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Abstract: New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes
of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length
were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds
were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with
selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-
pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more
potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at
20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence
of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type
reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of
the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE
and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace
propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting
a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational
ADMET profiles predicted that all compounds would have good intestinal absorption, medium
blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate
that the novel conjugates show promise for further development and optimization as multitarget
anti-AD agents.
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1. Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disorder in the elderly that is manifested
by progressive loss of memory and cognitive functions, which inevitably leads to disability and
death [1]. The exact molecular mechanisms involved in AD initiation and progression are still unclear.
However, it is obvious now that AD is a complex, multifactorial disorder and that advanced age is the
main risk factor [2,3]. Several conditions are known to participate in the associated neurodegeneration.
Accumulation of amyloid β peptide (Aβ) deposits, abnormal modification and accumulation of
the tau protein accompanied by oxidative stress in the brain lead to synaptic dysfunction and
neurodegeneration [4,5]. These processes most severely affect the cholinergic system and result in a
progressive decrease in levels of the neurotransmitter acetylcholine (ACh) [6], which in turn produces
the memory and cognitive deficits characteristic for patients with AD [7].

The anticholinesterase drugs donepezil (Aricept), galantamine (Reminyl), and rivastigmine
(Exelon) are aimed at compensating the deficiency of ACh and are currently the main pharmacotherapeutic
group used for the symptomatic treatment of AD [8–11]. These agents help to restore brain ACh levels
by inhibiting cholinesterases, thereby increasing the duration of ACh action on postsynaptic receptors
and enhancing cholinergic transmission. The brain contains two major forms of cholinesterases:
acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8), which terminate
cholinergic neurotransmission by the hydrolysis of ACh [12]. In a healthy brain, acetylcholine is
predominantly (80%) hydrolyzed by AChE, whereas BChE plays a supplementary role serving as a
co-regulator of AChE activity [13]. The cholinergic therapy of AD was originally directed primarily
toward the inhibition of AChE [11,14]. However, with progression of AD, the activity of AChE
decreases while the activity of BChE gradually increases [13,15,16]. This enlarges the significance
of BChE as an additional therapeutic target for reducing the cholinergic deficiency inherent in
AD [17–20]. Selective inhibitors of BChE can increase the brain level of acetylcholine and enhance
cognitive functions in rodents without the usual side effects typical of AChE inhibitors [17,18,21]. It is
believed that compounds inhibiting both cholinesterases increase the efficiency of treatment [19,20,22].
However, although these medications can temporarily reduce the development of AD symptoms,
they cannot stop the progression of neurodegeneration [8,14].

The formation of β-amyloid (Aβ) deposits is typical of the early pathogenesis in AD. Many lines
of evidence suggest that both AChE and BChE, which are localized within Aβ plaques in the AD
brain, are related to amyloid plaque formation and thus contribute to the neuropathology of the
disease [23–25]. AChE has proaggregant properties toward β-amyloid via involvement of the AChE
peripheral anionic site (PAS) located at the rim of the gorge, which interacts with soluble β-amyloid
peptides, thus promoting their aggregation [24,26–29]. It has been found that PAS ligands, such as
propidium, block AChE-induced Aβ aggregation by physically hampering Aβ binding to the enzyme
surface [26,27,30]. Moreover, dual-binding molecules, which interact with both the catalytic active
site (CAS) and the PAS of AChE, can inhibit AChE activity and block its amyloidogenic properties.
Such compounds not only can cause alleviation of the cognitive impairment of AD individuals via
increasing the levels of acetylcholine but also can play a role as disease-modifying agents that can delay
the formation of Aβ plaques [28,31–34]. BChE is also involved in the formation and/or maturation of
Aβ plaques and thereby contributes to the pathogenesis of AD [15,35]. Therefore, inhibitors of both
cholinesterases are of interest from the point of view of anti-amyloid strategy.

Currently, the multifactorial nature of AD has changed the approach to searching for effective drugs
from the concept of single-target molecules to the design of multi-target agents that can simultaneously
modulate multiple biological targets involved in disease pathogenesis [3,36–39]. Cholinesterases are still
the most promising targets for ameliorating cognitive dysfunctions in AD. Accordingly, in the design
of multi-target drugs, a cholinesterase inhibitor is selected as one of the pharmacophores. A second
pharmacophore is then attached via a spacer to the cholinesterase inhibitor [40–44]. Such hybrid
molecules expand the range of pharmacological activities of a parent anticholinesterase compound by
adding antiaggregant, antioxidant, and other desirable properties [45–50].
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Tacrine is the first drug approved for AD treatment. It has a high affinity for the AChE CAS and is
widely employed as a pharmacophore to create multifunctional cholinesterase inhibitors possessing
additional neuroprotective and disease-modifying properties [46,51–57].

In the present work, we used 4-amino-2,3-polymethylene-quinoline with different sizes of the
aliphatic ring as the main anticholinesterase pharmacophore (Figure 1A); the homologue with n = 2
is tacrine.
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Figure 1. Structures of pharmacophores: (A) 4-amino-2,3-polymethylene-quinolines; (B) p-tolylsulfonamide.

The aromatic p-tolylsulfonamide moiety (Figure 1B) was used as our second pharmacophore.
Sulfonamides are widely utilized in various pharmaceutical applications due to their therapeutic
versatility that encompasses antibacterial, antiviral, antimalarial, antifungal, anticancer, antidepressant,
and other properties [58,59]. They are also among the most effective and highly investigated
derivatives in the field of carbonic anhydrases inhibition and related clinical applications [60–62].
Recently, publications have appeared on the presence of inhibitory activity against AChE and BChE in
various sulfonamide derivatives [63–67]. Sulfonamide-containing selective and reversible human BChE
inhibitors with nanomolar potency were developed that improved learning and memory functions
in mouse models [21]. Moreover, antioxidant activity has been shown for certain sulfonamide
derivatives [65,66,68,69]. Several sulfonamide-containing compounds exhibited promising Aβ

self-assembly and cholinesterase inhibition, and in parallel showed good free radical scavenging
properties [63].

The incorporation of a sulfonamide fragment into hybrid structures for anti-AD drugs has likewise
been demonstrated. For example, a series of tacrine derivatives containing a sulfonamide group was
synthesized; the compounds exhibited potent inhibitory activity on both cholinesterases and were
shown to have antioxidant properties [69]. In addition, quinoline-sulfonamide hybrids have been
developed as potential multifunctional therapeutic agents for AD with high anti-AChE and anti-BChE
activity; the lead compound in this series was shown to improve hippocampal-dependent working
memory in a rat model [70].

Herein, we have synthesized new hybrid compounds of 4-amino-2,3-polymethylene-quinoline
containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide using alkylene spacers
of increasing length. We investigated the action of the synthesized compounds on enzyme targets of
the cholinergic nervous system using as surrogates human erythrocyte acetylcholinesterase (EC 3.1.1.7,
AChE) and equine serum butyrylcholinesterase (EC 3.1.1.8, BChE), along with a structurally related
enzyme, porcine liver carboxylesterase (EC 3.1.1.1, CES). We also studied the ability of our novel
conjugates to bind to the PAS of AChE from Electrophorus electricus (EeAChE) and competitively
displace propidium iodide from this site as a measure of their potential ability to block AChE-induced
aggregation of β-amyloid. Enzyme kinetics studies were used to ascertain the mechanism of inhibition,
and molecular docking was employed to provide insights into the binding modes of conjugates in the
AChE and BChE active sites. We also measured the radical-scavenging activity of the conjugates in
the ABTS assay. Finally, to assess the potential pharmacokinetic properties of the new compounds,
we computationally estimated their profiles for absorption, distribution, metabolism, excretion,
and toxicity (ADMET). Some preliminary results have been published earlier [71].
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2. Results and Discussion

2.1. Chemistry

We have developed a method for the synthesis of hybrid multi-target compounds 7a–k based
on 4-amino-2,3-polymethylene-quinolines as the first pharmacophore and p-tolylsulfonamide as the
second pharmacophore. Previously, we synthesized such compounds 7b,f,i,k in which the quinoline
and sulfonamide pharmacophores were combined into one molecule with a diaminopropane linker,
in the form of hydrochlorides [71]. Here, we devised a procedure for the synthesis of target conjugates
in the form of free bases. As shown in Figure 2, these compounds were obtained by the reaction
of aminoquinolines 5 with tosyl chloride 6 in the presence of triethylamine. The aminoquinolines 5
needed for this were synthesized by the following method. First, by boiling anthranilic acid (2)
with ketones 1 (cyclopentanone, cyclohexanone, cycloheptanone or cyclooctanone) in phosphorus
oxychloride, chlorine derivatives 3 were obtained. Then, derivatives 3 were condensed with diamines 4
according to a published procedure [72] to afford the necessary aminoquinolines 5.
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Figure 2. Synthesis of conjugates of 4-amino-2,3-polymethylene-quinolines and p-tolylsulfonamide 7.

Thus, conjugates 7 with different sizes of the aliphatic ring of 4-amino-2,3-polymethylene-
quinolines and various lengths of the alkyl chain linking the two pharmacophores have been synthesized.
The size of the aliphatic ring and the length of the alkyl spacer for each compound 7 are shown in
Table 1.
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Table 1. Esterase profile of conjugates 7 and their ability to displace propidium.

Compound Inhibitory Activity Against AChE, BChE and CES and
Inhibitor Selectivity

Displacement
of Propidium

from the
EeAChE PAS,

(%) 1

N n m
Human

Erythrocyte
AChE, IC50 (µM)

Equine
Serum BChE,

IC50 (µM)

Porcine
Liver CES,

(%)1

Selectivity,
S = IC50

AChE/IC50 BChE

7a 1 2 9.03 ± 0.64 0.924 ± 0.031 11.9 ± 1.5 9.8 9.2 ± 1.0
7b 1 3 7.76 ± 0.61 0.327 ± 0.004 8.1 ± 0.6 23.7 12.3 ± 1.1
7c 1 4 2.08 ± 0.08 0.578 ± 0.025 9.0 ± 0.1 3.6 14.9 ± 1.2
7d 1 5 1.97 ± 0.05 0.459 ± 0.044 29.6 ± 1.2 4.3 15.1 ± 1.4
7e 1 6 4.00 ± 0.09 0.209 ± 0.008 18.6 ± 0.2 1.9 15.9 ± 1.3
7f 2 3 1.88 ± 0.03 0.110 ± 0.005 2.0 ± 0.8 17.1 9.8 ± 0.8
7g 2 4 0.668 ± 0.17 0.0617± 0.0003 17.1 ± 1.4 10.8 14.8 ± 1.3
7h 2 5 0.131 ± 0.01 0.0680± 0.0014 6.7 ± 0.8 1.9 17.5 ± 1.5
7i 3 3 2.76 ± 0.04 0.0431± 0.0011 1.9 ± 0.9 64.0 13.9 ± 1.3
7j 3 4 1.16 ± 0.03 0.0788 ± 0.006 10.3 ± 0.8 14.7 16.1 ± 1.4
7k 4 3 11.1 ± 0.2 0.461 ± 0.007 5.2 ± 1.5 24.1 15.9 ± 1.7

Tacrine 0.601 ± 0.047 0.0295± 0.0020 n.a. 20.4 4.4 ± 0.6
Donepezil 0.040 ± 0.004 19.2 ± 3.0 n.a. 0.002 10.1 ± 0.6

BNPP n.a. n.a. 1.80 ± 0.11 n.d. n.d.
1 compound concentration 20 µM. n.a.—not active. n.d.—not determined. Data are presented as means ± SEM,
n = 3.

2.2. Inhibition Studies of AChE, BChE and CES. Structure-Activity Relationships

For all conjugates 7, we determined their esterase profile, i.e., the relative ability to inhibit several
related serine esterases – AChE, BChE, and CES. This approach makes it possible to estimate both
the primary pharmacological effects of the tested compounds (the inhibition of AChE and BChE) and
their possible unwanted side effects (the inhibition of CES that hydrolyzes numerous ester-containing
drugs) [73–77]. AChE from human erythrocytes was used along with two enzymes of non-human
origin: equine serum BChE and porcine liver CES. These sources of BChE and CES were used because
of their relatively low cost, high sequence identity to human enzymes [73,74,76], and the exploratory
character of this work.

The inhibitory activities of our conjugates against the esterases were characterized as IC50 values,
i.e., the inhibitor concentrations required to decrease a given enzyme activity by 50%. Tacrine,
an effective AChE and BChE inhibitor, and bis-4-nitrophenyl phosphate (BNPP), a selective CES
inhibitor, were used as positive controls. The results are shown in Table 1.

As can be seen from Table 1, conjugates 7 generally inhibited both cholinesterases effectively,
exhibiting, like tacrine, a higher activity toward BChE. The activities of compounds 7b,f,i,k obtained
here coincided with the previously determined results [71]. Conjugates 7 practically did not inhibit CES,
which suggests that potential unwanted drug-drug interactions would be lacking if these compounds
were used clinically for AD treatment.

The degree and selectivity of enzyme inhibition was found to be determined by the structure of
the synthesized conjugates; namely, the aliphatic ring size of the 4-amino-2,3-polymethylene-quinoline
fragment (i.e., the tacrine moiety) and the length of the spacer linking the pharmacophores. The effect
of the aliphatic ring size was demonstrated by compounds 7b, 7f, 7i, 7k with a spacer length m = 3
(Table 1). The most active compound toward AChE was conjugate 7f with an unmodified six-membered
tacrine ring (C-6, n = 2), whose inhibitory activity was only three times lower than that of tacrine.
The conjugate 7i with a seven-membered tacrine ring (C-7, n = 3) exhibited maximum activity toward
BChE: it inhibited the enzyme in the nanomolar range with an IC50 = 0.044 µM, close to that of
tacrine. An increase in the size of the aliphatic ring to 8 (C-8, 7k) reduced the anti-AChE activity
ten-fold and decreased anti-BChE activity six-fold. Thus, the six-membered aliphatic ring of tacrine
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was optimal for the anti-AChE activity of conjugates 7, whereas a 7-membered ring was best for their
anti-BChE potency.

An increase in the spacer length (m) for conjugates with the same ring size in series 7a–7e (C-5,
n = 1), 7f–7h (C-6, n = 2), and 7i–7j (C-7, n = 3) led to an increase in the inhibitory activity of compounds
toward AChE. The most active among compounds with a five-membered ring were compounds 7c
and 7d containing four and five methylene groups, respectively. In a series of compounds with a
six-membered tacrine aliphatic ring 7f–7h (C-6, n = 2), the inhibitory activity toward AChE increased
more than 14 times with an increase in the length of the spacer from three to five CH2 groups.
Compound 7h exhibited the maximum anti-AChE activity, being five times more potent than tacrine.

The results are consistent with the known data that, in contrast to extremely powerful bis-tacrine
inhibitors [78], tacrine-based hybrid compounds linking tacrine with an uncharged aromatic group
had anti-AChE activities comparable to that of tacrine [79,80].

In the case of anti-BChE activity, it was not possible to reveal a clear pattern of the dependence of
enzyme inhibition on the spacer length of the conjugate. The maximum anti-BChE activity, close to that
of tacrine, was found for compounds 7g and 7h with a six-membered tacrine ring and a spacer length
of four and five CH2 groups, respectively, as well as for compounds 7i and 7j with a seven-membered
tacrine aliphatic ring and a spacer length of three and four CH2 groups, respectively.

Regarding inhibitory selectivity, all conjugates 7 were more selective toward BChE, with selectivity
factors ranging from 1.9 to 64. Conjugates with a rather short propylene spacer (7b, 7f, 7i and 7k)
exhibited maximum selectivity for BChE (S = 17.1–64.0). The most selective was conjugate 7i with a
7-membered aliphatic ring.

2.3. Kinetic Studies of AChE and BChE Inhibition

The mechanism of inhibitory action of conjugates 7 towards AChE and BChE was studied using
compound 7g as an example. The graphical analysis of the kinetic data on AChE (Figure 3A) and
BChE (Figure 3B) inhibition by 7g in the Lineweaver–Burk double-reciprocal plot demonstrates the
changes in both Km and Vmax that attests to a mixed type of inhibition. The inhibition constants
were Ki = 0.390 ± 0.008 µM (competitive component) and αKi = 1.09 ± 0.02 µM (noncompetitive
component) for AChE and Ki = 0.0235± 0.0002µM (competitive component) andαKi = 0.117± 0.002µM
(noncompetitive component) for BChE.
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Figure 3. Steady state inhibition of (A) AChE and (B) BChE by compound 7g. Lineweaver-Burk
double-reciprocal plots of initial velocity and substrate concentrations in the presence of inhibitor (three
concentrations) and without inhibitor are presented. The changes in both Km and Vmax attest to a
mixed type of inhibition.
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2.4. Molecular Docking Studies

The differential interaction of bulky inhibitors with AChE and BChE is highly dependent on
the difference in structure of the active site gorge that leads from the protein surface to the active
site [49,50,81–84]. AChE has a narrow gorge divided by the so-called bottleneck into the PAS and
CAS [85,86]. The AChE gorge is lined with aromatic residues that favor binding of positively charged
substrates/inhibitors, and the dynamically changing radius of the bottleneck determines the kinetics of
binding; in particular, slow-binding inhibition [87,88]. BChE has a wider gorge than AChE without a
pronounced narrowing to separate the PAS and CAS, and most of the BChE gorge residues that are
aromatic in AChE are replaced in BChE with aliphatic ones [86]. This makes the BChE gorge more
permissive to uncharged or even negatively charged substrates and inhibitors [89], and less prone to
slow-binding inhibition than is the case with AChE [90,91].

Molecular docking of conjugates 7 into AChE demonstrated that they are dual binding-site
inhibitors. This confirms our previous finding [49,71]. The tacrine fragment binds in the CAS and
the p-tolylsulfonamide moiety binds to the PAS. Comparison of docking results of the compounds to
different X-ray structures of human AChE showed that the best binding poses were obtained with the
X-ray structure of AChE co-crystallized with donepezil (PDB: 4EY7). This structure has conformational
changes of CAS and PAS amino acids necessary to accommodate bulky inhibitors [92].

Molecular docking of compounds 7b, 7f, 7i, 7k with the spacer m = 3 explains the observed
effect of the aliphatic ring size on the inhibitory activity toward AChE. The position of the
4-amino-2,3-polymethylene-quinoline (tacrine) ring inside the AChE active site is similar for compounds
7b, 7f, 7i, but not for compound 7k with the largest C-8 aliphatic ring (Figure 4A). The increased size
of the aliphatic ring does not allow it to fit in the same region below the bottleneck; the displaced
C-8 tacrine ring leads to the loss of a hydrogen bond between the protonated amino group of the
tacrine fragment and the Tyr124 side chain. This results in the experimentally observed reduced
binding affinity.

In the case of binding to BChE, the influence of the aliphatic ring size is not as pronounced as
with AChE; all tacrine fragments are located inside the BChE gorge in a uniform way (Figure 4B),
with the sulfonamide group binding to the active site and forming hydrogen bonds with catalytic
residues and the oxyanion hole. The protonated amino group in the tacrine fragment forms ionic
interactions with Asp70 in the PAS. However, for compound 7k (C-8), the large aliphatic ring size
impairs ionic interactions of the positively charged external amino group of the tacrine fragment with
the Asp70 anionic side chain. Otherwise, compound 7i with a 7-membered ring did not have more
specific interactions than compounds 7b and 7f, but it appeared to fit better than the others in the
active site gorge cavity.

As was observed earlier for other dual binding site AChE inhibitors with lengthy
spacers [49,50,81–84], they are located inside the AChE gorge in an elongated conformation whereas
they are bent inside the wider BChE gorge. Consequently, an increase in the spacer length for conjugates
with the same ring size leads to better occupation of the AChE PAS by the p-tolylsulfonamide fragment.
Figure 4C shows binding poses of compounds 7a–7e (C-5) as an example, while for compounds
7f–7h (C-6) the same trend was observed. Although for the compounds with a shorter linker (7a, 7b)
hydrogen bonding between the sulfo-group and the Tyr124 side chain is possible while no specific
interactions of the conjugate molecules in the PAS were observed, more favorable occupancy of the PAS
by compounds with a longer linker leads to better propidium displacement and increased inhibitory
activity due to hydrophobic interactions. In contrast, the position of the compounds inside the BChE
gorge was almost unaffected by spacer length (Figure 4D), in accordance with the weak influence of
the spacer length on experimentally measured inhibitory activities.

Thus, the molecular docking results show that the differences in the structure of the active sites of
AChE and BChE give rise to different structure-inhibitory activity relationships for inhibition of these
enzymes by these hybrid inhibitors.
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Figure 4. Results of molecular docking of hybrids of 4-amino-2,3-polymethylene-quinoline and
p-tolylsulfonamide 7 into AChE (carbon atoms are shown in pale blue) and BChE (carbon atoms are
shown in orange). The surface shows the gorge leading from the protein surface to the active site with
a hollow space accommodating the aliphatic ring of the tacrine fragment of compounds 7. Compounds
7b, 7f, 7i, 7k with m = 3 spacers and increasing aliphatic ring size (carbon atoms are shown with
different shades of red from pale for 7b (C-5) to bright for 7k (C-8) inside (A) AChE and (B) BChE.
Compounds 7a–7e with C-5 aliphatic rings and increasing spacer length (carbon atoms are shown with
different shades of green from pale for 7a (m = 2) to dark for 7e (m = 6) inside (C) AChE and (D) BChE.
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2.5. Displacement of Propidium Iodide from the PAS of EeAChE

Propidium is a selective ligand for the PAS of AChE responsible for the Aβ binding [24,29,30,93],
which showed a significant decrease in AChE-induced Aβ aggregation (82% at 100 µM) [26].
This observation has served as the basis for the fluorescent evaluation of competitive propidium
displacement from the PAS of AChE as a screening method to assess the potential ability of compounds
to bind PAS and thus block the pro-aggregation activity of AChE [28]. Propidium iodide exhibits a
fluorescence increase upon binding to AChE. A decrease in propidium fluorescence in the presence
of test compounds indicates that they are able to displace propidium and bind to the PAS of AChE,
suggesting that they would thereby block the AChE-mediated aggregation of β-amyloid [24,27,29,33].
Here, donepezil was used as a reference compound. Donepezil is a mixed-type AChE inhibitor,
for which the ability to block AChE-PAS-induced Aβ aggregation has been demonstrated [26].
The results are presented in Table 1.

It can be seen in Table 1 that the sulfonamide-containing conjugates 7 at a concentration of 20 µM
reduced the fluorescence intensity by 9–17% and more effectively displaced propidium from the PAS of
AChE compared to the reference compound donepezil. For compounds 7f, i, there were no differences
with the results obtained earlier [71]. For all 4-amino-2,3-polymethylene-quinoline–sulfonamide
heterodimers with five, six, or seven-membered aliphatic rings, the degree of propidium displacement
increased with elongation of the spacer length, which agrees with the results of molecular docking.

Taken together, the results from propidium displacement, kinetics, and molecular docking indicate
that the conjugates 7 are dual-site AChE inhibitors occupying both CAS and PAS pockets. Thanks
to binding to the PAS of AChE, they can potentially block AChE-induced aggregation of β-amyloid,
thus having an additional positive disease modification effect.

2.6. Antioxidant Activity

The presence of antioxidant activity in a number of sulfonamide derivatives [66,68,69] prompted us
to assess the antioxidant properties of the new hybrid compounds. A study of the antioxidant activity of
conjugates 7 in the ABTS test showed that the binding of the ABTS radical by these conjugates is rather
weak in comparison with the standard antioxidant, Trolox. TEAC values = 0.06–0.13 (TEAC values
are expressed as Trolox equivalents calculated from (A0–Atest)/(A0–ATrolox) at 20 µM concentrations,
where A0 is the absorbance of a control lacking any radical scavenger, Atest and ATrolox are the
absorbances of the remaining ABTS•+ in the presence of the test compound or Trolox, respectively).

2.7. Predicted ADMET Profiles and PAINS Analysis

The results of the computational estimation of a number of ADMET and physicochemical
properties for the compounds 7a–k are shown in Table 2. As can be seen, all of the compounds
had high predicted values for intestinal absorption, enabling their oral administration. Thanks to
moderate predicted blood-brain barrier permeability (brain concentration is about 10–25% of the
plasma concentration), sufficient CNS activity can be expected. Both parameters of the cardiac toxicity
risk (pKi and pIC50) for all analyzed compounds (4.7–6.5 log units) are in the lower or medium
part of their possible range (3–9 log units). Although these values are acceptable, additional studies
and structure optimization are desirable for a few compounds in order to ensure maximal safety.
The predicted lipophilicities and aqueous solubilities of the compounds are also good for potential
drug compounds. The integral quantitative estimates of drug-likeness (QED) are above 0.3 for all the
compounds and above 0.5 for most of them. The Pan Assay INterference compoundS (PAINS) filter
check for the compounds listed in Table 2 did not identify any structural alerts. Thus, the predicted
ADMET, physicochemical, and PAINS properties of the compounds 7a–k are quite acceptable for
potential lead compounds at the early drug development stages.
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Table 2. Predicted ADMET and physicochemical profiles of conjugates 7.

Compound
LogBB HIA% hERG, pKi hERG, pIC50 LogPow pS QED

N n m

7a 1 2 −0.94 97 4.67 5.54 2.89 3.60 0.64
7b 1 3 −0.86 100 4.88 5.76 3.21 3.73 0.60
7c 1 4 −0.78 100 4.96 6.14 3.62 4.02 0.55
7d 1 5 −0.70 100 5.25 6.18 4.04 4.34 0.49
7e 1 6 −0.63 100 5.03 6.35 4.47 4.68 0.44
7f 2 3 −0.78 100 4.92 5.64 3.71 4.09 0.57
7g 2 4 −0.70 100 5.25 6.02 4.09 4.38 0.52
7h 2 5 −0.63 100 5.30 6.37 4.49 4.70 0.46
7i 3 3 −0.70 100 4.93 5.75 4.11 4.40 0.43
7j 3 4 −0.63 100 5.01 6.46 4.48 4.69 0.38
7k 4 3 −0.63 100 5.04 5.91 4.55 4.75 0.51

Note: LogBB—blood-brain barrier permeability, HIA—human intestinal absorption [%], hERG pKi–hERG
potassium channel affinity [−log(M)], hERG pIC50–hERG potassium channel inhibitory activity [−log(M)],
LogPow—octanol-water partition coefficient, pS—aqueous solubility [−log(M)], QED—quantitative estimate
of drug-likeness.

3. Materials and Methods

3.1. Chemistry

All solvents, chemicals, and reagents were obtained commercially and used without purification.
1H-NMR (200 MHz) spectra were recorded on a DPX-200 NMR spectrometer (Bruker, Karlsruhe,
Germany) using tetramethylsilane as an internal standard. Chemical shifts, δ, are given in parts per
million (ppm), and spin multiplicities are given as s (singlet), br s (broad singlet), d (doublet), t (triplet),
q (quartet) or m (multiplet). Coupling constants, J, are expressed in hertz (Hz). Melting points were
recorded on a SMP10 Melting Point Apparatus (Stuart, Staffordshire, UK) and are uncorrected. Yields
refer to isolated pure products and were not maximized. CHN analysis was performed on the ER-20
analyzer (Carlo-Erba, Val-de-Reuil, France). All compounds exhibited analytical and spectroscopic
data that strongly agreed with their expected structures.

3.2. Synthesis of Compounds

The synthesis and characteristics of compounds are described below. The original NMR spectra
are presented in the Supplementary Materials.

General Procedure for the Preparation of Derivatives 7a–k

A solution of tosyl chloride (190.65 mg, 1 mmol) in methylene chloride (5 mL) was added to a
solution of NEt3 (2 mmol) and aminoquinoline 5 (1 mmol) in methylene chloride (4 mL). The reaction
mixture was stirred for 1 h at room temperature, diluted with 10 mL of water, and extracted with ethyl
acetate (3 × 10 mL). The combined extracts were washed with brine, dried over anhydrous Na2SO4, and
evaporated under vacuum to give the required crude product that was recrystallized from isopropanol.

N-(2-(2,3-Dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-ethyl)-4-methyl-benzenesulfonamide (7a).
White solid; Yield 75%, m.p. 245–247 ◦C. 1H-NMR (DMSO-d6) δ: 2.17 (m, 2H, CH2), 2.33 (s, 3H, CH3),
2.80 (m, 2H, CH2), 3.19 (m, 2H, CH2), 3.83 (m, 4H, 2 × CH2), 7.17 (d, 2H, J = 8.4 Hz, Har), 7.53 (t, 1H,
J = 7.2 Hz, Har), 7.61 (d, 2H, J = 8.4 Hz, Har), 7.76 (t, 2H, J = 7.3 Hz, Har), 7.90 (m, 2H, NH, Har), 8.43 (m,
2H, NH, Har). Anal. Calcd for C21H23N3O2S: C, 66.12; H, 6.08; N, 11.01. Found: C, 66.18; H, 6.21;
N, 11.12.

N-(3-(2,3-Dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-propyl)-4-methyl-benzenesulfonamide (7b).
White solid; Yield 72%, m.p. 213–215 ◦C. 1H-NMR (DMSO-d6 + CDCl3) δ: 1.77 (m, 2H, CH2),
2.12 (m, 2H, CH2), 2.29 (s, 3H, CH3), 2.83 (m, 2H, CH2), 3.19 (m, 4H, 2 × CH2), 3.75 (q, 2H, J = 6.1 Hz,
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CH2), 7.03 (d, 2H, J = 7.8 Hz, Har), 7.30 (m, 2H, NH, Har), 7.48 (m, 3H, NH, Har), 7.80 (d, 1H, J = 8.2 Hz,
Har), 8.23 (m, 1H, NH), 8.25 (d, 1H, J = 8.6 Hz, Har). Anal. Calcd for C22H25N3O2S: C, 66.81, H, 6.37,
N, 10.62. Found: C, 66.61, H, 6.47, N, 10.44.

N-(4-(2,3-Dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-butyl)-4-methyl-benzenesulfonamide (7c).
White solid; Yield 65%, m.p. 215–217 ◦C. 1H-NMR (DMSO-d6) δ: 1.51 (m, 2H, CH2), 1.68 (m, 2H, CH2),
2.20 (m, 2H, CH2), 2.40 (s, 3H, CH3), 2.75 (q, 2H, J = 6.2 Hz, CH2), 3.26 (m, 4H, 2 × CH2), 3.70 (q, 2H,
J = 6.2 Hz, CH2), 7.28 (d, 2H, J = 8.2 Hz, Har), 7.51 (m, 2H, NH, Har), 7.63 (d, 2H, J = 8.4 Hz, Har), 7.76 (t,
1H, J = 7.4 Hz, Har), 7.95 (d, 1H, J = 8.2 Hz, Har), 8.54 (d, 1H, J = 8.2 Hz, Har), 8.80 (t, 1H, J = 6.2 Hz, NH).
Anal. Calcd for C23H27N3O2S: C, 67.45, H, 6.65, N, 10.26. Found: C, 67.57, H, 6.61, N, 10.41.

N-(5-(2,3-Dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-pentyl)-4-methyl-benzenesulfonamide (7d).
White solid; Yield 76%, m.p. 173–175 ◦C. 1H-NMR (DMSO-d6) δ: 1.57 (m, 6H, 3 × CH2), 2.19
(m, 2H, CH2), 2.38 (s, 3H, CH3), 2.75 (q, 2H, J = 6.3 Hz, CH2), 3.26 (m, 4H, 2 × CH2), 3.67 (q, 2H,
J = 6.3 Hz, CH2), 7.25 (d, 2H, J = 8.2 Hz, Har), 7.47 (m, 2H, NH, Har), 7.62 (d, 2H, J = 8.2 Hz, Har), 7.76 (t,
1H, J = 7.3 Hz, Har), 7.93 (d, 1H, J = 8.2 Hz, Har), 8.49 (d, 1H, J = 8.2 Hz, Har), 8.76 (t, 1H, J = 6.2 Hz, NH).
Anal. Calcd for C24H29N3O2S: C, 68.05, H, 6.90, N, 9.92. Found: C, 68.29, H, 6.77, N, 9.78.

N-(6-(2,3-Dihydro-1H-cyclopenta[b]quinolin-9-ylamino)-hexyl)-4-methyl-benzenesulfonamide (7e).
White solid; Yield 73%, m.p. 230–232 ◦C. 1H-NMR (DMSO-d6) δ: 1.57 (m, 6H, 4 × CH2), 2.20 (m, 2H,
CH2), 2.39 (s, 3H, CH3), 2.78 (q, 2H, J = 6.2 Hz, CH2), 3.20 (m, 2H, CH2), 3.30 (m, 2H, CH2), 3.72 (q, 2H,
J = 6.2 Hz, CH2), 7.23 (d, 2H, J = 8.2 Hz, Har), 7.44 (m, 2H, NH, Har), 7.58 (d, 2H, J = 8.2 Hz, Har), 7.73 (t,
1H, J = 7.3 Hz, Har), 8.00 (d, 1H, J = 8.2 Hz, Har), 8.33 (d, 1H, J = 8.2 Hz, Har), 8.73 (t, 1H, J = 6.2 Hz, NH).
Anal. Calcd for C25H31N3O2S: C, 68.62, H, 7.14, N, 9.60. Found: C, 68.90, H, 7.27, N, 9.44.

4-Methyl-N-(3-(1,2,3,4-tetrahydro-acridin-9-ylamino)-propyl)-benzenesulfonamide (7f). White solid;
Yield 68%, m.p. 222–224 ◦C. 1H-NMR (DMSO-d6) δ: 1.88 (m, 6H, 3 × CH2), 2.38 (s, 3H, CH3), 2.67 (m,
2H, CH2), 2.80 (q, 2H, J = 6.2 Hz, CH2), 3.07 (m, 2H, CH2), 3.90 (q, 2H, J = 5.6 Hz, CH2), 7.28 (d, 2H,
J = 8.2 Hz, Har), 7.51 (t, 1H, J = 7.7 Hz, Har), 7.63 (d, 2H, J = 8.2 Hz, Har), 7.79 (m, 3H, 2 × NH, Har),
8.08 (d, 1H, J = 8.5 Hz, Har), 8.39 (d, 1H, J = 8.5 Hz, Har). Anal. Calcd for C23H27N3O2S: C, 67.45, H,
6.65, N, 10.26. Found: C, 67.66, H, 6.70, N, 10.22.

4-Methyl-N-(4-(1,2,3,4-tetrahydro-acridin-9-ylamino)-butyl)-benzenesulfonamide (7g). White solid;
Yield 71%, m.p. 165–167 ◦C. 1H-NMR (CDCl3) δ: 1H-NMR (CDCl3) δ: 1.69 (m, 4H, 2 × CH2), 1.84 (m,
4H, 2 × CH2), 2.38 (s, 3H, CH3), 2.62 (m, 2H, CH2), 2.95 (m, 2H, CH2), 3.07 (m, 2H, CH2), 3.58 (q, 2H,
J = 6.6 Hz, CH2), 4.77 (m, 1H, NH), 5.45 (m, 1H, NH), 7.23 (d, 2H, J = 7.8 Hz, Har), 7.31 (m, 1H, Har),
7.53 (m, 1H, Har), 7.74 (d, 2H, J = 8.4 Hz, Har), 7.95 (d, 1H, J = 8.8 Hz, Har), 8.02 (d, 1H, J = 8.2 Hz, Har).
Anal. Calcd for C24H29N3O2S: C, 68.05, H, 6.90, N, 9.92. Found: C, 68.31, H, 6.72, N, 9.81.

4-Methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h). White solid;
Yield 73%, m.p. 235–237 ◦C. 1H-NMR (CDCl3) δ: 1.69 (m, 6H, 3 × CH2), 1.97 (m, 4H, 2 × CH2), 2.36 (s,
3H, CH3), 2.63 (m, 2H, CH2), 2.94 (m, 2H, CH2), 3.08 (m, 2H, CH2), 3.56 (q, 2H, J = 6.7 Hz, CH2), 4.75
(m, 1H, NH), 5.45 (m, 1H, NH), 7.24 (d, 2H, J = 7.8 Hz, Har), 7.28 (m, 1H, Har), 7.53 (t, 1H, J = 7.1 Hz,
Har), 7.74 (d, 2H, J = 8.5 Hz, Har), 7.96 (d, 1H, J = 8.8 Hz, Har), 8.04 (d, 1H, J = 8.3 Hz, Har). Anal. Calcd
for C25H31N3O2S: C, 68.62, H, 7.14, N, 9.60. Found: C, 68.76, H, 7.32, N, 9.52.

4-Methyl-N-(3-(7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-propyl)-benzenesulfonamide
(7i). White solid; Yield 65%, m.p. 213–215 ◦C. 1H-NMR (DMSO-d6) δ: 1.64 (m, 2H, CH2), 1.85 (m, 6H,
3 × CH2), 2.35 (s, 3H, CH3), 2.76 (q, 2H, J = 6.1 Hz, CH2), 2.88 (m, 2H, CH2), 3.23 (m, 2H, CH2), 3.72 (m,
2H, CH2), 7.31 (d, 2H, J = 8.3 Hz, CH2), 7.58 (d, 2H, J = 8.3 Hz, Har), 7.71 (m, 3H, 2 ×NH, Har), 7.88
(t, 1H, J = 8.1 Hz, Har), 8.06 (d, 1H, J = 8.3 Hz, Har), 8.42 (d, 1H, J = 8.3 Hz, Har). Anal. Calcd for
C24H29N3O2S: C, 68.05, H, 6.90, N, 9.92. Found: C, 68.30, H, 6.72, N, 9.91.

4-Methyl-N-(4-(7,8,9,10-tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-butyl)-benzenesulfonamide
(7j). White solid; Yield 66%, m.p. 235–237 ◦C. 1H-NMR (CDCl3) δ: 1.60 (m, 4H, 2 × CH2), 1.81 (m, 6H,
3 × CH2), 2.39 (s, 3H, CH3), 2.63 (m, 2H, CH2), 2.95 (m, 2H, CH2), 3.15 (m, 2H, CH2), 3.92 (m, 2H, CH2),
7.27 (m, 2H, Har), 7.57 (t, 1H, J = 7.6 Hz, Har), 7.78 (d, 2H, J = 8.3 Hz, Har), 7.80 (m, 1H, Har), 8.23 (d,
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1H, J = 8.3 Hz, Har), 8.30 (d, 1H, J = 8.3 Hz, Har). Anal. Calcd for C25H31N3O2S: C, 68.62, H, 7.14,
N, 9.60. Found: C, 68.66, H, 7.01, N, 9.76.

N-(3-(6,7,8,9,10,11-Hexahydro-cycloocta[b]quinolin-12-ylamino)-propyl)-4-methyl-benzenesulfonamide
(7k). White solid; Yield 65%, m.p. 210–212 ◦C. 1H-NMR (DMSO-d6) δ: 1.36 (m, 2H, CH2), 1.53 (m, 2H,
CH2), 1.71 (m, 2H, CH2), 1.94 (m, 4H, 2 × CH2), 2.41 (s, 3H, CH3), 2.84 (q, 2H, J = 6.1 Hz, CH2), 2.95 (m,
2H, CH2), 3.25 (m, 2H, CH2), 3.92 (m, 2H, CH2), 7.27 (d, 2H, J = 8.2 Hz, Har), 7.52 (m, 1H, Har), 7.66 (d,
2H, J = 8.4 Hz, Har), 7.78 (m, 3H, 2 × NH, Har), 8.33 (m, 2H, Har). Anal. Calcd for C25H31N3O2S: C,
68.62, H, 7.14, N, 9.60. Found: C, 68.43, H, 7.07, N, 9.84.

3.3. Biological Assays

3.3.1. Enzymatic Assays

• In vitro AChE, BChE and CES Inhibition

All experiments were carried out in accordance with the standard protocols approved by IPAC RAS.
Human erythrocyte AChE, equine serum BChE, porcine liver CES, acetylthiocholine iodide (ATCh),
butyrylthiocholine iodide (BTCh), 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB), and 4-nitrophenol
acetate (4-NPA) were purchased from Sigma-Aldrich (Saint Louis, MO, USA).

AChE and BChE activities were measured by the colorimetric method of Ellman et al. [94]. The assay
solution consisted of 0.1 M K/Na phosphate buffer pH 7.5, 25 ◦C, 0.33 mM DTNB, 0.02 unit/mL AChE
or BChE, and 1 mM substrate (ATCh or BTCh, respectively). Reagent blanks consisted of reaction
mixtures without substrates.

The activity of CES was determined spectrophotometrically at 405 nm to monitor the release
of 4-nitrophenol [95] in 0.1 M K/Na phosphate buffer pH 8.0, 25 ◦C. Final enzyme and substrate
(4-nitrophenyl acetate) concentrations were 0.02 unit/mL and 1 mM, respectively. Assays were carried
out with a blank containing all constituents except porcine CES to assess non-enzymatic hydrolysis.

Test compounds were dissolved in DMSO; reaction mixtures contained 2% (v/v) of the solvent,
a concentration shown not to affect the activity of the enzymes on its own (data not shown).
Tacrine, donepezil, and bis-4-nitrophenyl phosphate (BNPP), a selective CES inhibitor, were used as
positive controls.

An initial evaluation of inhibitory activity of compounds was carried out by determination of
the AChE, BChE and CES inhibition at a compound concentration of 20 µM. For this, a sample of the
corresponding enzyme was incubated with the test compound for 5 min at 25 ◦C for temperature
equilibration; then the enzyme residual activity was determined. Each experiment was performed
in triplicate.

For the most active compounds, the IC50 values (the concentration of inhibitor required to decrease
the enzyme activity by 50%) were determined. Eight different concentrations of the test compounds in
the range 10−12–10−4 M were selected in order to obtain inhibition of esterase activity between 20%
and 80%. The test compounds were added to the assay solution and incubated with the enzyme at
25 ◦C for 5 min (for temperature equilibration) followed by the addition of substrate. A parallel control
was made for the assay solution with no inhibitor.

Measurements were performed in the FLUOStar OPTIMA microplate spectrophotometer (BMG
Labtech, Ortenberg, Germany). Each experiment for the IC50 assay was performed in triplicate.
The results were expressed as the mean ± SEM. The reaction rates in the presence and absence
of inhibitor were compared, and the percent residual enzyme activity due to the presence of test
compounds was calculated. IC50 values were determined graphically from inhibition curves (log
inhibitor concentration vs. percent residual enzyme activity) using Origin 6.1 software (OriginLab,
Northampton, MA, USA).
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• Kinetic Study of AChE and BChE Inhibition. Determination of Steady-State Inhibition Constants

Mechanisms of AChE and BChE inhibition were assessed via a thorough analysis of enzyme kinetics.
Residual activity was measured following 5 min incubation at 25 ◦C (for temperature equilibration) with
three increasing concentrations of inhibitor and six decreasing substrate concentrations. Substrate was
added immediately after the 5 min incubation with inhibitor and the rates of absorption were monitored
at 412 nm using the FLUOStar OPTIMA (BMG Labtech) microplate spectrophotometer. Inhibition
constants Ki (competitive component) and αKi (noncompetitive component) were determined by linear
regression of 1/V versus 1/[S] double-reciprocal (Lineweaver-Burk) plots using Origin 6.1 software.
Data were expressed as mean ± SEM (n = 3 experiments).

3.3.2. Propidium Displacement Studies

The ability of the test compounds to competitively displace propidium, a selective ligand of
the PAS of AChE, was evaluated by the fluorescence method [93,96]. EeAChE was used owing
to its high degree of purification, high activity, and lower cost than human AChE (hAChE).
In addition, we performed 3D alignment of the crystal structures of EeAChE (PDB: 1C2O) and
hAChE (PDB: 4EY7) using YASARA-Structure 18.4.24 for Windows, which showed that the two
structures were essentially congruent with an RMSD of 0.623 Å over 527 aligned residues and 88.6%
sequence identity. The fluorescence intensity of propidium iodide bound with AChE increases several
times; decreasing fluorescence intensity of the bound propidium in the presence of the test compounds
shows their ability to bind to the PAS of AChE [24,27].

To determine the degree of displacement (% displacement) of propidium from the PAS of AChE,
EeAChE (final concentration, 7 µM) was incubated with the test compound at a concentration of
20 µM in 1 mM Tris-HCl buffer pH 8.0, 25 ◦C, for 15 min. Then, propidium iodide solution (final
concentration, 8 µM) was added, the samples were incubated for 15 min and the fluorescence spectrum
(530 nm (excitation) and 600 nm (emission)) was taken. Donepezil and tacrine were used as reference
compounds. The blank contained propidium iodide of the same concentration in 1 mM Tris-HCl buffer
pH 8.0. The measurements were carried out in triplicate on the FLUOStar Optima microplate reader
(BMG Labtech), and the results were calculated by the following formula:

% Displacement = 100 − (IFAChE+ Propidium + inhibitor/IFAChE + Propidium) × 100 (1)

where IFAChE + Propidium is the fluorescence intensity of the propidium associated with AChE in the
absence of the test compound (taken as 100%), and IFAChE + Propidium + inhibitor is the fluorescence
intensity of the propidium associated with AChE in the presence of the test compound.

3.3.3. Antioxidant Activity: ABTS Radical Cation Scavenging Activity Assay

Radical scavenging activity of the compounds was assessed using the ABTS radical
decolorization assay [97] with some modifications [50]. ABTS was purchased from Tokyo
Chemical Industry Co. (Tokyo, Japan), potassium persulfate (dipotassium peroxodisulfate), Trolox®

(6-hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid), and HPLC grade ethanol were obtained
from Sigma-Aldrich. Aqueous solutions were prepared using deionized water.

The solution of cation radical ABTS•+ was produced by incubation of ABTS with potassium
persulfate in deionized water for 12–16 h at room temperature in the dark. Radical scavenging capacity
of the compounds was analyzed by mixing 10 µL of compound with 240 µL of ABTS•+ working
solution in ethanol (100 µM final concentration). After 1 h of incubation, the reduction in absorbance
was measured spectrophotometrically at 734 nm using the xMark microplate UV/VIS microplate
spectrophotometer (Bio-Rad, Hercules, CA, USA). Ethanol blanks were run in each assay. Values were
obtained from three replicates of each sample and three independent experiments. Trolox was used as
the antioxidant standard.
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The antioxidant activity is reported as Trolox equivalent antioxidant capacity (TEAC values)
by comparing (A0 − Atest) of the test antioxidant with (A0 − ATrolox) of the Trolox standard at a
concentration of 20 µM after a reaction time of 1 h. A0 is the absorbance of a control lacking any
radical scavenger and Atest/Trolox is the absorbance of the remaining ABTS•+ in the presence of the test
compound or Trolox, respectively:

TEAC = (A0 − Atest)/(A0 − ATrolox) (2)

3.4. Molecular Modeling Studies

X-ray structures of human AChE in apo-form and co-crystallized with different ligands (PDB:
4EY4–4EY7) [98] and an optimized X-ray structure of human BChE (PDB: 1P0I) [99,100] were used
for molecular docking. Ligand structures were optimized using a DFT quantum chemistry method
(B3LYP/6-31G*, GAMESS-US [101] software). Partial atomic charges on ligand atoms were assigned
from QM data according to the Löwdin scheme [102]. Molecular docking was performed with
AutoDock 4.2.6 software [103]. The grid box for docking included the entire active site gorge of AChE
(22.5 Å × 22.5 Å × 22.5 Å grid box dimensions) and BChE (15 Å × 20.25 Å × 18 Å grid box dimensions)
with a grid spacing of 0.375 Å. The main Lamarckian Genetic Algorithm (LGA) [104] parameters were
256 runs, 25 × 106 evaluations, 27 × 104 generations, and a population size of 3000. Figures were
prepared with PyMOL (www.pymol.org).

3.5. Prediction of ADMET Profiles and PAINS Analysis

Human intestinal absorption (HIA) [105], blood-brain barrier permeability (LogBB) [106],
and hERG-mediated cardiac toxicity risk (channel affinity pKi and inhibitory activity pIC50) [107] were
estimated using the integrated online service for ADMET properties prediction (ADMET Prediction
Service) [108]. It implements the predictive QSAR models based on accurate and representative
training sets, fragmental descriptors, and artificial neural networks. The lipophilicity (LogPow) and
aqueous solubility (pS) were estimated by the ALogPS 3.0 neural network model implemented in the
OCHEM platform [109]. The quantitative estimate of drug-likeness (QED) values [110] were calculated
and the Pan Assay INterference compoundS (PAINS) alerts were checked using the RDKit version
2019.03.4 software [111].

3.6. Statistical Analyses

Results are presented as mean ± SEM calculated using GraphPad Prism version 6.05 (San Diego,
CA, USA) for Windows. Plots, linear regressions, and IC50 values were determined using Origin 6.1
(Northampton, MA, USA) for Windows.

4. Conclusions

New hybrids of 4-amino-2,3-polymethylene-quinoline and p-tolylsulfonamide with different
aliphatic ring sizes and alkylene spacers of increasing length were synthesized and their structures
established. All synthesized compounds exhibited high dual anticholinesterase activity and greater
selectivity toward BChE. They possessed low anti-CES activity, suggesting the absence of potential
unwanted drug-drug interactions in prospective clinical use.

Kinetics studies were consistent with mixed-type reversible inhibition. Molecular docking into
AChE and BChE provided detailed insights into the binding modes demonstrating dual-site binding
of the conjugates in AChE and clarifying differences in the structure-activity relationships for AChE
and BChE inhibition.

The conjugates had the ability to bind to the AChE PAS and displace propidium, indicating
their potential to block AChE-induced β-amyloid aggregation, thereby potentially exerting
disease-modifying capability. All compounds demonstrated low antioxidant activity.

www.pymol.org
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Computational ADMET profiles predicted that all the conjugates should have good
intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risks.
Moreover, the PAINS filter check for the compounds did not identify any alerts.

Overall, the developed hybrid compounds demonstrated potent dual anticholinesterase activity
along with the predicted propensity to block AChE-induced aggregation of β-amyloid. Thus, they have
the potential for treating symptoms as well as exerting disease-modifying effects and show promise
for further development and optimization as multitarget anti-AD agents. In particular, the lead
compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)benzenesulfonamide (7h),
with an unmodified six-membered tacrine ring and m = 5, exhibited maximum anti-AChE activity
with IC50 = 0.131 ± 0.01 µM (five times more potent than tacrine) and high anti-BChE activity. It is
a mixed-type AChE inhibitor with the highest percentage of propidium displacement, very good
intestinal absorption and medium predicted blood-brain barrier permeability.

Supplementary Materials: The following are available online: Figures S1–S11: NMR spectra for 7a–k.
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