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Cardiac hypertrophy is a key process in cardiac remodeling development,

leading to ventricle enlargement and heart failure. Recently, studies show

the complicated relation between cardiac hypertrophy and epigenetic

modification. Post-translational modification of histone is an essential part

of epigenetic modification, which is relevant to multiple cardiac diseases,

especially in cardiac hypertrophy. There is a group of enzymes related

in the balance of histone acetylation/deacetylation, which is defined as

histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this

review, we introduce an important enzyme family HDAC, a key regulator

in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the

anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and

inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac

hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer

factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac

hypertrophy. Under adverse stimuli such as pressure overload and calcineurin

stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear

factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating

inappropriate gene expression. HDAC III, also known as SIRTs, can interact

not only to transcription factors, but also exist interaction mechanisms to

other HDACs, such as HDAC IIa. We also present the latest progress of HDAC

inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.

KEYWORDS

cardiac hypertrophy, epigenetics, histone deacetylase, gene regulation, small
molecule inhibitors

Introduction

Myocardial hypertrophy is a key process of cardiac remodeling, which often occurs
after high load in cardiac or myocardial infarction (1). Cardiac hypertrophy is generally
considered to be a compensatory effect that reduces oxygen consumption, normalizes
the ventricle systolic pressure, and improves the ejection function in a short term.
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However, long-term stress, such as hypertension, leads to
adverse stimulation and ultimately irreversible pathological
cardiac remodeling. The abnormal enlargement of myocardium
and thickening of ventricle wall leading to cardiac dysfunction
and fibrosis (2, 3). A variety of biological regulation processes
are involved in cardiac hypertrophy and remodeling. In addition
to the known mechanisms of cardiac hypertrophy, such as
MAPK pathway, PI3K-AKT pathway, Calcineurin-NFATc and
other signaling transduction pathways (4), histone acetylation
and deacetylation mediated by epigenetic modification have
attracted increasing attention from researchers. Histone
acetylation and deacetylation play a crucial role in regulating
gene expression and leading to hypertrophy under stress.

In the acetylation and deacetylation process, there is
a group of molecules family- the HDACs family, which
includes 4 major classes (HDAC I, HDAC IIa, HDAC IIb,
and HDAC III), each with distinct expression patterns (5).
HDAC I (HDAC 1, 2, 3, and 8) has deacetylation catalysis
(6). HDAC II includes subclasses HDAC IIa (HDAC 4, 5,
7, and 9) and HDAC IIb (HDAC 6 and 10) (7). HDAC
III—also known as sirtuins (SIRT1-7) (8). Recent studies
indicate that HDAC I and IIa play important but opposite
role in cardiology research, especially in cardiac hypertrophy.
Although most HDAC have conserved catalytic domains,
their expression and function appear to conform to a cell-
specific patterns. As for class III HDACs, Sirt1 transgenic
overexpression in mice shows effect of preventing cardiac
apoptosis and hypertrophy induced by oxidative stress and
aging (9). There is increasing evidence of the importance of
different classes of HDACs in cardiac diseases including cardiac
hypertrophy and heart failure. These effects can be reversed
with the using of HDAC inhibitors (HDACi), suggesting
HDACs may be novel therapeutic targets for preventing cardiac
hypertrophy development.

In this review, we introduce the differences among the
HDAC subclasses, and elucidate the pathophysiological
function of HDACs in cardiac diseases. We will highlight the
physiological regulation of HDACs in cardiac hypertrophy.
Finally, we introduce the therapeutic value of HDACs
as targets in regulating epigenetic modification against
cardiac hypertrophy.

Epigenetic regulations and histone
acetylation

Epigenetic modification and non-coding RNA (ncRNAs)
are major participants in epigenetic regulations (10). Epigenetic
modifications can be roughly divided into following forms:
methylation of cytosine residues on DNA (DNA methylation),
post-translational modification of histones (proteins in which
DNA is entangled in nucleosomes), and regulation of ncRNAs
(11). These can not only directly affect cardiac disease

gene expression at the post-transcriptional level (12), but
also interact with other epigenetic regulations (crosstalk
mechanisms) (13).

Among the modifications of histones, acetylation and
methylation are the most studied, and other modifications, such
as phosphorylation, have also been extensively researched in
a variety of disease processes (9, 14). Meanwhile, interactions
between non-coding RNA or DNA methylation modifications
or histone modifications have also been shown to influence
epigenetic regulatory processes (15), especially during cardiac
hypertrophy (13).

There is an HDAC inhibitor- SAHA/vorinostat (Zolinza)
with the FDA approval for cutaneous T cell lymphoma
treatment as early as 2006 (16), indicating high value of
modulating histone acetylation and deacetylation as a potential
therapeutic target. Today, many studies show HDAC have
highly recognized therapeutic value in different diseases,
including cardiac hypertrophy (17). In this article, we will
focus on histone modification, especially histone acetylation
and deacetylation.

Histone acetylation and
deacetylation

Histone acetylation plays an important role in histone
modifications, and affects cardiac diseases (18). Histone
acetyltransferase (HAT) and histone deacetylase (HDAC)
modulate histone acetylation/deacetylation dynamic balance.
The disruption of this balance involves rearrangement of gene
expression in the embryo, leading to cardiac hypertrophy (7, 19).

Histone acetylation occurs in epigenomic modification
and is highly related to two families of enzyme that act
contrarily: HATs and HDACs (20–22). The lysine residues are
the working site of histone acetylation, promoting chromatin
relaxation and activation of transcription process. In contrast,
hypoacetylation of histone leads to gene expression inhibition
caused by chromatin concentration (Figure 1). There are two
main types of acetyl coenzyme. The nuclear type A, includes
N-acetyltransferase 6 (NAT6), MYST family (MOZ, YBF2,
SAS2, and TIP60), and CREB-binding protein (CBP)/p300, and
the cytoplasmic type B (23). Researches suggest transcription
of p300 is controlled by myocyte-specific enhancer factor 2
(MEF2) and GATA4 (zinc-finger transcription factor, indicating
cardiac hypertrophy, and increasing DNA accessibility), and this
transcript control process is critical for cardiac development (24,
25) and heart failure (26–28).

HDACs catalyze histone acetylated lysine residues of ε-
amino groups (29). Histone terminal deacetylation leads to
chromatin concentration, which structurally inhibits DNA
accessibility, and leads to transcription inhibition (30). So far,
there are 18 species of HDACs have been defined (Table 1).
HDAC I and II require Zn2+ for enzyme activation. Differently,
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FIGURE 1

Relationship of HAT and HDAC mediated histone acetylation/deacetylation leading to cardiac hypertrophy. As mentioned above, the Class IIa
HDACs are not capable of deacetylating histone residues due to a within the catalytic domain mutation. Therefore, HDAC IIa represses gene
transcription by binding with MEF2, recruiting other transcriptional repressors and epigenetic regulators to DNA promoter regions, and
maintaining the acetylation level of histone (Figure 1 top part). Under adverse stimulation such as pressure overload, HDAC IIa isolate from
MEF2 and transport to cytoplasm, while MEF2 recruiting HAT and catalyze histone lysine residue, and regulate transcription activity. Meanwhile,
BET family recognize the acetylation of histone, and bind to related gene promoter region, and promote cardiac hypertrophy (Figure 1 left
bottom part). Meanwhile, Class I and IIb HDACs catalyze the removal of acetyl groups from key lysine residues within histone. Histone
deacetylation induces chromatin condensation, which represses gene transcription by making gene promoter and enhancer regions less
accessible to transcription. Overexpression of HDAC I reduces acetylation of lysine in histone (such as H3K27ac), which will reduce
anti-hypertrophy gene transcriptional activity, leading to cardiac hypertrophy. HDACi can inhibit HDAC I catalyze activity, and stop the transport
of HDAC II from nuclear to cytoplasm, and protect the heart. MEF, myocyte-specific enhancer; HAT, histone acetyltransferase; HDAC, histone
deacetyltransferase; HDACi, HDAC inhibitor. [By Figdraw (www.figdraw.com)].

HDAC III-also known as sirtuins (SIRT1-7), whose enzyme
activation relies more on nicotinamide adenine dinucleotide
(NAD +) (5). In addition, HDACs contribute to not only histone,
but also non-histone proteins, such as molecular chaperones,
signaling molecules, and so on. In this way, HDACs affect the
binding ability of histone and non-histone protein that regulates
transcription and multiple biological processes (31, 32).

Histone acetyltransferase activates
cardiac hypertrophy

Histone acetyltransferase inhibits the chromatin
concentration, promotes DNA accessibility for transcription
factors (33). As a common HAT, p300 plays an important
role in cardiac hypertrophy. Its active state is usually binding
to a co-activator CBP, forming a complex CBP/p300 (34).
HAT activity increased during cardiac hypertrophy, and p300
overexpression in cardiomyocytes increased cardiac remodeling
in adult mice models (27).

The HAT complex on one hand cooperates with
transcription factors such as MEF2C, GATA4, and HIF1,
and binds to transcriptional regulation elements such as
promoters or enhancers to participate in cardiac hypertrophy.
On the other hand, the HAT complex regulates the GATA4
activation through its catalytic acetylation, improving its

binding ability with DNA (35, 36). Since CBP/p300 activates
enhancers through acetylation of histone H3 lysine 27 residue
(H3K27ac), the HAT complex is used to target regions of activity
enhancer associated with cardiac physiological processes (37).

In animal model, left ventricular hypertrophy, dilation,
and dysfunction occurred when CBP/p300 was overexpressed
in cardiomyocytes (27). P300 overexpression in mouse
cardiomyocytes stimulates the expression of the GATA4-
dependent genes related to cardiac hypertrophy, including
natriuretic peptide precursor A(Nppa, mediating the translation
of ANP), prepro-endothelin-1(ET-1), and β-myosin heavy
chain (Myh7) (38). In contrast, curcumin, a p300-specific HAT
inhibitor, reduces the acetylation of H3 and H4 and leads
to increased DNA accessibility to GATA4 in phenylephrine
induced hypertrophy rat models (39). Therefore, inhibition of
HAT, or increase deacetylation may be a potential direction in
the treatment of cardiac hypertrophy.

An introduction of histone
deacetylase and their functional
subgroups in cardiac hypertrophy

In general, HDACs remove the acetyl group from the
histones which constitute the nucleosome. After catalyzed
reactions, low acetylation of histones results in reduced space
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TABLE 1 Different classes of HDAC and a brief introduction of their basic characteristics.

Class HDAC
family

Localization Major target
molecular

Function to cardiac
hypertrophy

Other effects References

I HDAC1 Nucleus Mef2C Promote Cell proliferation, differentiation, development, cancer (136)

HDAC2 Nucleus Inpp5f Promote Cell proliferation, development, synaptic plasticity,
differentiation

(6, 51)

HDAC3 Nucleus/Cytoplasm Mef2C Inhibit Cell proliferation, development (54)

HDAC8 Nucleus p38 Promote Smooth muscle differentiation and contractility (137)

IIa HDAC4 Nucleus/Cytoplasm Mef2C Inhibit Bone development, neuron development (53)

HDAC5 Nucleus/Cytoplasm Mef2C Inhibit Bone development, axonal regeneration (57)

HDAC7 Nucleus/Cytoplasm c-Myc Promote Vascular development, immunomodulation (138)

HDAC9 Nucleus/Cytoplasm Mef2C Inhibit Neuron development, synaptic plasticity,
immunomodulation

(139)

IIb HDAC6 Cytoplasm α-tubulin Promote Cytoskeletal dynamics, cell motility, aggresome
formation, autophagy

(140)

HDAC10 Nucleus/Cytoplasm pRb − Cell cycle, immunomodulation, cancer

III SIRT1 Nucleus PGC-1α Inhibit Cell survival, aging, energy metabolism, inflammation (78)

SIRT2 Nucleus LKB1 Inhibit Microtubule stability (85)

SIRT3 Cytoplasm FoxO3a Inhibit Energy metabolism (80)

SIRT4 Cytoplasm Sirt3 Promote Energy metabolism (141)

SIRT5 Cytoplasm ECHA Inhibit Urea cycle, apoptosis, energy metabolism (142)

SIRT6 Nucleus NFATc4 Inhibit Telomeric DNA redulation (86)

SIRT7 Nucleus Histone 3 − Apoptosis

IV HDAC11 Nucleus/Cytoplasm Promote Immunomodulation, energy metabolism (143, 144)

ECHA, enoyl-coenzyme A hydratase; FoxO3, Forkhead box O3; Inpp5f, inositol-5 phosphatase f; NFATc4, nuclear factor of activated T-cells; PGC-1α, Peroxisome proliferator-activated
receptor gamma coactivator-1 alpha.

between nucleosomes and DNA, changes in conformation,
triggers reduced accessibility of DNA to transcription factors,
and leads to transcriptional inhibition (Figure 1). This catalytic
process requires zinc ions (Zn2+) as cofactors. At the same time,
HDACi can replace Zn2+, causing enzyme dysfunction (40).

The different nuclear/cytoplasm localization affects the
function of HDACs. HDACs need to perform their functions
in the nucleus, where their substrates locate (Table 1, primary
target molecule). Nuclear localization of HDACs is achieved by
nuclear localization signals (NLS) or co-localization with other
proteins. As shown in Table 1, most HDACs contain an NLS,
which is the key of nucleus locate, but some HDACs can be
cytoplasmic. For example, most HDAC I are localized in the
nucleus (Table 1, localization) due to the lack of a nuclear
export signal (NES), and obtain nuclear regulatory mechanism
through MEF2C/NFAT signaling pathway (41). HDAC1 and
HDAC2 are mainly located in the nucleus. However, HDAC3
can also localize to the cytoplasm and possess not only
nuclear input signals but also NES, which gives HDAC3 the
ability to shuttle through the nuclear membrane and related
function (42).

For HDAC II, HDAC 4, 5, and 7 are able to interacts with
calcium/calmodulin dependent protein kinase (CAMK), and
shuttle between cytoplasm and nucleus in muscle cells (42–44).
Therefore, the CAMK-HDAC II/MEF2 pathway may play an
important role in cardiac hypertrophy (45).

HDAC III, also known as sirtuins (SIRTs). Unlike HDAC I
and II, the enzyme activity of SIRTs depends on the presence
of nicotinamide adenine dinucleotide (NAD +) (46). Sirtuin
is generally considered a protective agent against cardiac
hypertrophy. However, different levels of SIRT1 overexpression
seem to play a dual role in promoting or inhibiting the
development of cardiac hypertrophy (20). Meanwhile, SIRT1
and 3 interact with nuclear and mitochondrial proteins (47), to
mediate energy metabolism and ATP synthesis, which may also
be a critical step leading to cardiac hypertrophy.

HDAC I promotes cardiac
hypertrophy

HDAC I mainly locates in the nucleus, including HDAC1,
2, 3, and 8 (48). In 2006, a study (6) showed that inhibition
of HDAC I could control or even reduce the development of
cardiac hypertrophy and reverse cardiac remodeling. With the
further research, the mechanism of HDAC I regulating cardiac
hypertrophy has been gradually revealed.

For instance, there has been evidence that HDAC1
and HDAC2 inhibit cardioprotective and anti-hypertrophic
genes (49, 50) (Figure 1, lower left). In addition, Hdac2
knockout mice were resistant to undesirable stimuli that
induce cardiac hypertrophy (51), such as pressure overload and
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calcineurin stimulation. This activity associated with HDAC
deacetylation of histones and down-regulation of expression
of anti-hypertrophy genes, including Kruppel-like factor 4
(Klf4) and inositol-5 phosphatase f(Inpp5f ). In this way,
serum response-myocardin (52) and AKT-GSK3β (Glycogen
synthase kinase 3β) pathway activity (51) are inhibited, both
of which contribute to cardiac hypertrophy. Furthermore,
in heart-specific HDAC3 knockout mice, HDAC3 cooperated
with SMRT/n-CoR resulted in reduced histone acetylation
near MEF2 (53), leading to abnormal energy metabolism
and cardiac hypertrophy (54). Furthermore, sodium valproate
(VPA), an inhibitor of HDACs, can reduce the process of
hypertension, cardiac hypertrophy, and cardiac remodeling
in rats with nephrovascular hypertension induced by two-
kidney-two-clip (2K2C) (43). Moreover, the expression of
HDAC8, HDAC2, TGF-β1, and connective tissue growth
factor (CTGF) decreased in the 2K2C model with VPA
intervention, suggesting that VPA has anti-hypertension and
anti-hypertrophy effect (43).

Regulation of HDACII in cardiac
hypertrophy

HDAC II, including HDAC IIa (HDAC 4, 5, 7, and 9) and
IIb (HDAC 6, 10), plays a role in nucleus and cytoplasm. In
the two subclasses, HDAC IIa process the mutation of catalytic
domain, hence the lack of deacetylase activity (55). And HDAC
IIa N-terminal extension interacts with transcription factors in
nucleus, such as MEF2 or heterochromatin protein 1 (HP1) (56,
57). HDAC IIb is different. For instance, HDAC6 is recognized
containing two copies of catalytic domain, while the HDAC10
has one catalytic domain and a leucine-rich C-terminal domain,
which links it to the cytoplasm (58).

HDAC IIa is generally considered to be an anti-hypertrophic
molecule, whose function depends on binding and subsequently
inhibition of MEF2 (56). MEFs is a family of myocyte-
specific enhancers responsible for transcriptional regulation
of cardiomyocyte development (59). MEFs promote the
transcription regulation of cardiac hypertrophy in pathological
condition, including sustained β-adrenergic receptor
stimulation, angiotensin II (Ang II) infusion and pressure
overload (60, 61). HDAC IIa usually combines with MEF2C.
When cardiomyocytes are stimulated by pathological stress,
HDAC transport out of the nucleus, and MEF2C recruits
p300 into chromatin in the absence of HDAC II, increasing
transcription of hypertrophy related genes (Figure 1, lower left).
Two other post-translational modifications-phosphorylation
and oxidation of the HDAC II, regulate the binding activity
of HDAC II-MEF2C.

Calcium/calmodulin dependent protein kinase 2 (CaMKII)
phosphorylates n-terminal serine residues on HDAC II in the
presence of hypertrophic induction simulations. This process

leads to the binding of a chaperone family of 14-3-3 to HDAC
II, which results in the separation and transport of MEF2C to
the cytoplasm (62, 63). Another study showed that HDAC4 has
the same ability of translocation during cardiac hypertrophy
due to the accumulation of reactive oxygen species (ROS).
ROS oxidation of cysteine residues (64) suggests the interaction
between HDAC II and cardiac hypertrophy.

HDAC IIa interacts with other
transcription factors in cardiac
hypertrophy

Recent studies show that HDAC IIa (HDAC 4, 5, 7, and 9)
located in the nucleus has an anti-hypertrophy effect (7, 65).
Notably, HDAC appears to modulate specific pathways, such as
protein kinase D (PKD) and CaMKIIδB, without affecting other
pathways stimulated by β-adrenergic agonists (7).

As previously mentioned, HDAC IIa-MEF2 is involved
in the process of inhibiting fetal gene transcription and
inhibiting hypertrophy. HDAC4/SUV39H1 forms a repressive
complex, maintaining the MEF2 nearby H3 methylation,
and ANP, BNP expression decreased, suggesting a heart
protection effect (66). As SUV39H1 is a nuclear histone
methyltransferase, this interaction shows a crosstalk mechanism
between histone deacetylation and histone methylation (67). In
response to adverse stimulation, CaMKIIδB reduced HDAC4
phosphorylation and transport from the nucleus to the
cytoplasm, thereby inducing increased levels of nuclear HDAC4,
resulting in dissociation of the complex HDAC4/SUV39H1,
demethylation of H3K9, transcriptional activation of Mef2, and
ultimately cardiac hypertrophy (67).

In addition, cardiac hypertrophy-related GATA4-dependent
genes expression, including Nppa and Myh7, also enhance the
reaction to the adverse stimulation. Meanwhile, Nppa and Myh7
gene expression were positively correlated with the acetylation
level of histone 3 (68). The results suggested that HDAC IIa
could inhibit cardiac hypertrophy. The knockout of Hdac5
or Hdac9 in cardiomyocytes increased the sensitivity of mice
to adverse stimuli for cardiac hypertrophy, leading to cardiac
hypertrophy and cardiomyopathy (7, 68). Mice with single
knockout Hdac5 or Hdac9 are prone to chronic hypertrophy in
response to adverse stimulation of hypertrophy (7, 68).

There are other interaction mechanisms between HDAC
and other HDAC molecules. HDAC5, together with HDAC1,
can form a regulatory compound, which accumulates p300 to
the promoter region of Ncx1 (sodium calcium exchanger) gene
and up-regulates the transcription of Ncx1 (69). Meanwhile,
Nkx2.5, as sodium potassium exchanger, also deacetylates
increasingly. As a result, the HDAC5/1 complex induces a
calcium overload process leading to cardiac hypertrophy (69).
These results suggest complex regulating mechanisms of HDAC
IIa in cardiac hypertrophy.
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Regulation of HDAC IIb in cardiac
hypertrophy

As HDAC IIa play an important role in cardiac hypertrophy,
little is known about the function of the HDAC IIb (HDAC
6, 10). The mechanisms of HDAC IIb are newly discovered
in recent years. As previously mentioned, HDAC6 and
HDAC10 process different catalytic domain, hence the different
biological function.

For HDAC6, gene knockout of Hdac5 and Hdac6 blocks
the hypertrophy responses to Ang II by the COX2/PGE2
pathway. Meanwhile, sodium butyrate (NaB), an inhibitor of
HDAC, inhibits COX2/PGE2 expression. Ang II can stimulate
the production of ANP and phosphorylated ERK (pERK),
which can also be reversed by NaB, in vivo and in vitro (70,
71). Conclusively, Ang II can trigger an HDAC5/HDAC6-
dependent cardiac hypertrophy mechanism (70), which can be
reversed by NaB.

HDAC10 has been identified as a polyamine deacetylase,
with strong specificity for N8-acetylspermidine (72), and has not
been clearly studied in cardiology. However, Hdac10 knockout
in cancer cells decreases the expression of thioredoxin-
interacting protein, which is a kind of endogenous thioredoxin
inhibitor (73). Given the thioredoxin inhibits nuclear output of
HDAC IIa (64), HDAC10 may also have the study potential in
affecting genes involved in cardiac hypertrophy.

The findings suggest that HDAC II is involved in a
specific pathway that the inhibits cardiac hypertrophy, but the
mechanism is still unclear and further study is needed.

Sirtuin play a protective role in
cardiac hypertrophy

Class III HDACs, also known as SIRTs protein family, play
a role in maintaining cardiac homeostasis. SIRT, which stands
for “silent mating type information regulator,” was originally
identified and named as a gene silencer that controls mating
type in yeast (74). Their enzymatic activity can only be exerted
in the presence of nicotinamide adenine dinucleotide (NAD +)
(46), different from other HDACs. Seven sirtuin family proteins
(SIRT1-7) have been identified as mammalian SIR2 orthologs,
localized in different subcellular compartments. SIRT1 and 2
are in the cytoplasm, SIRT3, 4, 5 are in the mitochondria, and
SIRT1, 2, 6, 7 are in the nucleus (75).

Studies show the SIRTs play a role in cardiac protection
function against oxidative and aging (76, 77). The expression
of SIRT1, SIRT3, and PGC-1α (Peroxisome proliferator-
activated receptor gamma coactivator-1 alpha) were decreased
in cardiac hypertrophy (78, 79). SIRT1 and SIRT3 enhance the
deacetylation of PGC-1α, reduce oxidative stress and prevents
cardiac hypertrophy (80–84). Therefore, SIRT1 and SIRT3 have
protective effects on the cardiomyocytes against hypertrophy.

In addition, SIRT2 (85) and SIRT6 (86) can also prevent
cardiac hypertrophy. During cardiac hypertrophy, IGF−AKT
signaling pathways activates continuously. SIRT6 has been
found like a negative endogenous regulator of this process in
cardiomyocytes. Loss of SIRT6 resulting in H3K9 acetylation
increased, and by allowing c−Jun, a stress−responsive
transcription factor to interact more easily, the IGF signaling
was then increased, resulting in cardiac hypertrophy (87).
Moreover, nicotinamide mononucleotide adenylyltransferase
is not only a key enzyme in the biosynthesis of NAD+, which
related to SIRTs activation, but also inhibits angiotensin
II-induced cardiac hypertrophy (88).

It is demonstrated that in muscle cells, AMP-activated
protein kinase (AMPK) activation increases cellular
NAD + level, increases SIRT1-mediated protein deacetylation
which activates some downstream targets, such as PGC-1α

and FOXO1 (Forkhead box O1). Subsequent studies have
also revealed that the activation of AMPK signaling increased
the transcription and protein level of NAMPT in skeletal
muscles, thus stimulating Sirt1 signaling (89, 90). Interestingly,
AMPK not only affects SIRTs, but also regulate the HDAC
IIa. Nuclear AMPK phosphorylates residues Ser259 and
Ser498 of HDAC5, and then triggers binding of HDAC5 to
the signaling 14-3-3 chaperone, which is exported from the
nucleus, causing histone acetylation (91–93). Meanwhile,
AMPK/SNF1 (sucrose non-fermenting) pathway phosphorylate
histone and activate HAT complex assembling, which triggers
histone acetylation and increases transcription activity of
specific genes (94–96). In this case, activation of SIRTs is
associated with the AMPK/SNF1 pathway, while activation of
HDAC IIa is inhibited by AMPK. This raises the intriguing
possibility that the stronger AMPK activation, the higher SIRTs
activation, and the more HDAC IIa are transferred to the
cytoplasm, thereby contributing to cardiac hypertrophy. As
mentioned above, the SIRT family has a protective effect on
myocardial hypertrophy.

Histone acetylation “reader”
bromodomain protein family in
cardiac hypertrophy

Histone modifications act as “marks”, and they have an
“identifiers” protein family. The relationship can be described
as that between books and their reader. In order to match
histone acetylation, more and more “reader” proteins have been
discovered and studied (97).

Bromodomain protein (BET) is an acetylated lysine binding
protein. Studies on the function of BETs showed that their
functional structure affects gene expression by recognizing
histone acetylation and thus serves as a “reader” of epigenetic
modifications, playing an important role in regulating the
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pathogenesis of cardiac hypertrophy (98, 99). A Small molecule
JQ1, inhibits BET activation, protects pressure overload induced
cardiac hypertrophy, and improves cardiac function (100).

The BET family included bromodomain-containing
proteins, BRD2, BRD3, BRD4, and BRDT (101). BRD4, as a
member of BETs, is generally considered to be increased in
cardiac hypertrophy. Recently, acetylated histones together
with BRD4 and their genomic distribution reveals their
role in cardiac hypertrophy. In mice with transverse aortic
constriction operation (TAC), the H3K27ac and H3K9ac
genomic distribution altered 1 week after the operation and
affected transcription activity (98). The loss of both histone
markers in the promoter region of the gene is thought to
be mediated by gene silencing and H3K27ac redistribution
to the enhancer region (102). BRD4 has been shown to
activate P-TEFb (positive transcription extension factor b)
recruitment and transcriptional suspension release, promoting
cardiac hypertrophy (99). In addition, micro-RNA (miRNA)
miR-9 down-regulates the expression of BRD4 in a healthy
cardiomyocyte. Hypertrophy induced stimulation significantly
down-regulates miR-9, and BRD4 recruits the super enhancer
gene region to initiate cardiac hypertrophy (103).

ATP-dependent chromatin
remodeling interacts with
bromodomain proteins and
histone deacetylases

The energy generated by ATP hydrolysis is used by
ATP-dependent chromatin remodeling complexes (ADCRs)
to regulate the distribution of nucleosomes and thus alter
chromatin packaging state (104). This progress is also called
ATP-dependent chromatin remodeling. ADCRs are generally
considered to be four highly conserved families based on their
ATPase domain: switching defective/sucrose non-fermenting
(SWI/SNF), imitation switch (ISWS), chromodomain helicase
DNA binding (CHD), and inositol requiring 80 (INO80) (105).
As multiprotein complexes, ADCRs regulate the accessibility
of transcription factors and appropriate gene regions on
genome (105). Transcriptional regulation of these complexes
has cooperation mechanisms with histone modifiers, such as
HAT and HDAC (106).

BRG1 is an ATPase subunit of SWI/SNF chromatin
remodeling complex, which plays a role in cardiac gene
expression, as well as proliferation and differentiation of
cardiomyocyte (107). The myosin is considered to be different
subtypes at different developmental stages, as myosin-6 present
in adult cardiomyocytes, and myosin-7 present in fetal ones. In
this biological subtype conversion process, BRG1 catalyzes the
HDACs and poly (ADP-ribose) polymerases (PARPs), leading to
a reverse transition from myosin-7 to myosin-6 (108). Notably,

in the patients with cardiomyopathy, the expression of BRG1
is increasing, which is consistent with its expression and effect
in the fetal heart (109). Conclusively, BRG1 activation, together
with HDAC and PARP1, indicate the subtype switch from
myosin-6 to myosin-7 in pathological condition (108).

In another study, BRG1 was increased in the hypertrophy
cardiomyocytes in a Dahl salt-sensitive rat model of
hypertension (110), accompanied by other SWI/SNF complex
subunits, such as BAF180, and BAF60C. This complex binds
the Nppa and Nppb, which are considered as fetal related genes-
promoter region, altering the accessibility of gene transcription
region, and promoting their transcription. Conclusively, the
“reader” complex, BETs, recognizes histone modifications, and
activates downstream molecules or recruits related factors to
further nuclear signal transduction (111).

Crosstalk between non-coding
RNA and histone acetylation

Besides interaction between histone modifications, research
shows crosstalk mechanisms between histone modifications and
ncRNAs, such as miRNA and long non-coding RNAs (lncRNA).
For instance, miR-449 can sponge with HDAC1, regulates
the acetylation of the histones H3K4 and H3K9, thereby
recruiting the transcription factor GATA4 to the cTnI (cardiac
troponin I) promoter region, upregulating cTnI expression, and
improving cardiac function (112). In other striated muscle, like
skeletal muscle, myogenesis is promoted and regulated by miR-
1 targeting HDAC4 (113). In cardiomyocyte, we found that
pri-miR-208b and histone-lysine N-methyltransferase EZH2
modulate gene expression in a mouse model of cardiac
hypertrophy induced by pressure overload (13).

On the other hand, HDACi, such as suberanilo hydroxamic
acid (SAHA) and Trichostatin A (TSA) stimulation shows the
regulation of ncRNA expression in primary human endothelial
cells. When the HDAC of specific genes promoter region is
inhibited, EP300 will increases their histone deacetylation level,
and the lncRNA regulated by EP300, such as Malat1 (114), are
activated subsequently, driven by the increased H3K4me3 at
the gene promoter, and promoting the development of cardiac
hypertrophy (115). Studies above reveal crosstalk mechanisms
between ncRNA and histone acetylation, and show that there is
still a wide range of research potential.

Histone deacetylase as therapeutic
target of cardiac hypertrophy

HDAC inhibitor (HDACi) has a wide range of
cytoprotective activities, such as anti-inflammatory, antioxidant,
anti-apoptotic, antifibrotic, and anti-hypertrophy, which are
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FIGURE 2

A brief scheme of cardiac hypertrophy development and the key molecules mentioned in this review. Ang II, angiotensin II; Ca, calcium; CaMKII,
calcium/calmodulin dependent protein kinase; Endo 1, Endothelin 1; GATA, GATA binding protein; HDAC, histone deacetylase; ISO,
isoproterenol; MEF, myocyte-specific enhancer factor; NFAT, nuclear factor of activated T cells.

beneficial to the treatment of various CVDs. It has been nearly
20 years since the earliest HDACi tests. Currently, the preclinical
cardiac hypertrophy models for animal have been improved,
including TAC model, mouse/rat myocardial infarction models,
isoproterenol or Ang II for injection or cell culture, and
transgenesis mouse models. Generally, HDACi is divided into
four separated classes, which are hydroxamic acids, short chain
fatty acids, benzamides, and cyclic peptides. The hydroxamic
acid has strong zinc-chelating properties, indicating that it has
low nanomolar pan-HDAC inhibition. In contrast, the short-
chain fatty acids are weak HDACi, and may be moderately
selective against class I HDACs. Benzamide HDACi and the
cyclic peptides are generally highly selective for HDAC1, 2, and
3. Based on previous research, preclinical studies have shown
that HDACi, such as trigustatin A (TSA) and MPT0E014, can
reduce cardiac remodeling and the incidence and progression
of heart failure (116, 117). Main verified HDACi and their
properties are listed in Table 2.

In vivo animal studies have shown that 2-week treatment
with the hydroxamic acid, pan-HDAC inhibitor, trichostatin
A (TSA), or valproic acid can either block the development
of cardiac hypertrophy in transgenic mice that overexpress
an HDAC2-dependent SRF inhibitor, Hop (homeodomain-only
protein) (118), no matter what strategy of cardiac hypertrophy
inducing, including continuous infusion of isoproterenol or
Ang II, and pressure-load model due to TAC (6, 118).
More importantly, TAC-induced cardiac hypertrophy can
be reversed by TSA treatment, indicating greater clinical
value (6). Furthermore, valproic acid, as a weak HDAC
inhibitor (119, 120), associates with a number of other
pharmacological activities, including regulation of glycogen
synthase kinase-3b (Gsk3β), mitogen-activated protein kinases
and ion channels (121).

The effect of class I HDAC inhibition has been shown to
be mainly associated with the suppression of transcriptional
activity of serum response factor (SRF) and GATA4 (Table 2).
In embryonic development, muscle, and neuron maintenance,
SRF binds to a DNA cis element CArG box [CC(A/T)6GG],
cooperates with various transcriptional factors, regulates the
expression of skeletal and myocardial genes. SRF can also
cooperates with GATA4, a zinc finger-containing transcription
factor which highly expresses in cardiomyocytes. Both of
them interact with Nkx2.5 and activate cardiac-specific gene
expression (122–125). Treatment of mice overexpressing Hdac2
with TSA increases GSK3β and following INPP5f activity,
which prevents cardiac hypertrophy (51). TSA or MGCD0103,
a class I and IV HDAC inhibitor, can also regulate DUSP5

TABLE 2 Main HDAC inhibitors which have beneficial effect against
cardiac hypertrophy.

HDAC
inhibitor

Type Target
HDAC type

References

TSA Hydroxamic acid HDAC2, 3 (132, 145–148)

VPA Short-chain fatty acid HDAC1, 2, 6, 8 (145, 147, 149)

CBHA Hydroxamic Unclear (150)

MGCD0103 Benzamide Class I, IV (126)

RGFP966 Benzamide HDAC3 (151)

Apicidin Cyclic peptide HDAC1, 2, 3 (136)

NaB Short-chain fatty acid HDAC2, 4, 5, 6 (135)

SK-7041 Hydroxamic acid Class I (6)

SAHA Hydroxamic acid Class I, IV (152)

Romidepsin Cyclic peptide Class I (153)

CBHA, m-carboxycinnamic acid bishydroxamide; ITF2357, Givinostat; MGCD0103,
mocetinostat; NaB, sodium butyrate; SAHA, suberanilo hydroxamic acid, vorinostat;
TSA, trichostatin A; VPA, valproic acid.
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mRNA expression from adverse hypertrophic stimuli, which
inhibits the ERK1/2 signaling pathway. In neonatal rat
ventricular myocytes (NRVMs) treated with phenylephrine,
HDAC3 inhibition increased DUSP5 and inhibited ANP, Nppb,
and Acta1 expression after ERK1/2 nuclear phosphorylation
(126). There are several other well-defined class I HDAC
inhibitory pathways, including inhibiting Hop activity (118),
suppressing MR (mineralocorticoid receptor) recruitment to
target gene promoter (127), downregulating IGF-1/Akt pathway
(128), increasing p15 and p57 (129–131), decreasing overactive
autophagy (132), and upregulating miR−133a expression (133).
By using these different HDACi, HDAC activity is reduced,
cardiac hypertrophy related signaling pathways are suppressed,
and cardiac remodeling is inhibited or even reversed. However,
some unknown mechanisms remain to be solved (17).

Class II HDACi are also defined to protect against cardiac
hypertrophy by several pathways, including reversing caspase-
3 and HDAC4 levels (134), increasing cardiac superoxide
dismutase and micro-vessel genesis to attenuate cardiac
hypertrophy (135), increasing p38 phosphorylation (134, 135),
blocking the increases in heart weight and the level of several
mRNAs, such as ANP, BNP, β-MHC, and IL-1 induced by β-
angiotensin II, indicating a myocadial hypertrophy status (70).
However, it should be noted that the HDAC II inhibitor, NaB, is
also a short-chain fatty acid like valproic acid, which implies low
specificity and may have many other pharmacological activities.

Conclusion

In the last 20 years, there have been significant advances
in understanding the function and regulatory patterns of
HDACs in the physiological or pathological heart, as well as
a clearer understanding of histone acetylation/deacetylation.
Further discovery of the mechanisms by which HDAC interacts
with histone acetylation/deacetylation cofactors will bring new
insights into the understanding of this complex biological
process and contribute to a variety of heart diseases, particularly
cardiac hypertrophy.

Here, we review the mechanisms of histone
acetylation/deacetylation in cardiac hypertrophy and briefly
introduce therapeutic HDAC inhibition (Figure 1). This article
reviews the specific mechanism of HDAC regulating cardiac
hypertrophy. HDAC I catalyzes the histone lysine residue,
induces chromatin condensation, and reduces the transcription
activity of anti-hypertrophy genes. Furthermore, HDAC IIa
works differently. HDAC IIa is considered to be weak catalyze
activity. However, by binding to transcript factors such as
MEF2 and GATA4, HDAC represses the recruitment of HAT,
which will acetylate the lysine residue, leading to increased gene
expression. Besides, multiple types of HDACi may affect HDAC
I and IIa. Meanwhile, HDAC III, which is also regarded as SIRTs,
is involved in reducing oxidative stress and preventing cardiac

hypertrophy. In addition, the BET family acts as a “reader” of
histone acetylation, recognizes the acetylated lysine histones,
and activates the promoter region of cardiac hypertrophy genes.
The BET family also participates in ADCR-mediated chromatin
remodeling process, and affects the transcriptional activity of
specific genes. Last but not the least, there are multiple crosstalk
mechanisms among HDAC and other epigenetic modifications.
Their interactions constitute a complicated regulatory network
among of histone modifications, and affect cardiac hypertrophy
through different pathways.

Although histone modification has been proved to play an
important role in cardiac hypertrophy, its use as an explanation
for cardiac hypertrophy remains limited. For example, the
inability of a single study to link all mechanisms solves the
problem of understanding the complex mechanisms underlying
the development of cardiac hypertrophy. In addition, most
studies focus on model animals with cardiac hypertrophy
stimulated by surgical intervention or gene knockout. However,
the human cardiac hypertrophy is a long-term, chronic process,
which is affected by environment, psychology, society, and
other variables. Simple animal models do not fully mimic
the real pathogenesis and the course of disease. Furthermore,
HDAC regulating mechanisms are still in the downstream of
cardiac hypertrophy development. As Figure 2 shows, different
pathological condition will both go through calcium/cAMP
changes, and lead to calcuneurin or CaMKII pathway. In the
downstream, MEF/NFAT/GATA4 activate and interact with
HDACs, no matter what the pathological condition is, which
means HDAC will be a critical therapeutic target, for the
general effect of promoting/inhibiting hypertrophy. But for the
upstream mechanisms of cardiac hypertrophy, it still remains
problems to be solved. There are too many complicated and
undetected stimulation, and their relationship with HDAC is
still worthy to be studied, especially those who can directly affect
HDAC activation. For example, the AMPK regulation between
SIRTs and HDAC IIa. Moreover, effective selective HDACi
are usually not organ-specific. As a normal biological process,
histone acetylation/deacetylation should not be simply and
globally suppressed, hence the need of developing more specific,
reversible inhibitors, and more safety assessment and clinical
trial before clinical application. This requires more exploration
and research into the mechanism itself. Thus, further efforts are
required to study the mechanisms.

In this article, we present currently known knowledge
about the key enzyme family, HDAC, as far as possible. As
an enzyme family, their participation in histone deacetylation,
the relationship between HDAC and other transcription factors,
and the connection with other histone modifications are
analyzed. Meanwhile, we introduce more partner molecules,
such as p300, MEF, GATA, BETs, ADCRs, and ncRNAs, are
also participant in epigenetic modification. Furthermore, we
recognize that the revealed mechanisms and current studies still
require more efforts to dig deeper in the application of HDACi.
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However, efforts to further study HDAC are still recommended,
and more and more studies are revealing histone modification
mechanisms. It will provide a theoretical support for HDAC as
a therapeutic target for cardiac hypertrophy in the near future.
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