK: c‑Jun N‑terminal 
kinase; LPS: Lipopolysaccharide; SD: Standard deviation.
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dIscUssIon

In this study, we investigated the effect of a JNK selective 
inhibitor, SP600125, in a rat model of LPS‑induced ARDS. 
Pulmonary inflammation, fibrosis, and edema were all studied 
to evaluate the effects of inhibiting JNK pathway on ARDS. 
Acute lung inflammation was one of the major pathological 
changes occurring in ARDS. In this study, we found that JNK 
inhibitor administration resulted in a significant attenuation 
of LPS-induced acute pulmonary inflammation. The alveoli 
structure was partially restored, the neutrophils infiltration 
was reduced, and the alveolar‑capillary interval was normal 
in rats treated with JNK inhibitor. These findings were 
consisted with Lee et al.[19] and Arndt et al.’s[21] study in ARDS 
model, which showed JNK inhibition alleviated LPS‑induced 
neutrophils infiltration in the lung. However, the studies by 
Lee et al. and Arndt et al. were only focused on inflammation 
but not lung fibrosis and edema. Lung collagen accumulation 

and edema were found existed early in ARDS and associated 
with poor prognosis of ARDS patients.[22‑24] In this study, we 
demonstrated that JNK inhibitor alleviated lung inflammation 
but had no effect on lung collagen accumulation and lung 
edema. This implicated the efficacy of JNK inhibitor in 
inflammation and also the safety in edema and fibrosis as a 
possible therapeutic drug in ARDS in the future.

Lung collagen accumulation was caused by increased 
synthesis of procollagen Ι and/or imbalanced synthesis and 
degradation of collagen in the early stage of ARDS.[25,26] A 
previous study by our colleagues showed that transforming 
growth factor‑β (TGF‑β) was a critical cytokine that 
regulated the synthesis of procollagen I and homeostasis 

Figure 3: The amount of neutrophils in BALF was significantly lower in 
the LPS + JNK inhibitor group than that in the LPS group. The values 
presented are the mean ± SD (n = 12 in each group). *P < 0.05 
versus control. †P < 0.05 versus LPS group. BALF: Bronchoalveolar 
lavage fluid; LPS: Lipopolysaccharide; JNK: c‑Jun N‑terminal kinase; 
SD: Standard deviation.

Figure 4: MPO activity. Higher MPO activity was induced after 
LPS injection, and MPO activity was significantly lower in 
animals in the LPS + JNK inhibitor group than that in the LPS 
group. The values presented are the mean ± SD (n = 12 in each 
group). *P < 0.05 versus control. †P < 0.05 versus LPS group. 
MPO: Myeloperoxidase; LPS: Lipopolysaccharide; JNK: c‑Jun 
N‑terminal kinase; SD: Standard deviation.

Figure 5: W/D ratio of lung tissue. No significant difference was found 
in W/D ratio of the lung tissue among the three groups. The values 
presented are the mean ± SD (n = 12 in each group). SD: Standard 
deviation; W/D: Wet‑to‑dry weight.

Figure 6: Collagen content in lung tissue. Collagen content in lung 
tissue was significantly higher in LPS group than that in control group. 
There was no significant change between LPS group and LPS + JNK 
inhibitor group. The values presented are the mean ± SD (n = 12 in 
each group). *P < 0.05 versus control. LPS: Lipopolysaccharide; 
JNK: c‑Jun N‑terminal kinase; SD: Standard deviation.
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of collagen.[27] TGF‑β1 was found to work through the p38 
MAPK signal pathway but not JNK.[28‑35] Thus, we postulated 
that p38, but not JNK, was involved in the LPS‑induced 
acute pulmonary fibroproliferation and JNK inhibitor had 
no obvious effect on pulmonary fibrosis in ARDS.

Pulmonary edema is another main pathological change 
of ARDS, which occurred due to impaired alveolar fluid 
clearance, increased capillary endothelial permeability, 
and damaged alveolar epithelial barrier.[36] In a recent 
study by Zheng et al.,[37] the lung edema was significantly 
attenuated with JNK inhibitor. However, in this study, no 
significant difference was found among control, LPS group, 
and LPS + JNK inhibitor group. Other pathways might 
be involved in LPS‑induced lung edema. In our previous 
study, we found that LPS‑induced dysfunction of airway 
epithelial barrier in ARDS and p38 was involved in the 
LPS‑induced dysfunction of airway epithelial barrier.[38] An 
earlier study by Migneault et al.[39] also reported that LPS 
downregulates ENaC mRNA via ERK1/2 and p38 MAPK 
in alveolar epithelial cells. Frank et al.[36] found that TGF‑β1 
downregulated the expression of ENaC, an important 
sodium channel in the surface of alveolar epithelial cells, 
and affected the liquid transport in the alveoli. Whether the 
crosstalk existed between JNK and these factors needs more 
investigation.

The present study had some limitations. SP600125 is a 
general inhibitor of JNK family including JNK1, JNK2, and 
JNK3.[18] Further research might be needed to investigate the 
detail underlying mechanism of JNK family.

In conclusion, our results indicated that inhibition of JNK 
exerted its anti-inflammatory activity without any effects on 
pulmonary fibrosis and edema in ARDS. Taking together, 
manipulation of JNK/MAPK pathway could be a potential 

therapeutic target for ARDS in the context of suppressing 
inflammation.
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