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Abstract

The estimation of mutation rates and relative fitnesses in fluctuation analysis is based on the unrealistic hypothesis that the
single-cell times to division are exponentially distributed. Using the classical Luria-Delbrück distribution outside its
modelling hypotheses induces an important bias on the estimation of the relative fitness. The model is extended here to
any division time distribution. Mutant counts follow a generalization of the Luria-Delbrück distribution, which depends on
the mean number of mutations, the relative fitness of normal cells compared to mutants, and the division time distribution
of mutant cells. Empirical probability generating function techniques yield precise estimates both of the mean number of
mutations and the relative fitness of normal cells compared to mutants. In the case where no information is available on the
division time distribution, it is shown that the estimation procedure using constant division times yields more reliable
results. Numerical results both on observed and simulated data are reported.
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Introduction

The estimation of mutation parameters in cell growth exper-

iments, or fluctuation analysis, has been the object of many studies

since its introduction by Luria and Delbrück in 1943 [1]: see

reviews by Stewart et al. [2], Angerer [3], and Foster [4].

Fluctuation analysis is based on the Luria-Delbrück distribution,

derived under different assumptions by Lea and Coulson [5] and

Bartlett (in the discussion following Armitage [6]). Mandelbrot [7],

then Bartlett [8] later generalized the Luria-Delbrück distribution

to the differential growth case. Since then, fluctuation analysis with

differential growth rates has been advocated by several authors [9–

13]. As shown in [14], Luria-Delbrück distributions are made of

three ingredients:

1. The mean number of mutations a, which is the parameter of main

interest. It is the product of the individual probability of mutation

(also called mutation rate) by the final number of cells. As already

remarked by Luria and Delbrück [1], the law of small numbers

implies that the random number of mutations that occur during

the experiment follows a Poisson distribution with expectation a.

2. The relative fitness r of normal cells to mutants, i.e. the ratio of the

exponential growth rate of normal cells to that of mutants.

(Growth rate refers here to the constant speed at which the

logarithm of a population of cells grows, not to the size increments

of individual cells). The time scale does not influence final counts

of mutant cells: it may be chosen so that the growth rate of

mutants is 1, in which case r is the exponential growth rate of

normal cells. Exponential growth implies that most random

mutations occur rather close to the end of the experiment, and

more precisely that the time during which a new mutant clone

develops has negative exponential distribution with parameter r.

3. The random number of cells M(t) in a mutant clone that develops for a

finite time t: it depends crucially on the division times of mutants.

In the classical Luria-Delbrück model, mutants are supposed to

have exponentially distributed division times, which implies that

M(t) follows the geometric distribution with parameter e{t

(choosing the time scale so that mutants have unit growth rate).

The first two points can be considered as established facts: they

are in accordance with experimental data, and grounded on well

known probabilistic results. On the opposite, the hypothesis of

exponentially distributed division times is a purely mathematical

convenience and does not match experimental observations: as

remarked as early as 1932 by Kelly and Rahn [15,16], actual

division times data are unimodal and right-skewed rather than

exponential: see [17]. The question investigated here is: which bias

on the estimation of the parameters does the exponential

distribution hypothesis induce, and how can it be reduced?

The ‘‘mathematical convenience’’ can be challenged. Admit-

tedly, the exponential distribution of division times is the first one

under which a closed mathematical expression for the distribution

of mutants was obtained. Notwithstanding, it will be shown that a

joint estimation procedure for a and r can be implemented

whatever the distribution of division times. Moreover if the

division times of mutants are supposed to be constant, estimation

procedures are exactly as computationally effective as under the

exponential hypothesis. Since the pioneering observations of Kelly

and Rahn [15] progress in experimental settings, from microscopic

observation of single-cell behavior to flow chambers and

automated growth analyzers, has fueled many studies on division

times and their distributions. Division time data have been fitted

by several types of distributions: from Gamma and Log-beta [18],

to Log-normal and reciprocal normal [19]: see John [20] and

references therein. More recent references include [21–24]. There

is no such object as ‘‘the’’ distribution of division times; firstly

because it would depend not only on the species, strain,

experimental conditions, etc., secondly because many different
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families of distributions can usually fit any given set of observed

data. I have chosen three families (Gamma, Log-normal, Inverse

Gaussian) and one data set: the historical observations of Kelly and

Rahn on Bacterium aerogenes [15]. A maximum likelihood

estimation of the parameters on the data led to one particular

distribution in each family, that was rescaled to unit growth rate.

The three distributions so obtained were considered as realistic

and used as benchmarks for extensive Monte-Carlo studies.

Samples of size 100 of generalized Luria-Delbrück distributions

were repeatedly simulated for different values of a and r, and for

each of the three realistic distributions. The main conclusion was

that using the classical Luria-Delbrück distribution estimation

procedure yields satisfactory results for the estimation of the mean

number of mutations a but introduces a sizeable bias on the

estimation of the relative fitness r. The estimation procedure that

uses constant division times has a negligible bias and a much better

precision on r.

I have developed in R [25] a set of functions that output samples

of generalized Luria-Delbrück distributions, compute estimates,

confidence regions and p-values for hypothesis testing. These

functions have been made available on line: http://www.ljk.imag.

fr/membres/Bernard.Ycart/LD/.

Results

Simulation experiments
I denote hereafter by GLD(a,r,F ) the generalized Luria-

Delbrück distribution with parameters a, r, and F: it is the

distribution of the final number of mutants in a fluctuation analysis

experiment, when the mean number of mutations is a, the relative

fitness of normal cells compared to mutants is r, and the

distribution of mutant division times is F. The particular case

where division times are exponentially distributed is the classical

Luria-Delbrück distribution LD(a,r). Detailed definitions will be

given in the ‘models and methods’ section. In real fluctuation

analysis experiments, the actual distribution F of division times is

unknown. Therefore the question to be answered was the

following: if a sample of the generalized Luria-Delbrück distribu-

tion GLD(a,r,F ) has been produced, and estimates âa and r̂r are

computed from another division time model than F, by how much

are these estimates biased, how reliable confidence intervals on a
and r can be?

Three distributions were used in simulation procedures:

Gamma, Log-normal, and Inverse Gaussian; they were adjusted

on Kelly and Rahn’s Bacterium aerogenes data. The exact

definition of the three distributions is detailed in the ‘models and

methods’ section. Two models were considered for estimation: the

exponential model (division times follow the negative exponential

distribution, i.e. the classical model), and the Dirac model (all

division times are equal to the same value). The corresponding

distribution functions are denoted by Fexp and Fdir. The

estimation procedure is explained in the ‘models and methods’

section. Figure 1 represents the evolution of three typical clones,

simulated with the Dirac model, the Log-normal model, and the

exponential model: the exponential model is much more irregular

than observed in practice: see e.g. Figure 5 in [26].

The simulation study consisted in simulating samples of the

GLD(a,r,F ), F being a Gamma, Log-normal, or Inverse Gaussian

distribution, then estimating a and r as if F had been Fexp or Fdir.

A simulation function for the GLD(a,r,F ) has been included in

the R script made available on line. It was used to output 10000

samples of size 100 for 27 different sets of parameters: a~1,4,8,

r~0:8,1:0,1:2, F being one of the three distributions mentioned

above. Apart from the extensive study of [27], usual fluctuation

experiment samples have size of order a few tens, which motivated

my choice for the sample size. The range of values for r is typical

of practical situations. For a, very small values were not considered

as significant: if a,1, a large part of the information is contained

in the frequency of zeros: the so called p0-method gives almost as

good results on a as any other estimator, independently from the

model [14].

For each of the 270000 samples, and for the two models Fexp

and Fdir, the estimates of a and r were computed, together with

their confidence intervals at level 95%. The results obtained with

the three distributions Gamma, Log-normal, and Inverse Gauss-

ian, turned out to be very similar. Only the results for Log-normal

division times are reported here. Figure 2 displays the boxplots of

the estimated values of a and r for the 9 couples of parameters

a~1,4,8, r~0:8,1:0,1:2. The following visual observations can be

made:

N the classical exponential model clearly overestimates r and has

a rather large dispersion of estimated values,

N the Dirac model correctly estimates r. It induces a much

smaller bias and dispersion,

N both models correctly estimate a.

Further precisions are given in Table 1, were mean biases on

10000 samples are given for each of the 9 couples of parameters

(a,r) and the two models. The mean bias for estimates of r using

the exponential model (last column of Table 1) is quite sizeable:

between 10% and 30% of the true value.

The quality of confidence intervals when the model is not

adapted is illustrated on Table 2. For each of the 27000 samples

of size 100, confidence intervals for a and r at confidence level

95% have been computed using the exponential and Dirac

model. Out of them, a theoretical proportion of 0.95 should

contain the true value of the estimated parameter. The

proportion of the 10000 intervals containing the true value

has been computed for each value of the parameters. Table 2

shows the results for the Log-normal samples (results for the

other two distributions are similar). The confidence intervals for

a had a correct proportion of success for both models, slightly

better for estimates using the exponential model. Confidence

intervals on r using the Dirac model are also correct. However,

the estimation of r using the exponential model was not reliable:

up to 30% of the 95% confidence intervals did not contain the

true value of r (last column of Table 2). This result is in

accordance with the strong bias discussed above.

The parameter of main interest being a, the results of Tables 1

and 2 are encouraging: the bias on a and the coverage probability

of confidence intervals remain good, whichever model is used for

estimation. In order to confirm this and evaluate the bias on a for

larger values, another simulation experiment was made. For each

of the two extreme models exponential and Dirac, for

a~1,2, . . . ,10 then a~10,20, . . . ,100 and r~0:8,1:0,1:2,

10000 samples of size 100 were simulated, and the estimate of a
calculated with the other model. It can be considered that the

biases so obtained are an upper bound for the biases induced by

using any of the two extreme cases for an unknown division time

distribution. The relative bias was calculated as the difference

between the mean estimate and the true value of a, divided by the

true value of a. The results are plotted on Figure 3. For aƒ3, the

bias is virtually negligible. For a§4, estimating as if division times

were constant (red points) induces a positive bias, estimating as if

they were exponential (green points) induces a negative bias. The

relative bias remains smaller than 5% for aƒ10. Notice that in all

cases, for any given value of a the bias increases with r.

Fluctuation Analysis: Can Estimates Be Trusted?
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Figure 1. Clones under of Dirac, Log-normal, and Exponential models. The Log-normal distribution has been adjusted on Kelly and Rahn’s
data. All three distribution have been scaled to have unit growth rates. Clones were simulated up to time 5.
doi:10.1371/journal.pone.0080958.g001

Figure 2. Boxplots of estimates of a and r, using the exponential and the Dirac models. Red horizontal lines mark true values of the
parameters. For each of the 9 sets of parameters a~1,4,8 (rows) and r~0:8,1:0,1:2 (columns), 10000 samples of size 100 of the GLD(a,r,F ) were
simulated, F being the Log-normal distribution adjusted on Kelly and Rahn’s data. The estimates of a and r were calculated with the two models
Dirac and exponential. Each boxplot represents the distribution of the 10000 estimates obtained by the Dirac model (left) and the exponential model
(right).
doi:10.1371/journal.pone.0080958.g002
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Having good estimates of the two parameters does not

necessarily assure goodness-of-fit. In another experiment, 10000

samples of the GLD(8,1:2,F ) were drawn, F being the ‘realistic’

log-normal distribution. Each sample was adjusted both by the

Dirac and exponential models: a and r were estimated for each

model and the goodness-of-fit of the sample with the two adjusted

distributions was tested, using the discrete version of the

Kolmogorov-Smirnov test implemented in the R package dgof

[28]. The test detected the difference in about 40% of the case

(39% of p-values below 0.05 for the Dirac model, 43% for the

exponential model). However, it must be observed that since the

data were used to calculate the adjusted distribution, the p-values

cannot be interpreted as if the distribution was independent from

the data. More significantly, the comparison of Kolmogorov-

Smirnov distances showed that the Dirac model was a better

adjustment in 67% of the cases. This is coherent with the results of

Table 1.

Published data sets
The simulation study of the previous section indicates that the

estimates of a should be coherent whatever the model, whereas the

exponential model overestimates r. In order to evaluate the

difference in actual experiments, five sets of published data were

used. Luria and Delbrück [1] (Table 2, p. 504) had data under

three different experimental conditions. I have grouped in sample

A experiments numbers 1, 10, 11 and 21b; in sample B

experiments 16 and 17. Data published in Boe et al. [27], Rosche

and Foster [29], and Zheng [12] were also used. For each data set

the 95% confidence intervals on a and r were computed using the

exponential and the Dirac model. Results are reported in Table 3.

The data set from [29] has a high frequency of zeros, and no

jackpot; this explains why r cannot be reliably estimated by the

exponential model. The Dirac model gives a more realistic

estimate. In all cases, confidence intervals for a are similar.

Confidence intervals on r are different, even though they overlap.

As an example, for the Boe et al. data [27], the estimate of r given

by the Dirac model is 0.738; the estimate given by the exponential

model is 0.824, i. e. 11.6% larger. That difference is coherent with

what has been observed on simulated data. Also, the amplitudes of

the confidence interval under the Dirac and exponential models

are 0.134 and 0.172: the precision under the Dirac model is better.

The goodness-of-fit was tested for the two models, using the

discrete version of the Kolmogorov-Smirnov test [28]. The results,

reported in Table 4, are not conclusive: both adjustements are

good in all cases. The Dirac model is (slightly) better for three

datasets out of five.

Discussion

Dealing with fluctuation analysis experiments and the calcula-

tion of mutation rates, three different levels must be distinguished:

the reality which remains unknown, the mathematical model, and

the estimation technique.

The unknown reality
Mutant counts at the end of a fluctuation analysis experiment

are the result of

1. a random number of mutations occurring with small

probability among a large number of cell divisions,

2. the random times during which mutant clones stemming from

each mutation develop,

3. the number of cells that a clone developing for a given time

may produce.

The mathematical model
All models can be interpreted according to the same three

points. The first two are hardly disputable; the third one is much

more controversial.

1. Due to the law of small numbers, the number of mutations

must follow a Poisson distribution with expectation a,

understood as the mean number of mutations occurring during

the experiment, i.e. the product of the individual probability of

mutation (also called mutation rate) by the final number of

cells.

2. The developing time of a random clone has exponential

distribution with parameter r, provided the time scale has been

chosen so that the growth rate of mutants is 1: r is the ratio of

the growth rate of normal cells to that of mutants, or else the

relative fitness.

Table 1. Mean biases on estimates of alpha and rho.

parameters âadir âaexp r̂rdir r̂rexp

a = 1, r = 0.8 0.011 0.016 0.003 0.083

a = 1, r = 1.0 0.008 0.011 0.002 0.163

a = 1, r = 1.2 0.010 0.010 0.003 0.278

a = 4, r = 0.8 0.061 0.064 0.000 0.073

a = 4, r = 1.0 0.061 0.041 20.001 0.137

a = 4, r = 1.2 0.067 0.033 20.001 0.235

a = 8, r = 0.8 0.166 0.028 0.002 0.056

a = 8, r = 1.0 0.142 20.059 20.001 0.107

a = 8, r = 1.2 0.156 20.079 0.000 0.188

For each of the 9 sets of parameters (left column), 10000 samples of size 100 of
the GLD(a,r,F ) were simulated, F being the Log-normal distribution adjusted
on Kelly and Rahn’s data. The estimates of a and r were calculated with the two
models Dirac and exponential. The estimated bias is the mean difference
between the estimate and the true value. Biases on r with the classical model
(rightmost column) are of order 10% to 20%.
doi:10.1371/journal.pone.0080958.t001

Table 2. Proportion of success for 95% confidence intervals.

parameters âadir âaexp r̂rdir r̂rexp

a = 1, r = 0.8 0.950 0.950 0.951 0.960

a = 1, r = 1.0 0.951 0.952 0.946 0.954

a = 1, r = 1.2 0.954 0.953 0.950 0.957

a = 4, r = 0.8 0.945 0.947 0.949 0.896

a = 4, r = 1.0 0.947 0.950 0.947 0.845

a = 4, r = 1.2 0.949 0.952 0.946 0.787

a = 8, r = 0.8 0.948 0.956 0.950 0.878

a = 8, r = 1.0 0.948 0.953 0.952 0.805

a = 8, r = 1.2 0.944 0.948 0.949 0.695

For each of the 9 sets of parameters (left column), 10000 samples of size 100 of
the GLD(a,r,F ) were simulated, F being the Log-normal distribution adjusted
on Kelly and Rahn’s data. The 95% confidence intervals for a and r were
calculated with the two models Dirac and exponential. The entries of the table
are proportions of the 10000 samples for which the true value is in the
confidence interval. A result close to 0.95 indicates a satisfactory estimation.
doi:10.1371/journal.pone.0080958.t002
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3. The distribution of the number of cells that a clone developing

for a given time can produce depends on various modelling

hypotheses, such as:

N if a mutation occurs during a division, only one of the two

daughter cells is a mutant

N mutant clones develop forever as mutants (no back mutation)

N no cell dies before dividing

N the division times are independent and identically distributed

N the distribution of division times is exponential

Since the early forties (and maybe even before: see [30]),

mathematicians have struggled to propose sets of modelling

hypotheses that allowed explicit computations of probabilistic

distributions. Following Lea and Coulson [5], Bartlett [6]), and

Haldane [30,31], the first four of the above hypotheses have been

widely agreed upon. As for the distribution of division times, the

exponential model that leads to the classical Luria-Delbrück

distribution has largely prevailed [32,33], though constant division

times have also been considered [30,31]. At first, only the case

were normal cells and mutants had the same growth rate (r = 1)

was studied. But soon, with Mandelbrot [7] and Bartlett [8], the

model was generalized to differential growth rates [9–13].

Strangely enough, whereas the Poisson approximation (point 1.

above) has been considered an obvious fact since Luria and

Delbrück [1], the exponential distribution of development times

(point 2.) has remained unnoticed, even though it was known as a

basic fact of branching process theory at least since the sixties [34].

Figure 3. Relative bias on a between the exponential and the Dirac models. Ten thousand samples of size 100 were simulated for the
LD(a,r) for alpha between 1 and 10 (left panel), then between 10 and 100 (right panel) and r~0:8,1:0,1:2. The estimate of a was computed using
the GLD(a,r,Fdir), then averaged over all samples. The relative bias was calculated as the difference between the mean estimate and the true value
of a, divided by the true value of a. Results are plotted as red points. The results for the opposite experiment (i.e. simulating the GLD(a,r,Fdir), and
estimating using the LD(a,r)) are plotted as green points.
doi:10.1371/journal.pone.0080958.g003

Table 3. Confidence intervals for published data sets.

reference size âadir âaexp r̂rdir r̂rexp

Luria &
Delbrück A [1]

42 ½5:30; 9:09� ½5:22; 8:89� ½0:77; 1:19� ½0:82; 1:34�

Luria &
Delbrück B [1]

32 ½0:34; 1:03� ½0:35; 1:04� ½0:21; 0:76� ½0:18; 0:80�

Boe et al. [27] 1102 ½0:64; 0:77� ½0:65; 0:77� ½0:69; 0:83� ½0:73; 0:91�
Roshe & Foster
[29]

52 ½1:03; 1:98� ½1:03; 1:98� ½1:02; 4:25� ½0; 12:12�

Zheng [12] 30 ½6:79; 13:21� ½6:66; 12:78� ½0:64; 1:02� ½0:67; 1:11�

For 5 published data sets, the 95% confidence intervals on a and r were
calculated with the two models Dirac and exponential.
doi:10.1371/journal.pone.0080958.t003

Table 4. Kolmogorov-Smirnov goodness-of-fit tests for
published data sets.

Dirac model Exponential model

reference distance p-value distance p-value

Luria & Delbrück A [1] 0.055 1.000 0.057 0.999

Luria & Delbrück B [1] 0.069 0.998 0.055 1.000

Boe et al. [27] 0.015 0.955 0.006 1.000

Roshe & Foster [29] 0.046 1.000 0.049 1.000

Zheng [12] 0.063 1.000 0.070 0.997

The Kolmogorov-Smirnov distance between the sample and the adjusted
distribution was calculated for the two models Dirac and exponential. The
parameters of the adjusted models were estimated from the data by the GF
method. Since the adjusted model used estimations from the data, the p-value
can only be taken as an indication. Calculations were made using the R package
dgof [28].
doi:10.1371/journal.pone.0080958.t004
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It was remarked in [14], and leads not only to a much simpler

derivation of closed mathematical formulas, but also to simple and

efficient simulation algorithms.

A distinctive hypothesis of the model considered here (as in most

previous works), is that cells can only divide and never die. A

model taking cell deaths into account was described in [35], and

an estimation procedure was proposed. In practice, the proportion

of deaths is known to be rather low [22,36]. As shown in [35],

neglecting cell deaths underestimates a and r. Another dubious

hypothesis of the models considered so far is the independence of

individual division times. The independence hypothesis was

questioned very early [37]. Indeed, actual division time data show

two types of correlation [38]: between the division times of a

mother cell and its two daughters, and between the two sisters

conditioning on the mother. It was remarked long ago by Powell

[39] (see also [40,41]) that sister-correlations do not influence

exponential growth. The effect of mother-correlation on growth

rates was discussed by Harvey in [41]. Its influence on the

estimation of parameters in fluctuation analysis will be the object

of future work.

The estimation technique
From Luria and Delbrück [1], the mean number of mutations a

has been the parameter of interest, whereas the relative fitness r
was regarded at best as a nuisance parameter, or very often taken

as fixed: r = 1 [2–4]. Indeed, the relative fitness can be

independently estimated, by separately growing clones of mutants

and normal cells, and calculating their growth rates [42]. If this

has been done, then r can be considered as known, which leads to

a better estimation of a, as pointed out in [14]. Yet r is rarely

known in practice. Its independent calculation may be difficult in

some cases (in vivo experiments for instance). Considering

differential growth rates is necessary, as pointed out by several

authors [9–14]; however, many studies are still being made using

the LD(a,1) without questionning the equal rate hypothesis (e.g.

[43,44]).

Once a mathematical model has been chosen, many estimation

procedures for a and/or r are available [4,14]. As in any

parametric estimation problem, the questions are:

N are estimates unbiased?

N can confidence intervals be computed?

N is the mean squared error minimal?

Only three methods answer positively the first two questions: the

p0-method [1,4], the Maximum Likelihood (ML) method

[12,13,45,46], and the Generating Function (GF) method [14].

As in many other estimation problems, the best method in terms of

mean squared error is the ML method. As was shown in [14], the

p0-method performs well for small values of a. The GF method is

nearly as precise as the ML, with a much broader range of

applicability, and virtually null computing time.

To go further, three more criteria must be added:

N to how many models can the procedure be applied?

N can it work on a wide enough range of values of a and r?

N is it robust to variations of modelling hypotheses, or else how

much bias estimating with a wrong model does induce?

As far as the first and third questions are concerned, the winner

is the p0-method: the distribution of the estimator is easily

computed under any model, and the result does not depend on

any hypothesis, except the fact that cells always divide and never

die (see [35] for an alternative in the case of cell deaths). However,

it relies upon a positive number of zeros in the sample, and is

therefore limited to relatively small values of a (smaller than 2 in

practice). Such a limitation is not statistically acceptable.

Regarding the first question, the ML procedure can be applied

if the probabilities of mutant counts can be computed as a function

of the parameters. This is the case for only two distributions so far:

the classical LD(a,r) (independent exponential division times, no

deaths), and the GLD(a,r,Fdir) (constant division times, no

deaths). The GF procedure can be applied to any GLD(a,r,F),
provided the distribution F has been previously estimated. It was

applied to a cell-death model in [35]. Actually the Monte-Carlo

algorithm proposed here can be used for any model, as soon as

clones can be simulated. If the distribution of division times is

unknown, any one of the two models above (exponential or

constant division times) can be chosen.

The second question has been discussed in [14]. Even with a

very careful algorithmic implementation [12,47], the ML method

can compute estimates only for samples in which the maximal

value does not exceed a certain limit. Yet a crucial feature of

mutant counts is the appearance of jackpots, i.e. unusually large

values. For the ML method to be applied, the highest jackpots

must be levelled out, which induces a systematic bias both on a
and r. This explains why the ML method can be used only when

large jackpots are very unlikely, or else if a is small enough and r
large enough; as an indicative range of values, av10 and rw0:5
can be considered (admittedly, current experiments stay within

that range).

Regarding the third question, estimating parameters with a

wrong model can be expected to induce some bias, whichever

estimation method is used. As shown in [14], the GF and ML

methods output very similar results (when both can be used). So

the conclusions of the ‘Results’ section would hold as well for ML

estimates. The main question was to evaluate which bias could be

expected from using either the Dirac or the classical exponential

model, when data were simulated using a more realistic model.

The estimation of a can be expected to be robust for low values,

because when a is small, the information is concentrated on the

first value p0~e{a that depends only on a. The surprise was that

it is still robust up to a~10, when p0 is very small and the p0-

method cannot be used (Figure 3, left panel). For very large values

of a, both models induce a bias on a, positive for the Dirac model,

negative for the exponential model (Figure 3, right panel). The

estimation of r is more sensitive to the model: estimating with the

exponential model induces a positive bias; using the Dirac model

reduces the bias (Figure 2 and Table 1).

Models and Methods

Division time distributions and growth rates
In this section, the probabilistic model of cell division and

mutations is described, the relation between division times and

growth rates is precised, and the goodness-of-fit of Kelly and

Rahn’s data [15] with three families of distributions is detailed.

In Kendall’s notation [48], the model considered here is G/G/

0:

N at time 0 a homogeneous culture of n normal cells is given;

N the division time of any normal cell is a random variable with

distribution function G;

N when the division of a normal cell occurs, it is replaced by:

– one normal and one mutant cell with probability p,

– two normal cells with probability 1{p;

Fluctuation Analysis: Can Estimates Be Trusted?
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N the division time of any mutant cell is a random variable with

distribution function F;

N when the division of a mutant cell occurs, it is replaced by two

mutant cells;

N all random variables and events (division times and mutations)

are mutually independent.

The probabilistic results used here come from the theory of

continuous time branching processes: see [49,50]. To a distribu-

tion of division times corresponds an exponential growth rate for

the corresponding clones: the growth rate of a clone with binary

divisions is the point at which the Laplace transform of division

times equals 1/2. If all division times are multiplied by a constant,

the growth rate is divided by the same constant. Therefore scaling

a distribution to have unit growth rate amounts to multiplying all

division times by the initial growth rate. Here I assume that the

time scale has been chosen so that the growth rate of normal cells

is the relative fitness r, and the growth rate of mutants is 1:

ðz?

0

e{rtdG(t)~

ðz?

0

e{tdF (t)~
1

2
:

Two particular cases will be seen as extreme values for the

distribution F: exponential and Dirac distributions.

Fexp(t)~1{e{t; Fdir(t)~II½log(2),z?)(t),

where II denotes the indicator function of an interval (1 or 0

according to whether the variable is in the interval or not). These

distributions have coefficients of variation equal to 1 and 0

respectively. The coefficients of variation observed in experiments

are of order 0.2 [23]. I have chosen three families of distributions

to illustrate my results: Gamma, Log-normal and Inverse

Gaussian. All three have the property to be invariant through

scaling. For instance, if X has Gamma GA(a,l) distribution, then

sX has GA(a,l=s) distribution; similar relations hold for the two

other families. The probability distribution functions, Laplace

transforms, and scaling parameters are given in Table 5. As many

other families of distributions, these three encompass the two

extremes of exponential and Dirac distributions as limit cases and

interpolate between them. This is illustrated by Figure 4 where 20

densities of unit growth rate distributions are plotted for each

family.

In order to get one realistic distribution per family, the historical

observations of Kelly and Rahn on Bacterium aerogenes: Table 2

p. 149 of [15] were adjusted. A maximum likelihood estimation of

the parameters on the data led to one particular distribution in

each family, that was rescaled to unit growth rate. Figure 5

illustrates the fit. On the left panel, the histogram and the 3

densities are superposed; the right panel displays the correspond-

ing densities after scaling to unit growth rate. Table 6 gives the

parameters of the three densities, together with the p-values of the

Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests:

all three fits turn out to be satisfactory.

Generalized Luria-Delbrück distributions
Consider an initial (large) number n of normal cells. Assume that

the mutation probability p is small, that the time t at which

mutants are counted is large, and that the asymptotics are such

that the expected number of mutations a before time t is non null

and finite. Using general results of branching process theory [49]

and [50], it can be proved that the total number of mutants at time

t approximately follows an integer valued distribution, whose

probability generating function (PGF) is given by:

ga,r(z)~exp(a(hr(z){1)), ð1Þ

with:

hr(z)~

ðz?

0

y(z,t)re{rtdt, ð2Þ

where y(z,t) is the PGF of M(t), i.e. the number of cells at time t

in a mutant clone, starting from one single cell at time 0.

y(z,t)~E½zM(t)�, ð3Þ

where E denotes mathematical expectation. The explicit expres-

sions (1) and (2) are quite general, and do not depend on any

modelling assumption apart from exponential proliferation. If the

individual division times of mutants are supposed to be indepen-

dent with common distribution F, then the function y(z,t) is

uniquely defined in terms of F.

The interpretation of (1) and (2) is quite simple, and can be

separated into the following two arguments.

N The number of mutations converges in distribution to the

Poisson distribution with parameter a (this remark had already

been made by Luria and Delbrück [1]). From each mutation

stems a mutant clone that develops at final time T into a

random number of mutants, each with PGF hr. A random

number of such clones must be added: the result is a Poisson

sum of independent random variables with PGF hr. This yields

equation (1).

N Any given mutation happens at some division instant chosen at

random (i.e. uniformly distributed) among all division instants.

Due to exponential growth, division instants are more

concentrated near the end of the observation interval. It can

be proved that the difference between the final time and a

randomly chosen division instant, i.e. the developing time of a

typical mutant clone, is exponentially distributed with

parameter r. Therefore the size at final time of a typical

mutant clone is an exponential mixture of sizes at fixed time t.

Hence equation (2).

Precise mathematical statements and proofs of the asymptotics

described above have been given in [14], and will not be

reproduced here. I propose to name Generalized Luria-Delbrück

distribution with parameters a, r, and F and denote by

GLD(a,r,F ), the probability distribution on the set of integers

whose PGF ga,r is defined by (1) and (2). Observe that it depends

on the division time distribution of normal cells G only through the

growth rate r, whereas it does depend on the actual division time

distribution F of mutant cells. The particular case GLD(a,r,Fexp)

is the classical Luria-Delbrück distribution LD(a,r). In that case,

Fexp(t)~1{e{t,

and

hexp
r (z)~

ðz?

0

ze{t

1{zzze{t
re{rtdt: ð4Þ

The exponential case has been known for a long time: see Zheng

[32,33] for historical accounts. As shown in [14], formula (4)
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comes from the fact that the size of a mutant clone at time t follows

the geometric distribution with parameter e{t, a fact already

pointed out by Yule [51] (see also [50], p. 109). It turns out that

explicit expressions of y(z,s), hr(z), and ga,r can also be given in

the case where division times are constant, which is the object of

the next section.

Constant division times
Here it is assumed that division times of mutants are constant,

i.e. F is the Dirac distribution at log(2) (to ensure unit growth rate).

Fdir(t)~II½log(2),z?)(t):

Thus the generalized Luria-Delbrück distribution GLD(a,r,Fdir) is

considered. The idea can be traced back to Haldane who used it to

propose an approximation heuristics for calculating the probabilities

of mutant counts: see Sarkar [30] and Zheng [31] (actually,

Haldane’s model can be related to the particular case GLD(a,1,Fdir).

For the GLD(a,r,Fdir), formula (2) becomes:

hdir
r (z)~(1{2{r)

Xz?

n~0

2{nrz2n
: ð5Þ

To the best of my knowledge (5) is new. Here is how it is derived.

With constant division times, say all equal to a, the population

doubles at multiples of a. Hence the exponential growth rate is

log(2)=a~1, therefore a~log(2). Between instants na and

(nz1)a, there are 2n cells in the clone. Hence the generating

function at time s:

ydir(z,s)~
Xz?

n~0

z2n
II½na,(nz1)a)(s):

Integrating against the exponential distribution with parameter r
gives:

Figure 4. Densities of Gamma, Log-normal, and Inverse Gaussian. All densities have been rescaled to have unit growth rates. The dashed
curve is the density of the exponential distribution with rate 1. The dashed vertical line locates the Dirac distribution at log 2.
doi:10.1371/journal.pone.0080958.g004

Table 5. Characteristics of three families of distribution.

Distribution Gamma Log-normal Inverse Gaussian

parameters GA(a,l) LN(m,s) IG(m,l)

PDF ta{1la

C(a)
e{lt

1

x
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e

{
log (t){m)2

2s2 l

2pt3

� �1=2

e
{

l(t{m)2

2m2t

Laplace transform l

szl

� �a numeric
exp l

m 1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z 2m2 s

l

q� �� �

growth rate l(21=a{1) g.r. numeric log 2

m
z

log2 2

2l

unit growth rate GA(a,1=(21=a{1)) LN(mzlog(g:r:),s)
IG(log 2z

m log2 2

2l
,
l log 2

m
z

log2 2

2
)

For Gamma, Log-normal and Inverse Gaussian distributions, the notation of parameters, the probability distribution function (PDF), the Laplace transform, the growth
rate, and the scaling for unit growth rate are given.
doi:10.1371/journal.pone.0080958.t005
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hdir
r (z)~

Xz?

n~0

z2n
e{nar(1{e{ar),

hence (5), since ea~2.

Not only the PGF, but also the probabilities of the

GLD(a,r,Fdir) can be easily computed. Indeed, let (pk)k§1 denote

the probabilities of the distribution with PGF hdir
r :

pk~(1{2{r)2{nr if k~2n, 0 else:

Let (qk)k§0 be the probabilities of the GLD(a,r,Fdir). They can be

computed by the following well known recursive formula, easily

deduced from the probability generating function (1) (see [52] and

references therein):

q0~e{a and for k§ 1, qk~
a

k

Xk

i~1

ipiqk{i: ð6Þ

The algorithm has been encoded in the R script available online:

the probabilities, cumulated distribution function and quantile

function of the GLD(a,r,Fdir) are provided. The log-likelihood

and its derivatives with respect to the parameters also have explicit

algorithms, almost identical to those implemented for the LD(a,r)
by Zheng [13]. The conclusion is that the estimation of a and r
can be conducted for the GLD(a,r,Fdir) exactly as for the

LD(a,r), either by the classical Maximum Likelihood method [13]

or by the generating function method [14]. The algorithms are

even faster and numerically more stable in the constant division

time model.

General division times
No distribution F other than Fexp and Fdir leads to such closed

expressions as (4) and (5). However, it is possible to compute

numerically hr(z) for any F, using a Monte-Carlo algorithm that

will now be described. If a division time distribution is given,

sequences of independent division times can be simulated at will.

From such a sequence, a clone can be simulated up to any

arbitrary time, outputing the number of cells as a function of time.

That function of time is encoded by the sequence of instants at

which the function increases by 1, i.e. when divisions occur.

Choose a value rmin, such that any subsequent evaluation of hr(z)

will be made for values of r larger than rmin. In simulations, I have

chosen rmin~0:8, but this value could be adjusted. Let T1, . . . ,Tk

be k independent instants, simulated according to the exponential

distribution with parameter rmin. A crucial observation is that if Th

is exponentially distributed with parameter rmin, then for any

r§rmin,
rmin

r ThƒTh is exponentially distributed with parameter

r. For h~1, . . . ,k, denote by Nh(t) the number of living cells at

time t in a random clone, starting from a single mutant cell at time

0, simulated up to time Th. For any r§rmin, and any z[½0,1�,
consider:

ĥhr(z)~
1

k

Xk

h~1

zNh(Thrmin=r):

By the law of large numbers, as k tends to infinity, ĥhr(z) converges

to hr(z). The central limit theorem yields a precision of order

Figure 5. Adjusted distributions for Kelly and Rahn’s data on Bacterium aerogenes [15]. On the left panel, the histogram of the data, and
the three densities are superposed; the Gamma distribution appears in red, the Log-normal distribution in blue, the Inverse Gaussian in green. The
blue and green curves are very close. On the right panel, the densities have been rescaled to unit growth rate. The dashed curve is the density of the
exponential distribution, the dashed vertical line locates the Dirac distribution at log 2.
doi:10.1371/journal.pone.0080958.g005

Table 6. Adjusted distributions for Kelly and Rahn’s data on
Bacterium aerogenes [15].

Distribution Gamma Log-normal
Inverse
Gaussian

parameters a~11:18, l~15:64 m~{0:38, s~0:30 m~0:72, l~7:50

Kolmogorov-
Smirnov

0.693 0.919 0.874

Anderson-
Darling

0.505 0.852 0.813

A maximum likelihood estimation of the parameters on the data led to one
particular distribution in each family, that was rescaled to unit growth rate. The
parameters of the rescaled distribution are given, together with the p-values for
the Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests.
doi:10.1371/journal.pone.0080958.t006
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1=
ffiffiffi
k
p

on the result. In simulations (in particular to compute the

curves of Figure 6), k has been fixed to 105. Observe that the (time

consuming) simulation of the k clones needs to be done only once:

from there, all subsequent evaluations of ĥhr(z) will be deduced.

As will be seen in the next section, the estimation of a and r and

the computation of their confidence intervals require repeated

evaluations of the derivative in r of hr(z). Using the procedure

above to evaluate that derivative by finite differences would lead to

quite unprecise results. Another procedure, similar to the previous

one, is proposed instead. The derivative in r of hr(z) is:

Lhr(z)

Lr
~

ðz?

0

y(z,s)e{rsds{r

ðz?

0

y(z,s)se{rsds

~
1

r
hr(z){

1

r
~hhr(z),

with:

~hhr(z)~

ðz?

0

y(z,s)r2se{rsds:

Now r2se{rs is the density of the Gamma distribution GA(2,r)

(sum of two independent exponentially distributed random

variables). Therefore ~hhr(z) is the PGF of the number of cells in

a clone starting from a single mutant cell at time 0, observed up to

an independent, Gamma distributed random time. Let ~TT1, . . . ,~TTk

be k independent instants, simulated according to the Gamma

distribution with parameters 2 and rmin. For h~1, . . . ,k, denote

by ~NNh(t) the number of living cells at time t in a random clone,

starting from a single mutant cell at time 0, simulated up to time
~TTh. For any r§rmin, and any z[½0,1�, consider:

~̂hh~hhr(z)~
1

k

Xk

h~1

z
~NNh(~TThrmin=r):

By the law of large numbers, as k tends to infinity, ~̂hh~hhr(z) converges

to ~hhr(z).

Further savings in computer time can be obtained by the

following remark. Let ~TT follow the Gamma distribution with

parameters 2 and r. Let U be another random variable,

independent from T , uniformly distributed on the interval [0,1].

Then UT follows the exponential distribution with rate r.

Therefore the same k clones, simulated up to Gamma

distributed instants, can be used to estimate the values of both

hr(z) and ~hhr(z).

Figure 6. Ratios for GF estimators of the relative fitness r. Ratios fz1,z2
(r)~

hr(z1){1

hr(z2){1
as functions of r, for z1~0:1 and z2~0:9. The ratios

depend on the division time distribution: exponential (solid black), Dirac (dashed black), Gamma (red), Log-normal (blue), Inverse Gaussian (green).
The realistic distributions are close together, and closer to the Dirac case than to the exponential case. This explains why the classical Luria-Delbrück
model induces a positive bias on the estimation of r, and why the Dirac model yields better results.
doi:10.1371/journal.pone.0080958.g006
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Generating function estimators
The main goal of fluctuation analysis is to estimate the mutation

probability p, from a sample of mutant counts. If an estimate of the

mean number of mutations a has been calculated, then an estimate

of p can be deduced, dividing by the final number of cells: the

parameter of main interest is a. Many methods of estimation for a
have been proposed: see [4]. The simplest consists in estimating

the probability of observing no mutant: e{a; this is the original

method used by Luria and Delbrück [1], and is usually referred to

as ‘‘p0-method’’. Observe that the result does not depend on r, nor

on F. Therefore the p0-method is completely independent from

any modelling hypothesis. It that sense it is the most robust of all

methods. However, the p0-method can be used only if a is small

enough (so a sizeable number of tubes do not contain any mutant).

As explained in [14] and in the discussion section, such a limitation

cannot be accepted.

Apart from the p0-method, any other consistent estimator of a
must depend on the value of r and on the mutant division time

distribution F. Maximum Likelihood is usually considered the best

estimation method in a parametric inference problem. For the

estimation of the parameters a and r of the classical LD(a,r), it

has been recommended by several authors: [12,13,45,46]. In [14],

its limitations were pointed out, and an alternative procedure,

based on the empirical probability generating function (EPGF),

was proposed. It turns out that the EPGF method can be adapted

to the general case of the GLD(a,r,F ), whereas the Maximum

Likelihood cannot. It only relies upon the numerical evaluations of

hr(z) and its derivative in r. For the LD(a,r) and GMD(a,r,Fdir)

explicit formulas are available, for the other cases a Monte-Carlo

algorithm was described in the previous section. The procedure is

described below, and the reader is refered to the R functions that

have been made available online for implementation details: they

include estimation, confidence intervals, and hypothesis testing.

Let (X1, . . . ,Xn) be a sample of independent random variables,

each with GLD(a,r,F ) distribution. Recall the probability

generating function of the GLD(a,r,F):

ga,r(z)~exp(a(hr(z){1)),

with:

hr(z)~

ðz?

0

y(z,t)re{rtdt:

Define the empirical probability generating function (EPGF) ĝgn(z)
as:

ĝgn(z)~
1

n

Xn

i~1

zXi :

The random variables zXi are bounded and mutually independent:

by the law of large numbers, ĝgn(z) is a consistent estimator of

ga,r(z), for any z in [0,1]. For 0vz1vz2v1, consider the

following ratio:

fz1,z2
(r)~

hr(z1){1

hr(z2){1
~

log ga,r(z1)

log ga,r(z2)
: ð7Þ

The function that maps r onto y~fz1,z2
(r) is continuous and

strictly monotone, hence one-to-one. Therefore the inverse, that

maps y onto r~f {1
z1,z2

(y), is well defined. For 0vz1vz2v1, let

ŷyn(z1,z2) denote the following log-ratio.

ŷyn(z1,z2)~
log(ĝgn(z1))

log(ĝgn(z2))
:

An estimator of r is obtained by:

r̂rn(z1,z2)~f {1
z1,z2

(ŷyn)

Then an estimator of a by:

âan(z1,z2,z3)~
log(ĝgn(z3))

hr̂rn(z1,z2)(z3){1
,

where z3[(0; 1) is a new control, possibly different from z1 and z2.

Observe that âan(z1,z2,z3) depends on r̂rn(z1,z2), whereas r̂rn(z1,z2)
only depends on the arbitrary choice of the couple (z1,z2). They

will be referred to as generating function (GF) estimators. The

strong consistence and asymptotic variance of the GF estimators

were studied in [14], and mathematical details will not be

reproduced here. In particular, Proposition 4.1 of that reference

gives the explicit form of the asymptotic covariance matrix, upon

which inference procedures are based (confidence intervals and

hypothesis testing). The asymptotic covariance matrix has been

encoded in the R functions made available online; it expresses in

terms of:

N the PGF ga,r evaluated at z1, z2, z3, and their products two by

two,

N the PGF hr evaluated at z1, z2, z3,

N the derivative in r of hr, evaluated at z1, z2, z3.

The GF estimators depend on the three arbitrary values of z1, z2

and z3. Another tuning parameter has to be added. In the

GLD(a,r,F ) the parameter r, determines the size and frequency

of much larger values than usual (called ‘‘jackpots’’ in [1]). For

rv1, some very large values can be obtained, even for a small a.

Using the empirical probability generating function is a simple

way to damp down jackpots, and get robust estimates. The

variable z can be seen as a tuning parameter for the damping. At

the limit case z~0, ĝgn(0) is simply the frequency of null values,

and âan(0)~{log(ĝgn(0)) is the so called p0-estimator of a, already

proposed in [1] (it does not depend on r nor F). For z1~0:1, only

small observations will be taken into account, whereas for z2~0:9,

much larger values will influence the sum. Thus the empirical

probability generating function damps down jackpots in a

differential way according to z1 and z2. Choosing z1~0:1 and

z2~0:9 will contrast small values compared to jackpots, which

explains why r̂rn can efficiently estimate r for small a’s. However,

for large values of a (say aw5), even z2~0:9 will output very small

values, below the machine precision. This will make the estimates

numerically unstable. A natural way to stabilize them is to rescale

the sample, dividing all values by a common factor b. This

amounts to replacing z by z1=b in the definition of ĝgn(z):

1

n

Xn

i~1

zXi=b~
1

n

Xn

i~1

(z1=b)Xi~ĝgn(z1=b):

I proposed to set b to the q-th quantile of the sample, where q is

another control. Based on simulation evidence, my best compro-

mise is z1~0:1, z2~0:9, z3~0:8, q~0:1. In the implementation

of the GF estimators, the scaling factor b is set to the q-th quantile

of the sample, and all data are divided by that scaling factor (which
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amounts to replacing z1,z2,z3 by z
1=b
1 ,z

1=b
2 ,z

1=b
3 ). The estimators âan

and r̂rn are computed with these values.

The GF estimators crucially rely upon the inverse of the

function f, defined by (7). Figure 6 shows variations of f according

to the underlying model. On that figure, plots of f for the

exponential and Dirac model have been represented, together with

plots of f for the 3 distributions determined by fitting actual data.

The curves corresponding to realistic distributions are close

together, and closer to the Dirac case than to the exponential

case. From this graphics, it can be anticipated that estimating r
with the classical Luria-Delbrück model induces a positive bias;

this was indeed observed on simulations. Also the fact that the

slope of the curve corresponding to the exponential model is

smaller explains why the precision on r obtained by the classical

method is worse.
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