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Abstract

The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been
established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza
epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and
survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard
of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level
covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous
hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and
analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged
by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period
of equine influenza. Hazard of equine influenza infection was higher when relative humidity was ,60% and lowest on days
when daily maximum air temperature was 20–25uC. Wind speeds .30 km hour21 from the direction of nearby infected
premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and
meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local
spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A
transmission conducted under laboratory conditions. The relationships described are of direct importance for managing
disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of
influenza A viruses under field conditions.
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Introduction

Influenza A viruses are enveloped RNA viruses of the family

Orthomyxoviridae, and a major cause of morbidity and mortality in

both humans and livestock, worldwide [1,2,3]. Spread may be via

direct contact, over short distances on large ‘cough’ droplets

(diameter .10 mm), over longer distances in aerosols of small

droplet nuclei (diameter ,10 mm) and on fomites [4,5]. Meteo-

rological variables such as air temperature, relative humidity,

rainfall and wind have been suggested as important drivers of the

spread and seasonality of influenza in both human [5,6,7,8] and

animal populations [9]. Recently, Lowen et al. described, under

laboratory conditions, how relative humidity and ambient

temperature combine to influence the transmission of both

seasonal (A/H3N2) and pandemic (A/H1N1) human influenza

A [6,8,10]. The effects of several other environmental variables

(soil pH, sunlight and surface permeability) on the survivability of

influenza A viruses were established in earlier laboratory-based

experimentation [11,12]. Analyses of the contribution of wind to

the spread of epidemics of influenza, and indeed other infectious

diseases, are more limited. Most studies present either circum-

stantial evidence that the mean direction of epidemic spread

coincides with prevailing wind conditions at the time of an

outbreak [13,14], analyses of data aggregated to a low temporal or

spatial resolution [15,16], or associate spread from a small number

of sources with atmospheric dispersal modelling outputs [17]. Such

research must also overcome the added complexity of movement

of individuals within the population at risk.

In their animal model of human influenza A transmission,

Lowen et.al. have shown that dry cool conditions (low relative

humidity and cold ambient temperatures) increase the spread of

influenza [6]. They suggest that this mechanism is mediated by a

complex interaction that affects the survivability of both aerosol

droplet nuclei and virus particles. A detailed analysis, at high

spatial and temporal resolution, comparing actual influenza
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outbreak data with concurrent meteorological data is required to

validate and provide context to their model outside of controlled

laboratory environments, thus furthering our understanding of

how meteorological factors truly influence influenza spread.

Outbreaks of disease in animal populations present a unique

opportunity to study such effects, ‘in the field’. Research on

detailed animal outbreak datasets has several distinct advantages

over comparable research on public health influenza data

[15,18,19,20]. Firstly, human populations move about on a daily

basis (albeit with some regularity). Implementing a complete

human movement standstill (‘a 24 hour curfew’) to control and

contain an outbreak is considered an extraordinary and perhaps

unfeasible social distancing measure, reserved for the most severe

of human influenza pandemics [21]. Conversely, the movements

of farm animal populations (such as horses, cattle and sheep) are

mostly confined to within single premises, and in the event of an

emergency animal disease outbreak, a complete movement ban is

often the first control measure to be implemented [22].

Furthermore, ethical concerns (namely privacy) may constrain

the research of human outbreak data, limiting the amount of

detailed information that can be collated on the movement of

individual people. Given that certain human and animal sub-types

of influenza A share generally similar modes and patterns of

transmission [5], research that utilises detailed animal outbreak

datasets has the potential to inform our understanding of the

complex mechanisms that influence human influenza A spread

and seasonality. The 2007 outbreak of equine influenza in

Australia presented an excellent opportunity to study the effects

of meteorology on the spread of an influenza A virus as it infected

a mostly immunologically naive population, spatially confined (in

paddocks).

Equine influenza virus (A/H3N8) is a highly contagious cause of

low mortality, high morbidity respiratory disease capable of

infecting all members of the horse family (Equidae). It is considered

endemic to equine populations across most of the world [2]. The

disease is similar in many clinical and epidemiological respects to

seasonal human influenza A, and major outbreaks have occurred

when novel strains of equine influenza have gained entry into

highly susceptible equine populations [2]. The typical incubation

period of equine influenza is 1–3 days [23,24,25], however delayed

onset of clinical signs of up to 5 days has been observed after low

dose aerosol exposure [26]. In 2007, following a breach in the

quarantine of infected imported horses [27], Australia experienced

its first ever outbreak of equine influenza. Less than 900 horses are

imported annually into Australia from countries that vaccinate for

equine influenza [27], therefore almost the entire horse population

was susceptible at the start of this outbreak. Over the course of 4

months, nearly 70 000 horses were infected, on over 9 000

premises in two Australian States—New South Wales (NSW) and

Queensland (QLD) [27]. Timely and complete implementation of

a horse movement ban has been widely credited as the most

effective of the control measures that facilitated the rapid

eradication of this disease from the Australian horse population

[27]. Although vaccination was used to eradicate the disease, its

implementation only commenced 6 weeks into the outbreak, well

after the peak of reported daily infections [28]. Vaccination was

initially restricted to disease containment zones and the protection

of high value horses [28].

Contact-tracing early in the 2007 outbreak revealed that the

disease initially spread through a network of equestrian events,

linked by the movement of infected horses prior to detection of the

outbreak, producing clusters of infected premises in widespread

locations [27,29]. Epidemiological investigations noted rare

instances of presumed windborne spread over short ranges

(#1.5 km, and rarely up to 5 km) based on failure to identify

other potential means of transmission (i.e. close contact or on

fomites) [30]. Previous epidemiological analyses of this outbreak

have investigated the spatial and network components of early

spread [29,30,31,32], and premises-level risk factors for disease

spread such as compliance with advised biosecurity measures [33].

Two further analyses have specifically investigated environmental

factors that might have influenced the spread of this outbreak

[13,34]. In one cluster of 437 infected premises, a relationship was

observed between prevailing wind conditions and the global

direction of spread [13].

In this paper we present a comprehensive analysis of the

influence of meteorological variables on time to infection based on

an influenza A virus outbreak dataset. This spatio-temporal

analysis aims to identify and quantify the association between four

meteorological variables (air temperature, relative humidity,

rainfall, wind velocity) and time to infection in the largest cluster

of the 2007 equine influenza (A/H3N8) outbreak in Australia. We

are unaware of any previously published analysis that combines

such a large and spatio-temporally detailed influenza outbreak

dataset with concurrent daily meteorological data, to allow

meaningful estimation of the contribution of such factors in the

spread of an influenza A outbreak.

Materials and Methods

The equine influenza dataset
The state government of New South Wales provided contact-

tracing and laboratory testing data on all horses investigated

during the 2007 outbreak. This dataset was collected at the level of

individual horses and aggregated to the premises level for analysis.

Study designs that use groups as the unit of interest (such as herds

or flocks) rather than individuals, are common in veterinary

epidemiological research [35]. Premises attribute records included

address, geocoded coordinates (based on premises centroid),

number of horses, date of onset of clinical signs in the first horse

affected (‘onset date’), vaccination status and date of vaccination.

Premises were defined as infected (IP) if they held horses that had

been observed with the classical clinical signs of equine influenza

(cough, elevated temperature, nasal discharge and lethargy). This

status was confirmed by laboratory testing based on real-time

reverse transcription polymerase chain reaction assay [36],

however, around the peak of the outbreak not all horses were

tested due to resource constraints [30]. Contact-tracing records

included the date of the movement, the addresses and unique

identifiers for the origin and destination premises between which

horses were moved prior to the horse movement ban.

Study extent: cluster delineation
There was a single ‘index’ for the 2007 outbreak of equine

influenza in Australia: an equestrian event located 160 km north

of Sydney, at which transmission was known to have occurred.

This analysis focused on local spread within the single largest

cluster of the outbreak, centred 60 km northwest of Sydney’s city

centre (Figure 1). To maintain a computationally tractable dataset,

premises were selected for inclusion in the study (from the equine

influenza dataset) if their centroid was within 15 km of nine

contact-traced ‘source’ premises. All nine contact-traced premises

were identified (based on an earlier likelihood-based analysis [32])

to have been infected in the first week of the outbreak following

the movement of infected horses from the ‘index’. The 15 km

buffer used to delineate the cluster was selected based on a

previous analysis in which we identified that 98% of premises

infected in the first month of the outbreak were within this distance
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of a contact-traced ‘source’ premises [29]. The ‘Northwest Sydney’

cluster studied was approximately 65 km in diameter, bounded to

the North and West by national parks (where horses are

prohibited) and to the South and East by metropolitan Sydney.

Exploratory spatial and temporal analyses
The dataset was imported into the R statistical package version

2.13.0 [37], and an epidemic curve constructed as the count of

infected premises reported per day. The spatial coordinates of

each premises were converted to the Australian Albers conic

equal-area projection which is based on the Geocentric Datum of

Australia 1994 (www.ga.gov.au/geodesy/datums/gda.jsp). Extrac-

tion mapping was used to investigate the spatial pattern of risk of

infection over time. To identify areas of elevated risk, relative risk

surfaces with upper 95% tolerance contours were estimated as the

Gaussian-smoothed kernel density surface of infected horse

premises divided by the surface of the population of horse

premises at risk in 4-week time periods. A spatially adaptive

variable smoothing parameter was used to prepare the relative risk

surfaces [38], with edge effect correction, implemented in R with

the ‘sparr’ library [39]. The amount of smoothing (bandwidth)

applied varied across the study extent in inverse proportion to the

population at risk in each time period. To test for directional

spread, the mean geographic centre of the outbreak was estimated

by week as the mean of the coordinates of the infected premises

with dates of onset in each week of the outbreak [40].

Survival analysis
We applied semi-parametric Cox regression modelling to

estimate the association between potential risk factors and the

times to infection of individual premises. A geodatabase was

compiled in Microsoft Access 2007 (Microsoft Corporation,

Redmond, WA, USA) to maintain all premises and meteorological

data, with spatial covariates added using ArcMap 9.3 (ESRI,

Redlands, CA, USA). The dataset was structured into a daily

‘counting process’ formulation to enable investigation of the effects

of time-varying predictors [41], in this case time-lagged premises-

level meteorological variables. In this formulation, each premises

contributes one observation for every day that it is at risk (until

either clinical signs are observed in horses on the premises, or the

end of the study period). See Supporting Information S1 for a

sample of the survival dataset used in this analysis. Time-varying

covariates and the counting process formulation were arranged

using the R statistical package.

In the counting process generalisation of the Cox proportional

hazards model, the hazard function depends on time in ways other

than only through the baseline hazard function [42]. The

proportional hazards assumption does not apply, allowing for

inclusion of time-dependent covariates [43]. Each subject

contributes one observation for every day that it is at risk and

each observation contains covariates for the subject at each time

point of observation and a start and stop time denoting the interval

of risk, i.e. (start, stop] [44]. This enables covariate values for

individual subjects to either be time-invariant or to change with

time, and to be incorporated into a generalised Cox regression

model [41] of the form:

hi tð Þ~h0 tð Þ:exp b1xi1zb2xi2 tð Þz . . . zbkxik tð Þ
� �

ð1Þ

where hi(t) is the hazard that an individual, i, from the population

Figure 1. Map of Australia showing the area affected by the 2007 outbreak of equine influenza and the study extent. (a) From
August–December 2007, around 70,000 horses were infected on over 9000 horse premises in two Australian States. (b) This study focused on the
largest cluster (n = 3624 horse premises), northwest of Sydney, as defined by a 15 km buffer around the nine earliest infected premises (depicted in
yellow) that were contact-traced to events where disease transmission was known to have occurred in the first week of the outbreak. Clinical signs
were first observed on 17 August 2007 in a horse in quarantine at Eastern Creek Quarantine Station (red closed circle). The cluster is surrounded by
national parks and Sydney urban areas. (For interpretation of the references to colour in this text, the reader is referred to the web version of the
article.).
doi:10.1371/journal.pone.0035284.g001
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yet to experience an event, will experience the event at time t; h0(t)

is the baseline hazard at time t; b1 and b2 are the regression

coefficients for the time-invariant, xi1, and time-dependent

covariates, xi2(t), respectively. The partial likelihood specification

for the counting process Cox regression model is described in

detail by Anderson and Gill (1982), and is estimated including a

term for each unique event time, summing over those observations

that are still at risk at each actual event time. As there is no overlap

in intervals of risk in the set of observations for each subject, the

likelihood never involves more than one observation for a subject

[44].

Network and spatial spread in the early outbreak period (the

first 14 days of this outbreak) is described in detail elsewhere [32].

To focus this analysis on the meteorological factors associated with

local spread, we excluded any premises that may have been

infected in the first 10 days of the outbreak, before the complete

implementation of horse movement bans (i.e. any premises with an

onset date in the first 14 days of the outbreak), setting the origin of

the survival analysis at 30 August 2007. This period ends one

typical incubation period (3 days) after movement bans were

implemented, with an additional 1 day error margin for delay in

observation and reporting [33]. All premises that remained

uninfected on the 131st day of the outbreak (25 December 2007,

the reported date of onset of the last known infected premises)

were right censored on this date.

Explanatory variables. Explanatory covariates tested for

associations with the time to infection of premises in the Northwest

Sydney cluster are listed in Table 1. Premises boundaries were

extracted from cadastral data provided by the NSW Government

Department of Finance and Services. These boundaries were used

to generate a continuous variable representing the length of fence

that each horse premises shared with any contiguous horse

premises in the equine influenza dataset. Premises elevation was

extracted from a digital elevation model of Australia [45], which is

a grid of ground level elevation covering the whole of Australia

with a grid spacing of approximately 250 metres, as the mean of

all grid cells needed to cover a premises. Distance to the nearest

main road was calculated from the premises boundary using

vector data of road Classes 1–3 (freeways, highways, primary and

arterial roads) [46]. Human population density, within

approximately 1 km of the premises centroid, was estimated

based on high resolution gridded population data from 2005 [47],

adjusted by 3% for population growth between 2005 and 2007

[48].

Estimation of meteorological time-varying predictors.

Hourly wind velocity data (wind direction and speed) and daily

data for five other meteorological variables (rainfall, minimum and

maximum daily air temperature, and relative humidity measured

at 9 am and 3 pm) were obtained from 132 weather stations. All of

these weather stations were operated by the Australian Bureau of

Meteorology during the study period, and were located either

within the cluster or within 20 km of the cluster boundary. Most

stations reported only daily rainfall measurements. Ordinary

kriging [49] was used to interpolate daily values at each individual

premises location for the meteorological time-varying predictors:

maximum wind speed (km hour21), rainfall (mm), maximum and

minimum surface air temperature (uC), and relative humidity (%,

measured at 9 am and 3 pm). Each time-varying meteorological

covariate was then time-lagged by 1–5 days to encompass the full

range of incubation periods observed in experimental infection

studies [26].

Kriging is a geostatistical smoothing technique that involves

modelling the underlying spatial dependency (autocorrelation) in

spatially continuous data based on a covariance function

(Figure 2a) [49]. For each observation point (hour or day), for

each meteorological variable, a binned isotropic empirical

variogram was plotted that represented covariance (as semivar-

iance) up until half of the maximum pairwise distance between any

two weather stations contributing data at that time point, with bin

widths (h) of approximately 10% of the average distance between

weather stations [50]. A stationary exponential variogram model

was then fit to the empirical variogram, using iterative least

squares regression, and parameter estimates used to interpolate

values at each premises location [49].

Generation of wind speed covariates. Hourly wind

velocity data were available from sixteen of the weather stations,

automatically measured on masts at 10(metres above the earth’s

surface. These wind data were supplied in a polar coordinate

structure, comprising the average direction of origin of the wind

(in degrees from true north) and the maximum wind speed (in

kilometres hour(1), measured over the 10(minutes leading up to

the observation time. To avoid the issue of northerly bearings

being split at true north (i.e. true bearings of 1( and 359( seeming

distant when they are only 2( apart), prior to variography and

kriging, the wind velocity data was converted into a Cartesian

coordinate system—defined by two components (Figure 2b,c): ‘‘u’’

representing the East-to-West component of the wind velocity, and

‘‘v’’ representing the North-to-South component [51]. A negative

value for the ‘‘u’’ component therefore represents a wind from one

of the westerly bearings (i.e. NW, W or SW).

Kriging was then conducted on the two wind velocity vector

components [51]. Hourly wind velocity vectors were interpolated

for each premises and back-transformed into the original polar

coordinates (direction of wind origin and maximum wind speed).

Two approaches were taken to aggregate the hourly wind

velocity vectors for each premises into daily maximum wind speed

covariates. First, to test the hypothesis that increased wind speed

from any direction was associated with increased hazard of

infection we generated ‘undirected’ maximum daily wind speed

covariates (‘WIND_SPDundir’) without making any directional

assumptions, taking the maximum of all hourly wind speed

estimates for each premises on each day.

Next, to explore the directionality of wind exposure risk we

generated ‘directed’ maximum daily wind speed covariates

(‘WIND_SPDdir’) based only on wind coming from within the

direction of the nearest k infected premises (for k = 1,2,3) by

selecting wind from within 45u arcs centred on the bearing of the

nearest k infected premises to each premises on each day. For each

premises, on each day of observation, we identified the nearest

three infected premises from amongst those infected premises that

had a date of onset (of clinical signs in the first horse infected on

the premises) within the previous 14 days. Though it is known that

individual unvaccinated horses remain infectious for up to 7 days

[2,52], the duration of infectivity may vary on multi-horse

premises because of differences in contact rates between individual

horses, and individual variability in susceptibility, latency and virus

shedding. To infer which premises were holding infectious horses

at each time point we assumed that the period of infectivity was 14

days for all premises based on case reports from horse premises of

a range of sizes [53,54,55], intra-herd simulation modelling [28]

and that almost the entire population was immunologically naive

to equine influenza at the start of the outbreak.

Finally, these time-varying predictors were lagged by 1–5 days

to serve as proxies for wind within the range of incubation periods

that have been observed for equine influenza, producing 20 time-

lagged explanatory covariates: ‘WIND_SPDundir t21, t22, …, t25’

and ‘WIND_SPDdir(k) t21, t22, …, t25’, for k = 1,2,3.

The Influence of Meteorology on Influenza Spread
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Univariable analysis
Instantaneous hazard curves were constructed for each time-

invariant covariate with the ‘epiR’ library in R [56], categorising

continuous variables into quartiles. The instantaneous hazard rate,

h(t), is the rate at time t, that a randomly-selected individual from

the population yet to experience an event, experiences the event at

time t [43], and is mathematically defined as:

h tð Þ~ lim
dt?0

P tƒTvtzdt T§tjð Þ
dt

ð2Þ

where T is the time that an event is experienced. In this study, the

unit of interest was the horse premises, and events were defined as

the infection of horses with equine influenza virus on a previously

uninfected premises.

Table 1. Explanatory variables analysed for associations with time to infection of premises in the largest cluster, northwest of
Sydney, during the 2007 equine influenza outbreak in Australia.

Variable group Variable name Variables (Units)

Meteorological RAIN t21,t22,…,t25 Rainfall (mm day21)a

covariates RH_9AM t21,t22,…,t25 Relative humidity (%) measured daily at 9ama

(time-lagged) RH_3PM t21,t22,…,t25 Relative humidity (%) measured daily at 3pma

TEMP_MAX t21,t22,…,t25 Maximum daily air temperature (uC)a

TEMP_MIN t21,t22,…,t25 Minimum daily air temperature (uC)a

WIND_SPDundir t21,t22,…,t25 Maximum daily wind speed – undirected (km hour21)a,b

WIND_SPDdir(k) t21,t22,…,t25 Maximum daily wind speed – directed (km hour21)a,b

Premises AREA Area (acres)

attributes HORSE_DENSITY Horse density (horses acre21)

HORSES_NUMBER Number of horses

SHARED_FENCE Length of shared fence with other horse premises (m)

VACC Vaccination status (1 = Yes, 0 = No)a

VACC_DAYS Days since vaccinationa

Spatial ELEV Elevation (m)

covariates HUMAN_DENS Human population density within approximately 1 km of the premises (people km22)

ROAD_DIST Distance to nearest main road (km)c

aTime-changing covariate.
bMaximum daily wind speed was either based on wind from all directions (‘undirected’) or wind only from within 45u arcs centred on the direction of the k nearest
infected premises for k = 1,2,3 (see Figure 2 for details) assuming that premises were infectious for 14 days and one of the nearest k infective premises was the source of
infection.
cMain roads include freeways, highways, primary and arterial roads (Classes 1–3).
doi:10.1371/journal.pone.0035284.t001

Figure 2. The estimation of premises-level wind speed covariates in a survival analysis of time to infection in the largest cluster of
the 2007 outbreak of equine influenza in Australia. (a) Exponential covariance function (with practical range = 0.25) and its related
semivariance function. (b) Hourly wind velocity data from sixteen automated weather stations (open circles) within a 20 km buffer of the cluster’s
boundary were converted into their East-to-West (‘u’) and North-to-South (‘v’) components, and smoothed using kriging to predict hourly wind speed
and direction at each premises (small grey dots). (c) For each premises on each day prior to infection or censoring, the (‘directed’) maximum wind
speed originating from within 45( arcs centred on the direction of the nearest 1–3 infected premises was estimated for time lags of 1–5 days.
doi:10.1371/journal.pone.0035284.g002
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Univariable Cox models were then constructed and the

statistical strength of the association between each variable

(categorical or continuous) and the outcome assessed using

likelihood ratio tests [35]. The linearity of the relationship between

log hazard of infection and each continuous variable was assessed

graphically using restricted cubic splines [57] with knots spaced at

quintiles in the data. To differentiate linear and nonlinear

component terms, partial likelihood ratio tests were conducted

comparing a model containing all spline terms to a nested model

containing only a single linear term [57]. If a highly non-linear

relationship was detected, the spline of the continuous variable was

retained for multivariable analysis. All continuous covariates were

tested for collinearity in pairs by calculating Spearman’s rank

correlation coefficient (r). Intrinsic temporal autocorrelation was

expected amongst certain groups of time-lagged time-varying

meteorological predictors, such as: ‘TEMP_MIN t21’with

‘TEMP_MIN t22, …, t25’ and ‘RH_3PM t21’ with ‘RH_9AM

t21, t22, …, t25’. From amongst any pair of highly correlated

(r.|0.70|) time-invariant covariates, and from amongst intrinsi-

cally temporally autocorrelated groups of time-varying predictors,

only the variable with the strongest statistical association with the

outcome was retained for further analysis [58].

Multivariable analysis
All remaining variables (unconditionally statistically associated

with the log hazard of infection at P-value,0.25) were entered into

a generalised ‘counting process’ Cox regression model [41]. Each

eligible candidate variable was then individually tested by

excluding it from the maximal model and conducting likelihood

ratio tests, eliminating any variables with P-value$0.10. To assess

confounding, all eliminated variables were individually added back

into the model, retaining any terms that resulted in a .20%

change in any regression coefficient. The time-varying predictor

representing vaccination status was forced into all multivariable

models as it was considered a priori to confound disease spread.

The linearity of the relationship between the outcome and each

continuous variable still included in the model was assessed again,

using restricted cubic splines [57]. Finally, tests were conducted for

all two-way interactions of terms in the preliminary main effects

model.

Goodness of fit of the final model was assessed using

‘Martingale’ residuals. The influence of every individual observa-

tion was tested by omitting it and observing for change in the

regression coefficients [59]. To test for spatial dependency

(autocorrelation) we examined the spatial structure of the residuals

of the final model by mapping normalised martingale residuals

(‘deviance residuals’) and plotting an empirical semivariogram

[60].

Results

Exploratory spatial and temporal analysis
The Northwest Sydney cluster of the 2007 equine influenza

outbreak in Australia contained 3624 horse premises, of which

1922 were reported to be infected during the 131 day outbreak

(cumulative incidence = 53.0%, 95% CI: 51.4, 54.7%).

Surfaces of spatial relative risk by four week period are included

as Figure 3. In the first 4 weeks of the outbreak there were two

areas of elevated spatial risk localised around the nine source

premises for this cluster. Over the next 4 weeks, the two areas of

elevated risk coalesced and expanded. Between weeks 9 to 12, the

areas of spatial risk dissipated into several smaller pockets of

infection. Over the remainder of the outbreak, the spatial risk

faded out in isolated pockets of infection.

The mean centre of the outbreak did not move predominantly

in any single direction over the study period, moving Northwest at

3.0 km week21 in the first 4 weeks, then Southwest at 3.9 km

week21 for 4 weeks, before moving back to the East at 4.1 km

week21 whilst the epidemic faded out.

Survival analysis
The complete survival dataset included 3153 premises contain-

ing 1727 events (infections) during the study period. Data on 57

infected horse premises were excluded because their onset dates

occurred in the first 14 days of the outbreak (a period when they

could possibly have been infected by the movement of infected

horses rather than by local spatial spread). Sixty-seven infected

premises were missing a date of onset, and 347 premises (71

infected and 276 uninfected premises) were missing data on their

number of horses. Once data on these premises (which were

evenly distributed across the study extent) had been excluded, data

on all variables were complete. The median survival time, the

point at which half of the premises in this cluster were infected,

was day 55 of this outbreak (95% CI : 52, 61). The instantaneous

hazard, the proportion of infections per day in the population

surviving uninfected until that day, peaked on day 28 (Figure 4);

92 premises were reported to be infected on this day.

Univariable analysis
Meteorological covariates and hazard of infection. Most

horse premises were relatively close to a weather station, with the

mean distance to the nearest weather station reporting wind data

being 11.7 km (SD = 5.4 km, maximum = 27.4 km). For all

meteorological data, there was a paucity of weather stations in

the Northwest corner of the study extent (because this region is

bordered by a national park).

Daily rainfall data were available from 127 weather stations in

the study extent.

Over the study period, the median estimated daily rainfall per

premises was 0.1 mm day21 (IQR: 0 to 2.8 mm day21,

maximum = 106.5 mm day21). No statistically significant associ-

ations were detected between time-lagged rainfall covariates and

hazard of infection (Table 2). Moderate temporal correlation

(r<0.60) was observed between rainfall data 1 day apart, and

between rainfall and relative humidity measurements conducted

within 1 day of each other. A detailed correlation matrix of all

continuous covariates is provided in Supporting Information S1.

Relative humidity data measured twice daily (at 9 am and 3 pm)

were available from eighteen weather stations (Figure 5a). The

mean of the estimated 9 am and 3 pm relative humidity

measurements for the horse premises under observation were

70.8% (SD = 17.5%) and 52.9% (SD = 20.3%), respectively.

Conditions were drier when measured at the same station at 3

pm compared to 9 am, on any given day, with paired relative

humidity measurements 16.0% on average lower in the afternoon

(95% CI: 15.3, 16.8%). Moderate to high temporal autocorrela-

tion (r<0.70) was observed between 9 am and 3 pm relative

humidity data on the same day and at the same time 1 day apart.

A negative cubic relationship was observed between relative

humidity and hazard of infection (Figure 5b). Risk of equine

influenza infection was highest in dry conditions (,20% relative

humidity), decayed rapidly until increasing at intermediate relative

humidity (40–60%). Once relative humidity was .80% there was

effectively no risk. This relationship was independent of whether

relative humidity was measured at 9 am or 3 pm, and was also

independent of the time lag applied (Table 2). The strongest

statistical association was with the 3 pm measurement time-lagged
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by 5 days, thus, ‘RH_3PM t25’ was selected as a proxy for relative

humidity, irrespective of diurnal variation or time-lag.

Daily surface air temperature data were available from 21

weather stations (Figure 5c). The mean of the estimated daily

maximum and minimum temperatures at the 3153 horse premises

was 24.0uC (95% CI: 22.4, 25.7), and 12.6uC (95% CI: 9.1,

16.1uC), respectively. There was an increasing trend in temper-

ature across the study period as the season changed from spring to

summer, and a low level of correlation (r<0.40) between

maximum and minimum temperature measured on the same

day. Minimum daily temperature data 1–4 days apart were

moderately to highly correlated (0.61#r#0.75), less correlation

was observed between maximum daily temperatures 1 day apart

(r<0.53), and a low cross-correlation (0.30,r,0.50) was

observed between minimum daily temperature, rainfall and 9

am relative humidity data for 1–5 days.

A highly nonlinear relationship was observed between infection

and maximum daily air temperature (Figure 5d), with risk of

infection greatest toward both extremes of the range of observed

maximum temperatures (,16uC and .28uC). The statistical

strength of this association was greatest at a time-lag of 3 days

(Table 2), however, the shape was consistent across time-lags.

Hazard of infection increased linearly as minimum daily

temperatures decreased, and the statistical strength of this

association was also greatest when a time-lag of 3 days was

applied. Combining daily maximum and minimum measurements

into a midpoint daily temperature resulted in weaker associations

(data not shown).

Hourly wind velocity data were available from sixteen weather

stations (Figure 2b). Wind conditions varied considerably in time

with little temporal autocorrelation observed (see correlation

matrix in Supporting Information S1). There was no clearly

discernible predominant wind pattern over the study period. The

median of the maximum daily reported wind speeds estimated for

each premises (from all directions) was 26.6 km hour21 (IQR: 22.3,

33.3 km hour21, maximum = 73.3 km hour21).

The univariate relationship between hazard of infection and

wind speed, making no directional assumptions (’undirected’), is

presented in Figure 6, by time-lag. Maximum daily wind speed,

lagged by 3 days, had the strongest statistical association with the

outcome (Table 2). Increased hazard of infection was observed on

days when the maximum daily wind speed was .30 km hour21.

The univariate relationships between hazard of infection and

maximum daily wind speed from the direction of the k nearest

neighbours are presented in Table 3, and plots of the restricted

cubic splines of these relationships are shown in Figure 7 (only for

a time-lag of 3 days). The strongest statistical association between

any wind speed covariate and hazard of infection was identified

Figure 3. Spatial spread of equine influenza in the largest cluster of the 2007 outbreak in Australia. Surfaces of log relative risk were
estimated in 4-week intervals using adaptive kernel estimation, with upper 95% tolerance contours (solid white lines). With this method the amount
of smoothing (bandwidth) is inversely proportional to the density of the population at risk.
doi:10.1371/journal.pone.0035284.g003
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based on ‘directed’ wind speed from the direction of the three

nearest neighbours, time-lagged by 3 days.

The following five candidate meteorological variables were

consequently selected for multivariable analysis: linear terms for

rainfall and minimum daily air temperature, both time-lagged by 3

days, a restricted cubic spline for relative humidity measured at 3

pm time-lagged by 5 days, and splines of maximum daily air

temperature and maximum daily wind speed from the direction of

the three nearest infected premises, both time-lagged by 3 days.

Horse premises attributes and hazard of

infection. Horse premises in the Northwest Sydney cluster

were highly skewed in terms of their land area and the number of

horses they held at the time of the outbreak. The median premises

held 2 horses (IQR: 1, 5 horses; maximum: 139 horses) on

5.1 acres (IQR: 4.8, 15.2 acres; maximum: 2 225 acres). These

variables were log transformed for all further analyses, with results

back-transformed for presentation. Highly non-linear crude

relationships were observed between hazard of infection and

premises area and horse density (Table 4 and Figure 8a). Medium

sized (4.8–15.2 acres) and medium density premises (1–5 acres per

horse) were at increased risk of infection, as were horse premises

that shared a fence with another horse premises. Hazard also

increased with the number of horses held on a premises; this trend

was well represented by categorisation based on quartiles.

A trend existed across the study area in terms of premises

elevation and surrounding human population density. Hazard of

infection was higher on horses premises located at lower elevations

(,45 m) and .2.2 km from main roads (Table 4). Risk was also

higher on horse premises located in peri-urban areas (human

population densities between 1–500 people km22) compared to

premises located either away from residential areas (human

population density within 1 km = 0) or within urban areas (.500

people km22) (Figure 8b).

Premises area and premises horse density were the only highly

correlated pairing (r = 20.74), amongst the premises attribute

variables. Of these two covariates, premises area was the more

strongly associated with the outcome. The following premises

attribute variables were therefore included in multivariable

analysis: splines of premises area and local human population

density, number of horses, length of shared fence with other horse

premises, premises elevation and distance to the nearest main

road. Vaccination status was retained as it was considered an a

priori confounder.

Multivariable analysis
The final model is presented in Table 5. Two variables were

eliminated during multivariable model-building: ‘distance to

Figure 4. Smoothed instantaneous hazard of infection in the
largest cluster of the 2007 outbreak of equine influenza in
Australia. Horse movement standstills were implemented from day 10,
and vaccination commenced in this cluster on day 49. Dashed lines
represent 95% confidence intervals, and dotted vertical reference lines
denote the survival analysis study period (between days 14 and 131 of
the outbreak).
doi:10.1371/journal.pone.0035284.g004

Table 2. Univariable analysis of the association between
meteorological covariates (time-changing and time-lagged)
and time to infection of premises in the largest cluster
(n = 3153), northwest of Sydney, during the 2007 equine
influenza outbreak in Australia.

Meteorological Factor Time-lag b SE(b) LRT df P-valuea

Rainfall (mm day21) t21 0.006 0.033 0.0 1 0.852

t22 20.005 0.028 0.0 1 0.870

t23 20.045 0.037 1.5 1 0.215

t24 20.024 0.027 0.9 1 0.342

t25 20.028 0.031 0.9 1 0.344

Relative humidity (%), t21 nonlinear spline 29.9 4 ,0.001

measured daily at 9 am t22 nonlinear spline 29.4 4 ,0.001

t23 nonlinear spline 14.3 4 0.006

t24 nonlinear spline 47.1 4 ,0.001

t25 nonlinear spline 41.9 4 ,0.001

Relative humidity (%), t21 nonlinear spline 47.7 4 ,0.001

measured daily at 3 pm t22 nonlinear spline 39.0 4 ,0.001

t23 nonlinear spline 35.1 4 ,0.001

t24 nonlinear spline 71.6 4 ,0.001

t25 nonlinear spline 81.4 4 ,0.001

Maximum daily air t21 nonlinear spline 58.4 4 ,0.001

temperature (uC) t22 nonlinear spline 44.2 4 ,0.001

t23 nonlinear spline 64.1 4 ,0.001

t24 nonlinear spline 49.5 4 ,0.001

t25 nonlinear spline 47.2 4 ,0.001

Minimum daily air t21 20.040 0.031 1.6 1 0.204

temperature (uC) t22 20.033 0.032 1.1 1 0.289

t23 20.068 0.032 4.6 1 0.031

t24 20.052 0.033 2.5 1 0.111

t25 20.027 0.032 0.7 1 0.395

Maximum daily wind t21 nonlinear spline 10.2 4 0.038

speed (km hour21) t22 nonlinear spline 19.6 4 ,0.001

t23 nonlinear spline 52.0 4 ,0.001

undirectedb t24 nonlinear spline 35.5 4 ,0.001

t25 nonlinear spline 14.9 4 0.005

aP-values derived from likelihood ratio tests (LRT) comparing univariable to null
Cox regression models.
bMaximum daily wind speed based on wind from all directions (‘undirected’),
making no assumption concerning nearest infected premises assumption.
doi:10.1371/journal.pone.0035284.t002
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nearest main road’ and ‘minimum daily air temperature’. No first

order interaction terms were significant at P,0.05.

The shape of the restricted cubic splines representing the

nonlinear relationships between hazard of infection and relative

humidity, maximum daily air temperature, maximum daily wind

speed (from the direction of the nearest three infected premises),

premises area and human population density, were all largely

unchanged from their crude forms (as presented in Figures 5, 6, 7,

8). Post-adjustment, rainfall was detected to be weakly protective.

The increased hazard amongst premises with higher numbers of

horses persisted, as did the reduction in hazard amongst premises

at higher elevations, with a 42% reduction in risk for every order

of magnitude increase in elevation. Premises that were adjacent to

another horse premises were at increased hazard of equine

influenza infection.

Model goodness-of-fit and residual analysis. The final

model accounted for a quarter of the variability in the data

(Schemper and Stare pseudo-R2 = 25.8%). No issues were

identified based on inspection of martingale and deviance

residuals, both overall, and when plotted against each variable

included in the final model. Residual spatial structure was not

evident in the empirical semivariogram of the deviance residuals,

Figure 5. Smoothing of daily meteorological data and estimation of the association with premises-level hazard of infection in the
largest cluster of the 2007 outbreak of equine influenza in Australia. Daily meteorological data provided by Australian Bureau of
Meteorology weather stations (white closed circles) were smoothed using kriging, and time-lagged by 1–5 days. (a) Smoothed estimate of relative
humidity measured at 3 pm on Day 20 of the outbreak. Small grey dots denote the horse premises. (b) Restricted cubic splines of the crude
relationship between hazard of infection and relative humidity (3 pm measurement) at time-lags of 1–5 days over the entire study period. (c)
Smoothed daily maximum air temperature on Day 20 and (d) the relationship between daily maximum air temperature and hazard of infection, by
time lag.
doi:10.1371/journal.pone.0035284.g005
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suggesting that spatial correlation was not unduly influencing our

effect estimates (or their associated standard errors). Influence

statistics identified only one important outlying premises, infected

36 days after the vaccination of the 2 horses on the property.

These horses did not receive a second vaccination, whilst up to

three doses may be required to attain protective immunity.

Discussion

To our knowledge, this empirical analysis provides the first

estimates of the contribution of humidity, air temperature and

wind to the spread of an actual outbreak of influenza (‘in the field’).

We have demonstrated that it is possible to detect an association

between wind velocity and disease spread, and directly estimate

the strength of such an association. This advances our under-

standing of the windborne spread of influenza from purely

circumstantial association to a hypothesis statistically-tested with

empirical data.

Relative humidity and influenza spread
Our analysis shows that influenza spread in this cluster was

highly dependent on relative humidity. Recent reviews [4,5,61]

present contradictory results from laboratory trials of influenza A

virus survival at intermediate humidities [62,63], and disagree-

ment concerning the importance of aerosol transmission. The

negative cubic relationship that we observed between hazard of

infection and relative humidity provides field validation for some

of these laboratory trials. The curve in Figure 5b across the whole

range of relative humidities observed under natural conditions,

exactly complements the results presented by Hemmes et. al. [62]

of inactivation of aerosolised influenza A virus under controlled

conditions. Our findings also support the theory presented by

Figure 6. The crude relationship between hazard of infection and maximum daily wind speed, from all directions, in the largest
cluster of the 2007 outbreak of equine influenza outbreak, by time lag. Estimates are based on hourly wind data from all directions and
time-lagged by 1–4 days. Dashed lines represent 95% confidence intervals.
doi:10.1371/journal.pone.0035284.g006
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Lowen et al. [6] that the relationship between influenza

transmission and relative humidity is mediated by both virion

and aerosol droplet nuclei stability. In cool dry conditions, droplets

are desiccated and remain small, which may stabilise influenza

aerosols and facilitate longer range transmission, whereas at high

relative humidity, the droplets absorb water and settle [61]. The

small rise in hazard of infection at intermediate relative humidities

(40–60%) is perhaps due to a summation of two effects: as relative

humidity increases within this range so too does viral survival [63],

whilst droplet nuclei settle more readily. This rise was most

pronounced in the spline of relative humidity time-lagged by 3

days, yet the 5 day time-lagged variable was the predictor in the

group with the strongest statistical association with hazard of

infection. Amongst all other groupings of autocorrelated meteo-

rological variables, a time-lag of 3 days was the predictor with the

strongest statistical association with hazard of infection, corre-

sponding closely with the typical 1–3 day incubation period of

equine influenza.

Recent research has suggested that in certain situations absolute

humidity may better represent the relationship between air

humidity and influenza A virus survival [64] and aerosol

transmission [65]. However, the dependency is perhaps more

complex [8], because the amount of water vapour that air can hold

increases with temperature. Absolute and relative humidity are

related metrics for the amount of water vapour in moist air.

Absolute humidity is the mass of water vapour per cubic meter of

total moist air, whereas, relative humidity is absolute humidity

expressed as a percentage of the amount of water vapour needed

for saturation at a specific temperature. We used relative humidity

rather than absolute humidity because: the relative humidity data

were more complete over the study period, corresponding 9 am

and 3 pm air temperature data were not available for all data

points so back-transformation of relative humidity measurements

into absolute humidity would have resulted in less complete data,

and we wanted to ensure we could directly compare our results

with the original research describing the dependency between

relative humidity, air temperature and influenza virus transmission

and survival [6,62].

Air temperature and influenza spread
The shape of the highly nonlinear relationship that we observed

between hazard of equine influenza infection and maximum daily

air temperature suggests two mechanisms of influenza transmis-

sion. Hazard was lowest on days when the maximum air

temperature was between 20–25uC, and greatly increased on

days with lower and higher maximum temperatures. Aerosol

transmission of influenza A viruses has been shown to be enhanced

in cooler conditions [6], and on days when maximum daily

Figure 7. The crude relationship between hazard of infection and maximum daily wind speed selected from the direction of the k
nearest infected premises (time-lagged by 3 days) in the largest cluster of the 2007 outbreak of equine influenza in Australia.
Estimates are based only on hourly wind data from within 45u arcs centred on the direction of the k nearest infected premises, for k = 1,2,3. Arcs may
overlap if nearest k infected premises are in the same direction (see Figure 2c for details). Dashed lines represent 95% confidence intervals.
doi:10.1371/journal.pone.0035284.g007

Table 3. Univariable analysis of the association between
directed wind speed covariates (time-changing and time-
lagged) and time to infection of premises in the largest cluster
(n = 3153), northwest of Sydney, during the 2007 equine
influenza outbreak in Australia.

Meteorological Factor Time-lag Term LRT df P-valueb

Maximum daily wind t21 nonlinear spline 3.8 4 0.430

speed (km hour21) t22 nonlinear spline 9.1 4 0.058

t23 nonlinear spline 16.5 4 0.002

directed (k = 1)a t24 nonlinear spline 6.6 4 0.159

t25 nonlinear spline 3.4 4 0.499

Maximum daily wind t21 nonlinear spline 14.0 4 0.007

speed (km hour21) t22 nonlinear spline 25.3 4 ,0.001

t23 nonlinear spline 34.5 4 ,0.001

directed (k = 2)a t24 nonlinear spline 8.2 4 0.083

t25 nonlinear spline 24.6 4 ,0.001

Maximum daily wind t21 nonlinear spline 41.2 4 ,0.001

speed (km hour21) t22 nonlinear spline 49.5 4 ,0.001

t23 nonlinear spline 75.6 4 ,0.001

directed (k = 3)a t24 nonlinear spline 38.0 4 ,0.001

t25 nonlinear spline 52.3 4 ,0.001

aMaximum daily wind speed (‘directed’) based on wind only from within 45u
arcs centred on the direction of the k nearest infected premises for k = 1,2,3 (see
Figure 2 for details) assuming that premises were infectious for 14 days and one
of the nearest k infective premises was the source of infection.
bP-values derived from likelihood ratio tests (LRT) comparing univariable to null
Cox regression models.
doi:10.1371/journal.pone.0035284.t003
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temperature was ,20uC the air temperature would be expected to

remain in the optimal range for aerosol transmission equine

influenza for longer. The marked increase in hazard of infection

when maximum temperature was .25uC is also consistent with

recent research. Whilst high temperatures block aerosol transmis-

sion of influenza A viruses, the success of animal-to-animal contact

transmission increases at high temperatures [10] perhaps explain-

ing the spread of influenza in warm tropical environments.

Wind velocity and influenza spread
There is some consensus in the literature that airborne

transmission of influenza is at least possible; however, there is

strong disagreement about its importance [5]. In the cluster

investigated, we observed an association between hazard of

infection and increasing wind speed from the direction of nearby

potential sources of equine influenza infection. A similar

association was found when wind speed covariates were generated

without making any directional assumptions, in effect testing the

general hypothesis that hazard of infection was increased on days

with increased wind speed (from any direction). Irrespective of our

approach, wind speeds .30 km hour21, lagged by 3 days, were

consistently associated with increased hazard of infection.

In developing proxy covariates for the directed formulation of

the daily wind speed covariates (‘WIND_SPDdir(k)’) certain

assumptions were required. Wind data was only included if it

was within a 45u arc of the nearest k infected premises to each

uninfected premises on each observation day. The nearest k

infected premises were assumed to be the only windborne source

of equine influenza virus for a susceptible premises, and we

assumed the duration of infectivity at the premises level was 14

days for all premises. The statistical strength of association

between hazard of infection and wind speed increased as more

nearest neighbours were cumulatively incorporated into the

method of wind covariate generation, suggesting that the nearest

neighbour was not always the only source of windborne infection.

It would be computationally intensive to continue incorporating

further nearest neighbours into this method, so we cannot

definitively state how far to extend this process. There must exist

a point after which adding infected neighbours to the process of

generating wind speed covariates results in weaker associations, as

the associations were statistically stronger when wind speed

covariates were generated with three nearest neighbours than

when we made no directional assumptions. We can state that

incorporating three nearest infected neighbours is better than only

one or two, that our findings are relatively robust to the

assumptions that we made whilst generating directed wind speed

covariates, and that the detected association between hazard of

infection and wind speed appears related to the direction of

proximate infected premises.

The associations that we have detected between increasing wind

speed and hazard of infection need to be interpreted in the context

of our study design. There is potential for ecological fallacy in

aggregated data analyses such as this, in which the unit of interest

is not an individual animal but a group. Furthermore, it is not

possible in such observational epidemiological analyses to

definitively identify windborne spread from any other transmission

route (direct contact, cough droplet and spread on fomites).

Nonetheless, the detected association, presumably representing

windborne spread of equine influenza, is biologically plausible,

and its increasing strength with increasing wind speed from the

direction of nearby infected premises is difficult to explain by

spread through other means alone.

At wind speeds of .30 km hour21 an aerosol of influenza

droplet nuclei would only need to be stable for minutes to be able

to infect horses on nearby premises. Equine influenza viruses have

been shown to survive for periods of hours to days in soil and

water, even in direct sunlight [12], and infected horses shed large

amounts of virus (.103 EID50/ml, 50% egg infective dose per ml

of swab extract) throughout the roughly 7 days that they are

infectious [66]. Infection is more reliably achieved by inhalation of

aerosolised virus that intranasal inoculation [26], with a minimum

infective dose of 102 EID50/ml. We therefore consider it plausible

that infected horses on one premises could cough or otherwise

produce a sufficient quantity of aerosolised equine influenza virus,

which after travelling wind-assisted could constitute an infectious

dose for a horse on a nearby premises (whether inhaled

immediately or after surviving a short period on soil or in drinking

water).

Table 4. Univariable analysis of non-meteorological
covariates with time to infection of premises in the largest
cluster (n = 3153), northwest of Sydney, during the 2007
equine influenza outbreak in Australia.

Factor Category No.
Hazard
ratio (95% CI) P-valuea

Premises attributes

Area (acres) .15.2 788 0.99 (0.85, 1.15) ,0.001

5.1–15.2 788 1.94 (1.69, 2.23)

4.8–5.1 789 2.09 (1.83, 2.40)

,4.8 788 1.00

Horse density .1.00 776 1.50 (1.29, 1.74) ,0.001

(horses acre21) 0.40–1.00 799 2.51 (2.18, 2.89)

0.20–0.40 787 1.85 (1.63, 2.17)

,0.20 791 1.00

Number of horses .5 662 3.28 (2.82, 3.82) ,0.001

3–5 902 2.48 (2.14, 2.88)

2 787 2.08 (1.79, 2.43)

1 802 1.00

Length of shared fence .300 742 1.45 (1.29, 1.63) ,0.001

with other horse 1–300 725 1.64 (1.47, 1.84)

premises (m) 0 1686 1.00

Vaccination statusb Yes 490 0.28 (0.04, 2.13) 0.137

No 2663 1.00

Spatial covariates

Elevation (m) .115 785 0.72 (0.63, 0.82) ,0.001

45–115 777 0.66 (0.58, 0.76)

25–45 786 1.02 (0.90, 1.15)

,25 805 1.00

Human population .500 1059 1.05 (0.94, 1.18) ,0.001

density (people km22) 1–500 954 1.29 (1.48, 1.44)

0 1140 1.00

Distance to nearest .2.2 787 1.23 (1.08, 1.41) 0.021

main road (km) 1.1–2.2 789 1.14 (1.00, 1.31)

0.4–1.0 788 1.11 (0.97, 1.27)

,0.4 786 1.00

aP-values derived from likelihood ratio (LRT) tests comparing univariable to null
Cox regression models.
bTime-changing covariate.
doi:10.1371/journal.pone.0035284.t004
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A recent time-series analysis investigated correlation between

the frequency of paediatric influenza A hospital admissions and

several meteorological variables including wind velocity [15]. A

statistically significant univariable association was observed

between increasing wind velocity and increased influenza A

hospital admissions, in data collected from one hospital and one

weather station [15]. However, in multivariable analyses no

association was observed between wind velocity and influenza A

hospitalisations, perhaps due to the level of spatial and temporal

data aggregation (across the hospital catchment and into 14-day

time intervals). Aggregated analyses of the association of

meteorological factors with the spread of the severe acute

respiratory syndrome (SARS) in Beijing [16], and hand, foot

and mouth disease (HFMD) of humans in Hong Kong [67], have

found statistically significant associations with increasing wind

velocity, albeit at much lower wind velocities. Atmospheric

dispersal modelling of the picornavirus that causes foot and

mouth disease (FMD) in cloven-hoofed ungulates has consistently

found that the virus is likely to be dispersed even in calm

conditions [17,68,69]. The dependency of influenza A virus

survival on relative humidity [6,62] is completely different to that

of poliovirus [62], HFMD [70] and FMD virus [68] (all much

smaller RNA viruses of the family Picornaviridae). Therefore, it is

perhaps not unexpected that the survival of aerosols of influenza A

viruses and picornaviruses could depend on different wind

conditions.

When interpolating meteorological covariates and estimating

nearest neighbour distances we used centroids to reduce the

complexity of the analytical methods. For .99% of the premises

in our dataset we estimate that the maximum distance between the

centroid and premises boundary was ,500 m. When the largest

1% of premises (in area) were excluded from the final model, the

only regression coefficients to change by .20% were the two

highest order spline components for relative humidity and

maximum daily temperature, and these changes were not

discernible in post-adjustment plots. We therefore consider our

findings to be insensitive to measurement bias introduced by

representing premises by their centroids.

Environmental variables capable of influencing airborne disease

spread (such as local horse density, tree density or terrain

undulation) vary considerably in the different regions and clusters

of premises infected during the 2007 equine influenza outbreak in

Australia. A potential limitation of this analysis was that we

focussed on only one cluster (the largest and most dense cluster in

terms of population at risk) from a very large outbreak. There were

two considered reasons for our detailed focus: counting process

survival analysis involves analysing a very large dataset (204,909

observations on 3153 premises); and owing to a wide variance in

local environmental characteristics and potential for differences in

disease transmission dynamics, mixing clusters in the same analysis

might dilute any meaningful results. Before generalising our

findings to the whole outbreak, or indeed other outbreaks, follow-

up research to assess the importance of the risk factors investigated

in broadly dissimilar environments, is therefore required.

A classical geostatistical approach [49] (kriging based on a least

squares fit of an empirical variogram) was applied to interpolate

premises-level meteorological covariates from weather station

data. A more sophisticated model-based geostatistical approach

[71] (maximum-likelihood based model fitting that does not rely

on an empirical variogram) may be more appropriate. However,

we considered that the numerous fine adjustments required to

undertake a model-based approach to be impractical for fitting the

5616 separate models (117 days624 hours62 wind component

vectors) that were required to produce hourly wind vector

estimates at each of the 3153 individual premises locations across

the entire study period. It was also not possible to assess the

assumptions of stationarity or isotropy for each of the thousands of

semivariogram models required to generate all of the daily

meteorological covariates for each premises. These assumptions

appeared justified based on semivariograms of the mean

conditions for each meteorological covariate over the entire study

period. Our interpolation approach could have been refined by

incorporating elevation (regression kriging), a spatial trend or even

Figure 8. Crude nonlinear relationships between hazard of infection and non-meteorological covariates in the largest cluster of the
2007 outbreak of equine influenza in Australia. (a) The relationship between hazard of infection and premises area, and (b) the relationship
between hazard of infection and local human population density (people residing within approximately 1 km of the horse premises). Dashed lines
represent 95% confidence intervals.
doi:10.1371/journal.pone.0035284.g008

The Influence of Meteorology on Influenza Spread

PLoS ONE | www.plosone.org 13 April 2012 | Volume 7 | Issue 4 | e35284



anisotropy into the method. The study extent covered the

Northern half of the Sydney basin, which is relatively flat, and

bounded by a plateau of national parks where horses are

prohibited. These refinements would be recommended when

conducting further similar research of clusters located in more

varied terrain.

In the cluster of infection investigated, disease did not appear to

spread predominantly in any single direction. We purposefully

focussed on this cluster rather than other large clusters in which a

single global direction of spread has been noted [13], with the

intention of estimating the typical contribution of wind to disease

spread rather than circumstantially associating prevailing wind

with the global direction of disease spread. In any cluster in which

an overall direction of spread is detected, an important further

research question remains: What proportion of this anisotropic

spread is directly attributable to windborne disease spread? Our

methods provide a means to answer this research question, and to

retrospectively investigate the contribution of windborne aerosol

spread to local disease spread during outbreaks such as the foot-

and-mouth disease outbreak in the United Kingdom in 2001.

By restricting this analysis to a study period after the horse

movement ban was put in place, we focussed this study on factors

influencing the local spread of equine influenza. We also adjusted

for a number of relevant confounders of the meteorological

associations we aimed to estimate: vaccination status of horses on

the premises, premises size (in terms of area and number of

horses), whether premises were adjacent to another premises

holding horses, and local human population density. A small

misclassification bias is known to be present in the equine

influenza dataset, due to under-reporting of infected premises by

owners either attempting to avoid movement restrictions or who

failed to detect infection [72]. A previous analysis found ,1%

under-reporting occurred in this region, suggesting that ,13

infected premises were misclassified as uninfected [72]; we

considered this bias negligible.

In conclusion, by combining influenza outbreak and concurrent

meteorological data, we have shown how relative humidity, air

temperature and wind velocity combined to influence the spread

of an actual influenza outbreak. Hazard of equine influenza

infection was higher when relative humidity was ,60% and lowest

on days when daily maximum air temperature was 20–25uC.

Wind speeds .30 km hour21 from the direction of nearby

infected premises were associated with increased hazard of

infection. Our analysis supports, and extends, the findings of

studies into influenza A transmission conducted under controlled

conditions. The relationships described are of direct importance

Table 5. Final multivariable Cox regression model for time to infection of premises in the largest cluster (n = 3153), northwest of
Sydney, during the 2007 equine influenza outbreak in Australia.

Factor Category Hazard ratio (95% CI) P-valuea

Meteorological covariates

Rainfall (mm day21), t23
b Linear 0.91 (0.82, 1.00) 0.055

Relative humidity (%), Nonlinear spline — — ,0.001

measured daily at 3pm, t25
b

Maximum daily air Nonlinear spline — — ,0.001

temperature (uC), t23
b

Maximum daily wind speed, Nonlinear spline — — ,0.001

(km hour21), t 23
b

directed (k = 3)c

Premises attributes

Area (acres) Nonlinear spline — — ,0.001

Number of horses .5 3.16 (2.70, 3.69) ,0.001

3–5 2.19 (1.89, 2.55)

2 1.93 (1.66, 2.26)

1 1.00

Length of shared fence .300 1.30 (1.15, 1.48) ,0.001

with other horse premises (m) 1–300 1.27 (1.13, 1.43)

0 1.00

Vaccination statusb Yes 0.28 (0.04, 2.09) 0.134

No 1.00

Spatial covariates

log10(Elevation (m)) Linear 0.58 (0.51, 0.67) ,0.001

Human population density Nonlinear spline — — ,0.001

(people km22)

Number of events = 1727; Log likelihood = 212,847.4; df = 25; P,0.001; R2 = 25.8%.
aP-values derived from Likelihood ratio tests (LRT).
bTime-changing covariate, time-lagged 3 or 5 days as noted.
cMaximum daily wind speed (‘directed’) based on wind only from within 45u arcs centred on the direction of the three nearest infected premises assuming that premises
were infectious for 14 days and one of the three nearest infective premises was the source of infection.
doi:10.1371/journal.pone.0035284.t005
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for managing disease risk during influenza outbreaks in horses,

and more generally, advance our understanding of the transmis-

sion of influenza A viruses under natural conditions.
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