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Abstract  

Chemical and conformational changes underlie the functional cycles of proteins. Comparative 

crystallography can reveal these changes over time, over ligands, and over chemical and physical 

perturbations in atomic detail. A key difficulty, however, is that the resulting observations must 

be placed on the same scale by correcting for experimental factors. We recently introduced a 

Bayesian framework for correcting (scaling) X-ray diffraction data by combining deep learning 

with statistical priors informed by crystallographic theory. To scale comparative crystallography 

data, we here combine this framework with a multivariate statistical theory of comparative 

crystallography. By doing so, we find strong improvements in the detection of protein dynamics, 

element-specific anomalous signal, and the binding of drug fragments.  
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Introduction 

Proteins and their assemblies mediate chemical catalysis, molecular transport, signal 

transduction, and the allosteric control of these processes. X-ray crystallography is rapidly 

expanding experimental access to these processes, driven by the advent of new X-ray sources 

including fourth-generation synchrotrons1 and X-ray free-electron lasers (XFELs)2,3, by new time-

resolved methods such as mix-and-inject studies of enzyme catalysis4-8, and by high-throughput 

methods permitting screening of the interactions of thousands of molecules with proteins of 

interest9-14. These methods enable tracking of enzymatic intermediates in atomic detail, mapping 

of the concerted motions of proteins10,15-17, and the identification of protein-binding drug 

fragments (small-molecule templates for drug design). Each of these experiments is comparative 

and seeks to detect subtle changes in average structure. The success of such experiments hinges 

not only on billion-dollar instruments, but also on the sensitivity of the algorithms used to detect 

changes in structure from the X-ray diffraction data. 

X-ray diffraction images obtained from macromolecular crystals consist of patterns of 

many small spots, or reflections. The true intensities of these reflections are proportional to the 

square amplitudes of the “structure factors”—the Fourier components of the electron density in 

the crystal. The observed intensities, however, also depend on a range of multiplicative factors 

(“scales”) due to the intensity and polarization of the incident beam, the volume of crystal 

exposed to the beam, intrinsic and beam-induced crystal defects, and absorption of the beam by 

surrounding material, air, and the detector itself. Neither the true reflection intensities nor these 

scales are directly observed, yet it is critical that before inferring changes in structure from 

changes in observed intensities, these intensities must be corrected. The correction procedure is 

known as scaling. 

Approaches to scaling rely on comparison of redundant observation of equivalent 

reflections which should yield the same structure factor amplitude up to variation in the scale 

factor. When sample or beamtime are limited, the need for scaling to compare different 

conditions generates a tradeoff: one can either accurately estimate scales by maximizing 

redundancy for a few conditions, or observe many conditions but be left with residual systematic 
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differences in the scales of each dataset. These remaining scaling inaccuracies are often 

addressed after the fact, for example by applying local scaling in SOLVE18, SCALEIT19, or the 

“Isomorphous Difference Map” utility of PHENIX (e.g., in 20,21). 

Here we introduce a framework that enables statistically efficient comparison of related 

datasets. We first observe that the structures of proteins at different timepoints or under 

different chemical or physical conditions are often very similar, and therefore could provide 

nearly redundant measurements. To exploit this similarity, we adapted an algorithm we recently 

introduced for scaling and merging of X-ray diffraction data22. This algorithm, implemented in the 

software package Careless, applies to diffraction data from all predominant experimental 

approaches. Careless is based on approximate Bayesian inference combined with a neural 

network that learns scale factors from experimental metadata such as the position of each 

diffraction spot on the detector, Miller indices, and frame or crystal number. To adapt this 

approach to comparative applications, we developed a multivariate prior distribution that 

accurately captures correlations between related crystallographic datasets, and extend the 

Careless formalism to use such prior information. We show that this approach leads to strong 

improvements in the detection of signals in several examples—detection of protein dynamics 

from a polychromatic, time-resolved experiment, detection of specific elements in enzymes from 

serial XFEL and polychromatic synchrotron data, and the detection of bound drug fragments from 

a crystallographic screen. In forthcoming work23,24, we further show that this approach makes it 

possible to follow enzyme catalysis in a serial, rapid-mixing experiment. 

A statistical framework for comparative crystallography 
Our statistical model is based on three concepts and explained in mathematical detail in the 

Supplementary Information: First, each structure factor, or Fourier component of the electron 

density, can be thought of as the sum of contributions from all the constituent atoms25. The sum 

of these contributions is well-approximated by the central limit theorem. The structure factors, 

which have real and imaginary components, therefore follow a bivariate normal distribution in 

the complex plane centered at the origin (Figure 1a, black arrows). The structure factor 

amplitudes, which correspond to the distance from the origin in Figure 1a (dashed circle), follow 

the well-known Wilson distribution26. Second, when comparing two related datasets, the 
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contributions of corresponding atoms in the two crystals will be similar and therefore the sums 

of their contributions to their respective structure factors will be similar. When considered 

together, they will closely follow a multivariate normal distribution characterized by a correlation 

parameter, henceforth the double-Wilson r27,28, that quantifies the correlation between the real 

components of pairs of structure factors. Importantly, the joint distribution of complex structure 

factors 𝑭𝑭1,𝑭𝑭2 can be factorized such that 𝑃𝑃(𝑭𝑭1,𝑭𝑭2) = 𝑃𝑃(𝑭𝑭1|𝑭𝑭2) ⋅ 𝑃𝑃(𝑭𝑭2) with 𝑃𝑃(𝑭𝑭1|𝑭𝑭2) only 

dependent on the difference in phases of 𝑭𝑭1 and 𝑭𝑭2. Integrating this unobserved phase 

difference yields a conditional probability density 𝑃𝑃(𝐹𝐹1|𝐹𝐹2) that follows the Rice distribution28-30 

(where 𝐹𝐹 = |𝑭𝑭|). We will refer to this statistical model as the double (or bivariate) Wilson model, 

and to the resulting joint distribution of structure factor amplitudes as the bivariate Wilson 

distribution.  

Figure 1b compares structure factor amplitudes for crystals of human Protein Tyrosine 

Phosphatase 1B (PTP-1B) in the presence and absence (apo) of the inhibitor TCS-40131. A fair 

degree of correlation is evident. A fit to the double-Wilson model (Supplementary Notebook 3) 

shows that 𝑟𝑟 ≈ 0.85, with the implied Pearson correlation coefficient between structure factor 

amplitudes ≈ 𝑟𝑟2 (Supplementary Notebook 2a)32. Indeed, histograms of structure factor 

amplitudes for the inhibitor-bound data (Figure 1c-e and Figure S1) given the binned amplitudes 

of the apo data (blue shading in Figure 1b) are better fit by this model (red curves in Figure 1c-e) 

than by assuming statistical independence (blue curves). We likewise find that the bivariate 

Wilson distribution describes other comparative crystallography datasets well, including time-

resolved X-ray crystallography experiments (Figure S2), replicate data sets across labs (Figure S3), 

and across temperatures (Figure S4), providing confidence that the formalism generally applies 

to related datasets.  

Third, this approach does not generalize to more than two datasets, as it is not known how to 

integrate over the unknown phase differences. However, for many crystallographic 

experiments, it is reasonable to assume some conditional independence. For instance, when 

structure factor amplitudes A and C are both correlated with structure factor amplitudes B, 

their joint probability is often well described as the product 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶) ≈ 𝑃𝑃(𝐴𝐴|𝐵𝐵) ⋅ 𝑃𝑃(𝐶𝐶|𝐵𝐵) ⋅

𝑃𝑃(𝐵𝐵) rather than the exact expression 𝑃𝑃(𝐴𝐴,𝐵𝐵,𝐶𝐶) = 𝑃𝑃(𝐴𝐴|𝐵𝐵,𝐶𝐶) ⋅ 𝑃𝑃(𝐶𝐶|𝐵𝐵) ⋅ 𝑃𝑃(𝐵𝐵), as long as 𝐶𝐶 
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does not provide additional information about 𝐴𝐴 not contained in 𝐵𝐵. Assumptions about 

conditional (in)dependence can be summarized in a Bayesian network or graphical model33 

(Figure 2a). In this representation, each node represents a dataset, and each edge (arrow) 

represents conditional dependence. Whenever the resulting graph is acyclic, the resulting joint 

probability of structure factor amplitudes can be calculated analytically (Supplementary 

Information). We will refer to this distribution as the multivariate Wilson distribution. We note 

that conditional dependence is reciprocal, and the orientation of the displayed arrows is 

irrelevant for our purposes. Indeed, the expected correlations in many comparative 

crystallography experiments can be approximated by such networks (Figure 2b). For example, 

for a crystallographic time series, when estimating structure factors at time 3, it is a good 

assumption that we would not gain anything from knowing the structure factor amplitudes at 

time 1 if we already have access to their values at time 2. We further note that not all nodes 

need to have been observed—conditional independence mediated by a ‘dummy’ has found 

application in the analysis of multiple isomorphous replacement34. 

 
Scaling of related datasets 
We recently introduced a Bayesian statistical framework for simultaneous inference of scales 

and structure factor amplitudes from reflection metadata (such as Miller indices, image 

number, position on the detector, and X-ray wavelength) and observed intensities22. Until now, 

estimation of each structure factor amplitude has been independently constrained by a Wilson 

prior distribution on the amplitudes. For comparative applications, this approach is inefficient: 

during scaling, more accurate scales enable more accurate estimates of structure factor 

amplitudes, and vice versa. It would be natural to incorporate a joint prior distribution on 

structure factor amplitudes during scaling that reflects the expected correlations between 

conditions. Different scenarios for a pair of related structure factor amplitudes 𝐹𝐹1, 𝐹𝐹2 illustrate 

the anticipated benefits of a multivariate approach: (i) if only noisy observations are available 

for 𝐹𝐹1 and 𝐹𝐹2, the prior should force estimates of 𝐹𝐹1 and 𝐹𝐹2 to be highly similar and, therefore, 

their difference small; (ii) when 𝐹𝐹1 can be estimated accurately, the anticipated similarity of the 

structure factor amplitudes will facilitate more accurate estimation of the scales for the other 
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dataset by narrowing down the range of probable values of 𝐹𝐹2; (iii) when accurate observed 

intensities are available for both datasets, the anticipated similarity helps calibrate the relative 

scales in both datasets. With these advantages in mind, we implemented the multivariate 

Wilson distribution as a prior in Careless and show in four examples that structure factor 

differences can, indeed, be much better estimated upon scaling amplitudes with a multivariate 

prior. Operationally, our implementation expects users to supply the topology of conditional 

dependencies between datasets (Figure 2b) and an estimate of the double-Wilson parameter r.  

Laue anomalous diffraction 
Although many X-ray sources are intrinsically polychromatic, most of their photons are typically 

discarded by use of monochromators. For studies of dynamics, however, it can be essential to 

use much brighter polychromatic pulses, giving rise to Laue diffraction. To assess whether the 

use of multivariate priors can improve the processing of Laue data, we first addressed the 

extraction of anomalous signal, which can be recovered from small differences between Bijvoet 

pairs—pairs of structure factors that are identical in the absence of element-specific electronic 

resonances (that is, anomalous effects) but that differ when such effects are present. 

In this example, all data were collected on a single crystal of hen egg white lysozyme soaked 

with sodium iodide using polychromatic X-ray pulses (about 5% spectral bandwidth, from 1.02 

to 1.20 Å wavelength; see Methods). As these data were obtained from a single crystal, one 

might expect little inconsistency in artifacts across the data and minimal benefit from imposing 

a bivariate prior on Bijvoet pairs. Nevertheless, we compared scaling and merging in Careless 

with a univariate Bayesian prior (i.e., the standard Wilson distribution) against a bivariate prior 

that assumes varying levels of correlation, r, between the Bijvoet mates. For consistency, we 

phased all sets of structure factor amplitudes using a reference model refined against 

monochromatic data collected on the same day (see Methods). In the resulting anomalous 

difference map, we find strong gains in peak heights of both iodide ions and sulfur atoms when 

using a bivariate prior (Figure 3a, Figure S5a), even though the anomalous scattering strength 

of sulfur is only about 1/4th the scattering from a single electron (𝑓𝑓′′ = 0.26 at the dominant 

wavelength of the incident X-ray spectrum, 1.04 Å). Importantly, the signal strength is maximal 

at an intermediate 𝑟𝑟 of 0.999, with an increase in anomalous peak height of about 50% over the 
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use of a univariate prior (Figure 3b, Figure S5b). Cross-validation measures of data processing 

quality (CC1/235, CCpred 36, CCanom37) are also improved by the introduction of the bivariate prior 

(Figure 3c-d).  

Time-resolved Laue diffraction 
Laue diffraction at synchrotron sources provides access to the dynamics of proteins on 

timescales of 100 picoseconds and longer. To determine whether a bivariate prior can improve 

scaling of time-resolved signal, we processed a time-resolved Laue dataset collected on a single 

crystal of photoactive yellow protein (PYP) at BioCARS 14-ID at the Advanced Photon Source. 

The light-induced trans-to-cis isomerization of the active site chromophore (Figure 4a) has been 

studied extensively38-40. Our dataset contains 20 images of PYP without laser exposure and 20 

images 2 milliseconds after exposure to a blue laser pulse, at which point PYP is expected to 

adopt the pB1 state40. Using Careless, we jointly scaled the OFF and 2ms datasets while 

imposing a joint prior with varying levels of the correlation parameter, r. Merging statistics 

improve when scaling with a bivariate prior (Figure 4b). One such statistic is the correlation 

coefficient, CCpred, between observed intensities and those implied by the scaling model and the 

estimated structure factor amplitudes22. The gap between the CCpred for training data and a 

cross-validation test set is reduced with increasing r. This means that the bivariate prior 

protects the scaling model against overfitting. The extensive literature on PYP enables us to 

quantify the quality of the resulting electron density difference maps: based on models of the 

ground-state and excited-state conformations from previous studies, we can calculate real-

space correlation coefficients with a predicted difference map (that is, the correlation with an 

𝐹𝐹𝑐𝑐2𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 map based on conformations from Protein Data Bank (PDB) entry 1TS0, see ref. 
40). At the best value of r (about 0.999), the real-space CC (Correlation Coefficient) of the 

observed difference map is more than 0.50 within 10 Å of the chromophore, about twice as 

strong as for an observed difference map obtained by scaling with a univariate prior (Figure 4c). 

Consistent with this quantitative assessment, the difference map near the chromophore is 

more readily visually interpretable after scaling with a bivariate prior (Figure 4d; see also Figure 

S6). We also attempted to place ON and OFF datasets on the same scale using local scaling or 

SCALEIT41 (Methods). In our hands, neither approach was effective (Figure 4c, on the left).  
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It is instructive to compare our scaling approach with commonly used16,22,42,43 weights 

that are heuristic modifications of a weighting scheme proposed in ref44, inspired by Bayesian 

statistics (Methods). These weights reduce the contributions of estimated structure factor 

amplitude differences (Δ𝐹𝐹) that are large or have large estimated errors (𝜎𝜎(Δ𝐹𝐹)). A coefficient 

α, used in calculating the weights, tunes the contribution of large Δ𝐹𝐹 to the difference map 

(Methods). In the case of the PYP data (Figure 4c) we find that suppression of large Δ𝐹𝐹 (𝛼𝛼 > 0) 

is necessary to achieve a similar effect as the bivariate prior. That is, the bivariate prior 

suppresses spuriously large contributions to the difference map without the need for heuristic 

weighting schemes.  

Serial Femtosecond Crystallography  
Serial femtosecond X-ray crystallography (SFX) of microcrystals probed by intense x-ray free-

electron laser (XFEL) pulses has dramatically expanded the range of systems and timescales 

accessible to time-resolved studies. To determine whether multivariate priors could also 

improve the accuracy of SFX data processing, we sought to extract anomalous signal from an 

SFX dataset collected for thermolysin, an enzyme containing a catalytic zinc (Zn) ion in its active 

site. Specifically, we processed 3,160 images from a much larger dataset (CXIDB 8145,46). To 

account for the serial monochromatic data collection strategy, we included an Ewald offset and 

per-image layers in our scaling model, as before22. We split Bijvoet pairs into two half-datasets 

before relating these half-datasets by a joint prior during scaling in Careless. The anomalous 

difference map peak height of the catalytic zinc ion (ZN317) increases from 15σ without a 

bivariate prior to 28σ for the optimal r value (Figure 5a). Additionally, as r is varied, more 

associated calcium ions become detectable. Using a univariate prior, only two of four calcium 

ions appear above 3σ (an approximate noise threshold). After scaling with a multivariate prior, 

all four previously modeled calcium ions are detectable (Figure 5a-b). In prior analyses of a 

thermolysin dataset with four times as many images, anomalous difference signal has 

previously been detected at a site adjacent to the bound ZN31745,47. When scaling our smaller 

dataset with a uniform prior, this site was not detectable22. Upon scaling with a multivariate 

prior, however, this site can be clearly identified (Figure 5b, black arrow). We note that, again, 

these anomalous difference maps can also be improved by weighting (Figure S7), but that this is 
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substantially less effective than the use of a multivariate prior during scaling. In summary, a 

bivariate prior strongly improves the detection of anomalous signal from a small SFX dataset. 

Fragment screening 
Finally, crystallographic drug fragment screens now enable the rapid discovery of 

pharmacological lead compounds against proteins of interest, e.g., SARS CoV-2 proteins9,11,13,48. 

In these studies, thousands of crystals of a protein of interest are each soaked with a “drug 

fragment”—a small-molecule building block for larger drug molecules. To determine if joint 

scaling can improve the detection of bound fragments in difference maps, we analyzed data 

from a fragment screening experiment totaling one apo dataset and sixteen holo datasets 

identified by PanDDA49. This dataset contains structures of SARS-CoV2 nonstructural protein 3 

macromolecular domain 1 (Nsp3 Mac1) with ligands from a fragment screening library bound to 

the Mac1 adenosine-binding site. We ran Careless on unmerged intensities, adding several 

metadata keys including one-hot encodings of each dataset (Methods). By one-hot encoding, 

we allow the model to express differences in scale between fragment-bound datasets. 

Αdditionally, we set each holo dataset to depend on the apo dataset through a joint prior, while 

assuming conditional independence between holo datasets (Figure 2b). We find that difference 

density maps visually improve upon scaling with a multivariate prior (Figure 6a, Figure S8). We 

tracked the largest ligand peaks in the difference map for a given dataset while we varied r. We 

find that in all datasets, this signal is strongest when scaling with a multivariate prior (Figure 

6b). The r value for the tallest peak differs for each holo dataset. Without special modifications 

to scaling and merging, we obtain peak heights on par with those produced by PanDDA, which 

relies on real-space post-processing (Table S2). To determine if the apo-holo dataset structure 

factor correlation, measured by 𝑟𝑟, relates to ligand occupancy, we examined the relationship 

between optimal 𝑟𝑟 and the PanDDA background density correction factor (BDC, a parameter 

which scales inversely with ligand occupancy and accounts for crystal-to-crystal variation in 

soaking and data quality)12. We find a moderate correlation with 𝑟𝑟 (Pearson r = 0.505, p < 0.05) 

(Figure S9a). Merging statistics also improve when scaling with a bivariate prior (Figure S9b): in 

particular, the gap between the training and test CCpred is reduced for higher r, indicating that 

the bivariate prior reduces overfitting of the scales.  
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This example shows that the difference map quality improves when scaling high-

resolution monochromatic data with a bivariate prior. It would be natural to expect that the 

benefits of a multivariate prior during scaling would keep increasing with the number of 

datasets included. At present, this is not the case, likely because we do not account for crystal-

to-crystal variation in the average unit cell.  

Discussion 
Bayesian statistics have been applied extensively in macromolecular crystallography, playing an 

important role in solutions to the phase problem28 and maximum-likelihood-based 

refinement50. Here, we establish that a Bayesian formalism enables the sensitive detection of 

subtle chemical and time-dependent signals and ligand binding from comparative 

crystallographic measurements by introducing a multivariate prior describing the anticipated 

correlations among related datasets. Although this formalism proves effective even in the 

simple form presented here, there are several promising extensions to further improve the 

detection of structural change. For example, high-quality reference datasets are commonly 

measured for serial time-resolved crystallography experiments, but these data are not 

commonly used to improve scaling. Such datasets could be readily added to the Bayesian 

networks shown in Figure 2 to better condition scaling. Second, we currently treat the 

correlation parameter 𝑟𝑟 as a fixed, global hyper-parameter, yet correlations may vary between 

pairs of datasets (e.g., as a function of ligand occupancy) and vary with resolution. These 

correlations could be estimated from the data. Third, as not every node in Figure 2 needs to be 

observed, our approach allows for interpolation of missing observations.  

 The effects of perturbations in comparative crystallography, whether due to laser 

excitation51, temperature15,52, electric field16, or small-molecule binding11, often only affect a 

fraction of the molecules in the crystal. As an important consequence, the resulting mixed 

structure factor amplitudes tend to be slightly smaller than the ground-state (OFF) 

amplitudes53, and the resulting ON-OFF difference maps tend to resemble a negative image of 

the OFF electron density. It is common practice to rescale scaled data to place OFF and ON 

structure factor amplitudes on a common scale (as we do, implicitly, in the present work). In 
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the developed statistical framework, correlation of an isomorphous difference map with the 

OFF electron density, the true ON-OFF difference map, and the map error can all be calculated 

exactly (Supplementary Notebook 6), supporting the common observation that correlation 

with the OFF map can be removed with minimal effect on difference map quality (Figure S12). 

 Finally, we observe that the developed framework also implies a joint distribution of the 

unobserved crystallographic phases across related datasets (SI and Figure S13). As the 

traditional crystallographic data processing paradigm begins to give way to machine learning 

methods, we anticipate that these implied correlations can play a key role in learning 

crystallographic movies directly and efficiently from time-resolved diffraction data. 
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Figures 

 

Figure 1: The double-Wilson model. a) In the double-Wilson model, the structure factors of related 

structures (black and red) are built up from pairs of random contributions (arrows) with correlation 𝑟𝑟𝐷𝐷𝐷𝐷 

between their real components and likewise between their imaginary components. The experimentally 

observed amplitudes of the structure factors are described by the radii of the dashed circles. b) Scatter 

plot for structure factor amplitudes for isomorphous PTP-1B datasets for apo and inhibitor-bound forms 

(for a random subset of Miller indices). Blue slices indicate data points for which histograms are shown in 

panels c-e. c-e) Histograms for slices through panel b are better approximated by the Rice distributions 

(red) parametrized by a global 𝑟𝑟𝐷𝐷𝐷𝐷 (here 0.85) than by the unconditional, univariate Wilson distribution 

(blue). 
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Figure 2. Modeling correlations of structure factors in comparative crystallography experiments. a. A 

graphical model (or Bayesian network) illustrating the relationship between three datasets (or, more 

generally, sets of structure factor amplitudes). Arrows indicate conditional dependence; the lack of an 

arrow between datasets B and C indicates conditional independence. b. Correlations in many 

experiments are well approximated by acyclic graphical models for which the joint prior distribution of 

structure factor amplitudes 𝐹𝐹ℎ can be calculated analytically. 𝑡𝑡1, 𝑡𝑡2, … represent timepoints; 𝑠𝑠1, 𝑠𝑠2, … 

represent symmetry operations; 𝑝𝑝1,𝑝𝑝2, … represent perturbations due to, e.g., temperature 𝑇𝑇, pressure 

𝑝𝑝, or electric field; 𝐹𝐹+ and 𝐹𝐹− are reflections related by Friedel’s law.  
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Figure 3. Use of a bivariate prior improves anomalous signal in a Laue diffraction experiment. a) 

Comparisons between anomalous omit peaks after scaling and merging with univariate or bivariate 

priors (𝑟𝑟 = 0.999 for the bivariate prior, marked in panels b-d with a dashed magenta line).  b) 

Dependence of average iodine and sulfur anomalous peak height on r. c) Merging correlation 

coefficients of the lysozyme dataset across double-Wilson r values. The y-axis labels for the CC1/2 are on 

the left, and the y-axis labels for the CCpred are on the right. A test set of 10% of observations were held 

out during scaling and merging to evaluate performance of the scaling model, yielding CCpred, test for the 

test set, and CCpred, train for the 90% of data used during scaling. The shaded confidence interval of the 

CC1/2 curve represents the standard deviation over three half-dataset repeats. d) Anomalous correlation 

coefficient of the lysozyme dataset across r. The shaded confidence interval represents the standard 

deviation over three half-dataset repeats.  
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Figure 4: Use of a bivariate prior improves time-resolved difference signal. a) The para-coumaric acid 

chromophore of PYP isomerizes when exposed to blue light. b) Merging statistics of the 2ms and OFF 

structure factor amplitudes as a function of r. c) Correlation coefficient of the weighted (α=0, green; 

α=0.05, red; α=1, blue) and unweighted (black) observed difference maps with the 2ms−OFF (dark) 

calculated difference map (FC,2ms - FC,OFF), in a region 10 Å around the chromophore. α weights the 

contributions of large structure factor differences (see Methods). The correlation coefficient is plotted 

for the univariate prior, with and without applying local scaling or SCALEIT19, and as a function of the 

double-Wilson parameter r. Vertical dashed black line in panels b-d indicate the r value, 0.9995, that 

parametrizes the bivariate prior for merged data displayed in the following panel. d) left: Observed 

difference map (teal and yellow mesh, contoured to 3σ, unweighted), from merging with a univariate 

prior. Τhe map is overlaid with models (2ms and dark models colored with teal and yellow sticks, 

respectively) and the electron density at 2ms after excitation and in the dark state (teal and yellow 

surfaces, respectively; contoured to 1.5σ), based on calculated structure factors F2ms and Foff from PDB 

entry 1TSO. Right: Observed 2ms−OFF difference map (yellow and teal mesh, contoured to 3σ, 

unweighted), from merging with a bivariate prior, r = 0.9995. F2ms map and FOFF map as in left panel. 
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Figure 5: Scaling and merging with a bivariate prior improves the anomalous signal in a serial XFEL 

experiment. a) Anomalous difference map peak heights in thermolysin, shown for zinc and four calcium 

sites, as a function of the double-Wilson parameter r. Vertical dashed black line in panel a indicates the r 

value, 0.9961, that parametrizes the bivariate prior for merged data displayed in the following panel. b) 

first column: Region near the thermolysin-bound zinc atom, with observed electron density map (2mFo-

DFc) in gray, contoured at 2σ, and anomalous difference omit map in magenta, contoured at 5σ. Arrow 

indicates the location of an alternative zinc binding site revealed by merging with the bivariate prior. 

Next three columns: Anomalous difference omit maps of thermolysin calcium sites, carved to 1.5 Å of 

the model and contoured to 4σ (magenta). 
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Figure 6. Use of a multivariate prior improves bound fragment signal in a drug fragment screen. a) 

holo − apo isomorphous difference maps from fragment screening of Mac1, scaled with a univariate or 

multivariate prior. All maps carved to 1.5 Å of the ligand and contoured to +3σ. b) Tallest positive peak 

in each holo − apo difference map as a function of the double-Wilson r parameter. For a given holo 

dataset, the tallest positive peak is measured. The maximum peak height of that peak, across all double-

Wilson r values, is normalized to 1.0. The maximum peak height is labeled and reported in a bar chart 

(right). Also labeled is the fraction of the maximum peak height for the tallest peak in the univariate 

datasets (left). The r value, for each dataset’s maximum peak height, parametrizes the bivariate prior for 

merging the electron density displayed in panel a.  
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Methods 
Implementation details. The multivariate Wilson distribution we present here is implemented as a prior 

distribution in the Careless software package. Careless uses gradient-based optimization to maximize a 

Bayesian objective function54,55 which is the sum of the expected log likelihood of the observed data plus 

the Kullback-Leibler divergence between the structure factors and the prior distribution. The likelihood 

of the data describes the probability of the observed diffraction intensities, 𝐼𝐼ℎ,𝑖𝑖, conditional on scale Σℎ,𝑖𝑖, 

and structure factor amplitudes 𝐹𝐹ℎ. The likelihood also takes into account the estimated errors 𝜎𝜎𝐼𝐼ℎ,𝑖𝑖  in 

the observed intensities. The objective function is computed as described in equation 21 and 22 of 

Dalton et al.22 using reparameterized samples56 from a truncated normal surrogate posterior (variational 

distribution). For clarity, we reproduce this objective function, 

ELBO�𝜇𝜇𝑞𝑞𝐹𝐹 ,𝜎𝜎𝑞𝑞𝐹𝐹 ,𝜃𝜃� ≈��� � log
ℎ𝑖𝑖

𝑝𝑝�𝐼𝐼ℎ,𝑖𝑖|𝐹𝐹ℎ,𝑠𝑠
2 𝛴𝛴ℎ,𝑖𝑖,𝑠𝑠,𝜎𝜎𝐼𝐼ℎ,𝑖𝑖� −� �log 𝑞𝑞𝐹𝐹ℎ�𝐹𝐹ℎ,𝑠𝑠� − log 𝑝𝑝�𝐹𝐹ℎ,𝑠𝑠��

ℎ

�
𝑆𝑆

𝑠𝑠=1

. 

The Evidence Lower BOund (ELBO) depends on the parameters of the surrogate posterior distributions, 

𝑞𝑞𝐹𝐹 and 𝑞𝑞𝛴𝛴. 𝑞𝑞𝛴𝛴 is parameterized by a neural network with parameters 𝜃𝜃. 𝑞𝑞𝐹𝐹 is parameterized by 

independent truncated normal distributions for each reflection with location and scale parameters 

�𝜇𝜇𝑞𝑞𝐹𝐹ℎ ,𝜎𝜎𝑞𝑞𝐹𝐹ℎ� supported on [0,∞) for centric reflections and (0,∞) for acentrics. 𝐼𝐼ℎ,𝑖𝑖 refers to the 

intensity of a particular observation 𝑖𝑖 for reflection ℎ. 𝑠𝑠 indexes reparameterized samples from the 

surrogate posteriors, 

𝐹𝐹ℎ,𝑠𝑠 ∼ 𝑞𝑞𝐹𝐹ℎ
𝛴𝛴ℎ,𝑖𝑖,𝑠𝑠 ∼ 𝑞𝑞𝛴𝛴ℎ,𝑖𝑖

 

Reparameterization is implemented in the TensorFlow Probability library57. The prior distribution enters 

the objective function through the ultimate term, log 𝑝𝑝�𝐹𝐹ℎ,𝑠𝑠�.  Previously,22 we exclusively used a 

univariate Wilson distribution as a prior for this term, 

𝑝𝑝�𝐹𝐹ℎ,𝑠𝑠� =

⎩
⎪
⎨

⎪
⎧�

2
𝜋𝜋𝜖𝜖ℎ

exp�−
𝐹𝐹ℎ,𝑠𝑠
2

2𝜖𝜖ℎ
� ℎ  is centric

2
𝜖𝜖
𝐹𝐹ℎ,𝑠𝑠exp�−

𝐹𝐹ℎ,𝑠𝑠
2

𝜖𝜖ℎ
� ℎ is acentric,
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where 𝜖𝜖ℎ is the multiplicity of the reflection ℎ, an integer value determined by the crystal’s symmetry. 

Note that because the scale function, Σℎ, is parametrized separately within Careless, it does not appear 

in expressions for 𝑝𝑝�𝐹𝐹ℎ,𝑠𝑠�. 

One of the features of variational inference is its flexibility. In this work we leverage the inherent 

flexibility of reparameterization-based variational inference to extend the Careless package with a 

multivariate prior distribution. To do so, the Careless command line interface requires users to supply 

separate unmerged data sets for each node they wish to model (as in Figure 2). Careless asks the user to 

specify the parent of each node and the expected double-Wilson parameter 𝑟𝑟. Internally, this changes 

how the prior is calculated as follows, 

𝑃𝑃�𝐹𝐹ℎ,𝑠𝑠� = �
FoldedNormal �𝐹𝐹ℎ,𝑠𝑠|𝑟𝑟𝐹𝐹𝑃𝑃𝑃𝑃(ℎ),𝑠𝑠,�𝜖𝜖ℎ(1− 𝑟𝑟2)� ℎ  is centric

Rice�𝐹𝐹ℎ,𝑠𝑠|𝑟𝑟𝐹𝐹𝑃𝑃𝑃𝑃(ℎ),𝑠𝑠,�
𝜖𝜖ℎ
2

(1 − 𝑟𝑟2)� ℎ is acentric,
 

where 𝑃𝑃𝑃𝑃(ℎ) denotes the parent reflection of ℎ. Where a particular reflection has no parent because it 

is the root node, the resolution range of parent and child differ, or the parent is systematically absent, 

the prior defaults to the univariate Wilson model. The folded normal distribution’s probability density 

function is 

FoldedNormal(𝑥𝑥|𝜇𝜇,𝜎𝜎) = Normal(𝑥𝑥|𝜇𝜇,𝜎𝜎) + Normal(𝑥𝑥| − 𝜇𝜇,𝜎𝜎)

=
1

𝜎𝜎√2𝜋𝜋
�exp �−

1
2
�
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2
� + exp �−

1
2
�
𝑥𝑥 + 𝜇𝜇
𝜎𝜎

�
2
�� , 

while that of the Rice distribution is 

Rice(𝑥𝑥|𝜈𝜈,𝜎𝜎) =
𝑥𝑥
𝜎𝜎2

exp�−
(𝑥𝑥2 + 𝜈𝜈2)

2𝜎𝜎2 � 𝐼𝐼0 �
𝑥𝑥𝑥𝑥
𝜎𝜎2
�, 

where 𝐼𝐼0 denotes the modified Bessel function of the first kind with order zero. For numerical stability, 

both probability densities are computed directly in log space. 

PYP. Collection of the Laue diffraction data for photoactive yellow protein was described previously58. 

Indexing, geometry refinement, wavelength assignment, and integration were performed in 

Precognition v5.2.2. Precognition integrated intensities were written to mtz files and then scaled and 

merged with Careless v0.4.1, with use of a bivariate prior on the OFF and 2ms timepoint mtz files. 

Fifteen different double-Wilson r values were used, with r varied for each Careless run as 1 −
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0.5run number. Correlation coefficients were computed using careless.cchalf, careless.ccpred, and custom 

scripts based on gemmi59 and reciprocalspaceship60. Isomorphous difference maps were first phased 

with an OFF model refined in Phenix 1.20.161 from PDB ID 2PHY62, then weighted using 

reciprocalspaceship according to  

𝑤𝑤ℎ𝑘𝑘𝑘𝑘 = �1 + σ2(Δ𝐹𝐹)
⟨σ2(Δ𝐹𝐹)⟩ + α |Δ𝐹𝐹|2

⟨|Δ𝐹𝐹|2⟩�
−1

   

for structure factor amplitude differences Δ𝐹𝐹 (short for Δ𝐹𝐹ℎ𝑘𝑘𝑘𝑘) and their errors 𝜎𝜎(Δ𝐹𝐹), with angled 

brackets indicating averages over Miller indices. Local scaling was performed using a custom script 

available at (https://github.com/Hekstra-Lab/dw) and SCALEIT (CCP4 software suite version 7.1) was run 

from rs-booster version 0.1.2 (https://github.com/rs-station/rs-booster) as rs.scaleit (Supplementary 

Information, “Partial Excitation”).  

Difference maps were visualized in PyMOL63. Data processing scripts can be found in the Zenodo 

deposition. 

Lysozyme data collection: NaI-soaked lysozyme crystals were prepared as described previously64. 

Monochromatic data were collected on the Northeastern Collaborative Access Team (NE-CAT) beamline 

24-ID-C (Advanced Photon Source, Argonne National Laboratory) on 12 August 2020. Diffraction data 

were collected at ambient temperature (about 295 K). Three 1440-image passes (720°) were collected 

from a single crystal of lysozyme with an exposure time of 0.1 s and an oscillation angle of 0.5°. The 

incident X-ray intensity, at an energy of 11.95 keV, was attenuated to 0.5% transmission, which 

corresponds to an estimated flux of 2.4 × 1010 photons s−1. Data were collected using helical acquisition, 

so that dose was evenly distributed along the crystal. The PILATUS 6M-F detector (Dectris) was 

positioned at the minimal distance of 150 mm.  

Laue data were collected on the same day at BioCARS (Advanced Photon Source, Argonne National 

Laboratory), similar to data collection described in previous work16, except that Laue stills were collected 

in 1° steps, for a total of 3,000 images. Data were collected at ambient temperature (about 295 K).  

Thermolysin and lysozyme: Careless 0.4.1 was run with a bivariate prior, sweeping over fifteen double-

Wilson r values on two datasets, one of thermolysin containing 3160 images collected from a serial XFEL 

experiment, CXIDB8145, and one of lysozyme containing the first 999 images from the above data 

collection. Lysozyme data were indexed and integrated using laue-dials (https://github.com/rs-

station/laue-dials; manuscript in preparation). Thermolysin unmerged intensities (in DIALS .pickle 
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format) were obtained from CXIDB 81. Both datasets were split according to Friedel symmetry and 

scaled and merged in Careless, applying the bivariate prior to relate anomalous half-datasets. Next, the 

anomalous half-datasets were combined into single datasets of merged structure factor amplitudes. 

Correlation coefficients on these datasets were computed using careless.cchalf, careless.ccpred, and 

careless.ccanom36.  Phenix version 1.20.161 was used to phase the resultant structure factor amplitudes 

by isomorphous replacement with PDBID 2TLI in the case of thermolysin and with a high-resolution 

monochromatic model in the case of lysozyme (Table S1). Additionally, an anomalous omit map was 

phased. The phases and omit map were then used for visualization of anomalous omit peaks with 

PyMOL and measurement of peak heights with reciprocalspaceship. Data processing scripts can be 

found in the Zenodo deposition.  

Fragment screening of Mac1. Data collection and analysis of a crystallographic drug fragment screen of 

SARS-CoV-2 non-structural protein 3 (Nsp3) macrodomain 1 (Mac1) have been previously described11. 

For the work described here, one unmerged apo dataset and sixteen unmerged holo datasets HKL files 

were converted to MTZ files and then processed with Careless 0.4.1, with use of a univariate or 

multivariate prior to relate the OFF and sixteen holo files. The double-Wilson r was set to a uniform 

value for all sixteen apo-holo dependencies, and was varied between Careless runs as 1 − 0.5run number. 

Additionally, we introduced a control apo dataset, a duplicate of the reference that also depended on 

the reference apo dataset, and difference maps were computed by subtracting each holo dataset from 

the control apo dataset. To compensate for the duplication of the reference apo dataset, we multiply 

the errors of the intensities by √2. Metadata keys included observed Miller indices, detector position 

and positional encoding, image number, the azimuthal angle PSI65, diffracted beam direction parameters 

ALF1 and BET166, and dataset one-hot encoding.  Correlation coefficients were computed using 

careless.ccpred. Apo phases were obtained by refinement of a model against the apo mtz scaled using a 

univariate prior. Refinement was performed using PHENIX v1.20.1. The apo phases were then used for 

creating isomorphous difference maps of each holo minus apo dataset. We created difference maps and 

calculated peak heights using rs-booster (https://github.com/rs-station/rs-booster). PanDDA 1-

background density correction (1-BDC) values were taken from an analysis that included all previously-

reported datasets11,49. Data processing scripts can be found in the Zenodo deposition. 
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Data Availability 
Supplementary notebooks, including analyses used for generating Figures 1-2 and S1-4,10-13 are 

available in a GitHub repository at https://github.com/Hekstra-Lab/dw. The monochromatic sodium-

iodide-soaked lysozyme structure presented here has been deposited in the Protein Data Bank67 with 

PDB ID 9B7C. All merged structure factors, crossvalidation data, and analysis used to generate Figures 3-

6 and S5-9 have been deposited in Zenodo under accession code 10.5281/zenodo.11099739 at 

https://doi.org/10.5281/zenodo.11099739. The analyses, without merged structure factors, are 

included in a GitHub repository at https://github.com/Hekstra-Lab/dw-examples.   

Code Availability 
The source code used for generating all figures and tables are available in the GitHub repositories 

https://github.com/Hekstra-Lab/dw and https://github.com/Hekstra-Lab/dw-examples as well as 

deposited in Zenodo at https://doi.org/10.5281/zenodo.11099739. The multivariate prior scaling model 

is implemented in the Careless python package, available in the GitHub repository 

https://github.com/rs-station/careless.  
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