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SUMMARY

For large-scale testing with graph-associated data, we present an empirical Bayes mixture technique to
score local false-discovery rates (FDRs). Compared to procedures that ignore the graph, the proposed
Graph-based Mixture Model (GraphMM) method gains power in settings where non-null cases form
connected subgraphs, and it does so by regularizing parameter contrasts between testing units. Simulations
show that GraphMM controls the FDR in a variety of settings, though it may lose control with excessive
regularization. On magnetic resonance imaging data from a study of brain changes associated with the
onset of Alzheimer’s disease, GraphMM produces greater yield than conventional large-scale testing
procedures.

Keywords: Empirical Bayes, Graph-respecting partition, GraphMM, Image analysis, Local false-discovery rate,
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1. INTRODUCTION

Empirical Bayesian methods provide a useful approach to large-scale hypothesis testing in genomics, brain
imaging, and other application areas. Often, these methods are applied relatively late in the data-analysis
pipeline, after p-values, test statistics, or other summary statistics are computed for each testing unit.
Essentially, the analyst performs univariate testing en masse. The final unit-specific scores and discoveries
depend upon the chosen empirical Bayesian method, which accounts for the collective properties of the
separate statistics to gain an advantage (e.g., Storey, 2003; Efron, 2007; Stephens, 2017). These methods
are effective but may be underpowered in some applied problems when the underlying effects are relatively
weak. Motivated by tasks in neuroscience, we describe an empirical Bayesian approach that operates earlier
in the data-analysis pipeline and that leverages regularities achieved by constraining the dimension of the
parameter space. Our approach is restricted to data sets in which the variables constitute nodes of a known,
undirected graph, which we use to guide regularization. We report simulation and empirical studies with
structural magnetic resonance imaging to demonstrate encouraging operating characteristics of the new
methodology. We conjecture that power is gained for graph-associated data by moving upstream in the
data reduction process and by recognizing low complexity parameter states.
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Fig. 1. False-discovery rate of list (vertical) as a function of list size (horizontal) for various testing procedures. lfdr1
refers to the procedure to list the unit if the local FDR P(μX1 = μY1 |X1, Y1) is sufficiently small (black). Blue lines
refer to the operating characteristics when using lfdr2 which is P(μX1 = μY1 |X1, X2, Y1, Y2), for various probabilities
pblock that the two units share parameters. By accounting for blocking, we may report more discoveries at a given
FDR. The synthetic system has 104 unit pairs and marginal p0 = P(μX1 = μY1) = 0.8; as the list size increases all
curves approach p0.

The following toy problem illustrates in a highly simplified setting the phenomenon we leverage for
improved power. Suppose we have two sampling conditions, and two variables measured in each condition,
say X1 and X2 in the first condition and Y1 and Y2 in the second. We aim to test the null hypothesis that
X1 and Y1 have the same expected value; say H0 : μX1 = μY1 . Conditional upon target values μX1 , μY1

and nuisance mean values μX2 and μY2 , the four observations are mutually independent, with normal
distributions and some constant, known variance σ 2. We further imagine that these four variables are part
of a larger system, throughout which the distinct expected values themselves fluctuate, say according to a
standard normal distribution. Within this structure, a test of H0 may be based upon the local false-discovery
rate (FDR)

lfdr1 = P(H0|X1, Y1) = p0f (X1, Y1)

p0f (X1, Y1) + (1 − p0)g(X1)g(Y1)
,

where we are mixing discretely over null (with probability p0) and non-null cases. Here the across-
system variation in expected values may be handled analytically and integrated out; thus in this predictive
distribution g(x) = ∫

N (x|μ, σ 2) N (μ|0, 1) dμ is the density of a mean 0 normal distribution with variance
1 + σ 2; and f (x, y) = ∫

N (x|μ, σ 2) N (y|μ, σ 2) N (μ|0, 1) dμ is the bivariate normal density with margins
g and with correlation 1/(1 + σ 2) between X1 and Y1 (in the integrals, N is the normal density). In
considering data X2 and Y2 on the second variable, it may be useful to suppose that the expected values
here are no different from their counterparts on the first variable. We say the variables are blocked if
both μX1 = μX2 and μY1 = μY2 , and we consider this a discrete possibility that occurs with probability
pblock throughout the system, independently of H0. In the absence of blocking, there is no information in
X2 and Y2 that could inform the test of H0 (considering the independence assumptions). In the presence
of blocking, however, data on these second variables are highly relevant. Treating blocking as random
across the system, we would score H0 using the local FDR lfdr2 = P(H0|X1, X2, Y1, Y2), which requires
for evaluation the consideration of a 4-variate normal and joint discrete mixing over the blocking and null
states. Figure 1 shows the result of simulating a system with 104 variable pairs, where the marginal null
frequency p0 = 0.8, σ 2 = 1/2, and the blocking rate pblock varies over three possibilities. Shown is the
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FDR of the list (i.e., the mean of local FDRs for units on the list) formed by ranking instances by either
lfdr1 or lfdr2. The finding in this toy problem is that power for detecting differences between μX1 and μY1

increases by accounting for the blocking, since the list of discovered non-null cases by lfdr2 is larger for
a given FDR than the list constructed using lfdr1. In other words, when the dimension of the parameter
space is constrained, more data become relevant to the test of H0 and power increases.

Our interest in large-scale testing arises from work with structural magnetic resonance imaging (MRI)
data measured in studies of brain structure and function, as part of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI-2) (Weiner and Veitch, 2015). MRI provides a detailed view of brain atrophy and has
become an integral to the clinical assessment of patients suspected to have Alzheimer’s disease (AD)
(e.g., Vemuri and Jack, 2010; Moller and others, 2013). In studies to understand disease onset, a central
task has been to identify brain regions that exhibit statistically significant differences between various
clinical groups, while accounting for technical and biological sources of variation affecting MRI scans.
Existing work in large-scale testing for neuroimaging has considered thresholds on voxel-wise test statistics
to control a specified false positive rate and maintain testing power (Nichols, 2012). Two widely used
approaches are family-wise error control using random field theory (e.g., Worsley and others, 2004) and
FDR control using Benjamin–Hochberg procedure (Benjamini and Hochberg, 1995; Genovese and others,
2002). The former is based on additional assumptions about the spatial smoothness of the MRI signal,
which may not be supported empirically (Eklund and others, 2016). Both parametric and nonparametric
voxel-wise tests are available in convenient neuroimaging software systems (Penny and others, 2007;
Nichols). Recently, Tansey and others (2018) presented an FDR tool that processes unit-specific test
statistics in a way to spatially smooth the estimated prior proportions. As the clinical questions of interest
move towards identifying early signs of AD, the changes in average brain profiles between conditions
invariably become more subtle and increasingly hard to detect; the result is that very few voxels or brain
regions may be detected as significantly different by standard methods.

Making a practical tool from the blocking phenomenon (Figure 1) requires that a number of modeling
and computational issues be resolved. Others have recognized the potential and have designed computa-
tionally intensive Bayesian approaches based on Markov chain Monte Carlo (Do and others, 2005; Dahl
and Newton, 2007; Dahl and others, 2008; Kim and others, 2009). We seek simpler methodology and
develop a specific case in which data are organized by a known undirected graph; then blocking may occur
between one testing unit and another unit nearby in the graph. For flexibility, we avoid the often-used
product-partition assumption, and we rely on graph-localization to reduce computational complexity: after
setting global hyperparameters, a unit’s local FDR is computed from data on that unit as well on units in
a local subgraph. The resulting tool we call GraphMM, for graph-based mixture model. It is deployed as
an R package available at https://github.com/tienv/GraphMM/. We investigate its properties
using a variety of synthetic-data scenarios, and we apply it to identify statistically significant changes in
brain structure associated with the onset of mild cognitive impairment. Details not found in the following
sections are included in Supplementary material available at Biostatistics online.

2. METHODS

2.1. Data structure and inference problem

Let G = (V , E) denote a simple, connected, undirected graph with vertex set V = {1, 2, ..., N } and
edge set E, and consider partitions of V , such as � = {b1, ..., bK }; that is, blocks (also called clusters)
bk constitute non-empty disjoint subsets of V for which ∪K

k=1bk = V . In the application in Section 3.2,
vertices correspond to voxels at which brain-image data are measured, edges connect spatially neighboring
voxels, and the partition conveys a dimension-reducing constraint. The framework is quite general and
includes, for example, interesting problems from genomics and molecular biology. Recall that for any
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Fig. 2. Examples of partitions on a graph. Different colors represent different blocks. The partition on the left is graph
respecting while the one on the right is not (e.g., the blue nodes induces a subgraph with two components). There are
1434 such graph-respecting partitions of this 3 × 3 lattice. They have a median number of four blocks.

subset b ⊂ V , the induced subgraph Gb = (b, Eb), where Eb contains all edges e = (v1, v2) for which
e ∈ E and v1, v2 ∈ b. For use in constraining a parameter space, we introduce the following property:

Property 2.1 (Graph-respecting partition) A partition � respects G, or � is graph respecting, if for all
bk ∈ �, the induced graph Gbk is connected.

Figure 2 presents a simple illustration; a spanning-tree representation turns out to be useful in computa-
tions (Supplementary material available at Biostatistics online). It becomes relevant to statistical modeling
that the size of the set of graph-respecting partitions, though large, still is substantially smaller than the
set of all partitions as the graph itself becomes less complex. For example there are 21 147 partitions of
nine objects (the 9th Bell number), but if these objects are arranged as vertices of a regular 3 × 3 lattice
graph, then there are only 1434 graph-respecting partitions.

In our setting, the graph G serves as a known object that provides structure to a data set being analyzed
for the purpose of a two-group comparison. This is in contrast, for example, to graphical-modeling settings
where the possibly unknown graph holds the dependency patterns of the joint distribution. We write the
two-group data as X = (Xv,m) and Y = (Yv,r), where v ∈ V , m = 1, . . . , MX and r = 1, . . . , MY . Here, MX

and MY denote the numbers of replicate samples in both groups. In Section 3.2, for example, m indexes
the brain of a normal control subject and r indexes the brain of a subject with mild cognitive impairment.
For convenience, let Xm = (Xv,m, v ∈ V ) and Yr = (Yv,r , v ∈ V ) denote the across-graph samples on
subjects m and r, which we treat as identically distributed within group and mutually independent over m
and r owing to the two-group, unpaired experimental design.

Our methodology tests for changes between the two groups in the expected-value vectors: μX =
E(Xm) = (μX1 , . . . , μXN ) and μY = E(Yr) = (μY1 , . . . , μYN ). Specifically, we aim to test, for any vertex
v ∈ V , H0,v : μXv = μYv versus H1,v : μXv �= μYv . We seek to gain statistical power over contemporary
testing procedures by imposing a dimension constraint on the expected values.Although it is not required to
be known or even estimated, we suppose there exists a graph-respecting partition � = {bk} that constrains

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab001#supplementary-data
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the expected values: {
μXv = μXu if for some k , both v, u ∈ bk

μXv �= μXu if v, u belong to different blocks
(2.1)

{
μYv = μYu if for some k , both v, u ∈ bk

μYv �= μYu if v, u belong to different blocks
.

All vertices v in block bk have a common mean in the first group, say ϕk , and a common mean νk

in the second group. The contrast on test, then, is δk = νk − ϕk ; together with �, the binary vector
� = (�1, . . . , �K) holding indicators �k = 1[δk �= 0] is equivalent to knowing whether or not H0,v is true
for each vertex v. When data are consistent with a partition � in which the number of blocks K is small
compared to the number of vertices N , then it may be possible to leverage this reduced parameter-space
complexity for the benefit of hypothesis-testing power.

2.2. Graph-based mixture model

2.2.1. Discrete mixing. We adopt an empirical Bayes, mixture-based testing approach, which requires
that for each vertex we compute a local FDR:

lv := P(H0,v|X , Y ) =
∑
�,�

(1 − �k)1(v ∈ bk)P(�, �|X , Y ). (2.2)

Our list L of discovered (non-null) vertices is L = {v : lv ≤ c} for some threshold c. Conditional on the
data, the expected rate of type-I errors within L is dominated by the threshold c (Efron, 2007; Newton and
others, 2004). The sum in (2.2) is over the finite set of pairs of partitions � and block-change indicator
vectors �. This set is intractably large for even moderate-sized graphs: we present here computations in the
context of very small graphs. For each vertex v in the original graph, we consider a small local subgraph
in which v is the central vertex, and we deploy GraphMM on this local subgraph. This simplification
suppresses any direct effect that non-local data may have on inference at vertex v, but the allowance for
the influence of local data is of course greater than that imparted by standard large-scale methods.

Summing in (2.2) delivers marginal posterior inference, and thus a mechanism for borrowing strength
among vertices v. By Bayes’s rule, P(�, �|X , Y ) ∝ f (X , Y |�, �) P(�, �), and both the mass P(�, �)

and the predictive density f (X , Y |�, �) need to be specified to compute inference summaries. Various
modeling approaches present themselves. For example, we could reduce data per vertex to a test statistic
(e.g., t-statistic) and model the predictive density nonparametrically, as in locfdr (Efron, 2007). We
could reduce data per vertex less severely, retaining effect estimates and estimated standard errors, as
in adaptive shrinkage (Stephens, 2017). By contrast, we adopt an explicit parametric-model formulation
for the predictive distribution of data given the discrete state (�, �). It restricts the sampling model
to be Gaussian but allows general covariance among vertices and is not reliant on the product-partition
assumption commonly used in partition-based models (Barry and Hartigan, 1992). For P(�, �), we specify
P(�) ∝ 1, we encode independent and identically distributed block-specific Bernoulli(p0) indicators in
P(�|�), and we use univariate empirical-Bayes techniques to estimate p0.

2.2.2. Predictive density given discrete structure. We take a multivariate Gaussian sampling model:

Xm|μX , U , �, � ∼i.i.d. N (μX , U ) m = 1, . . . , MX , Yr|μY , W , �, � ∼i.i.d. N (μY , W ) r = 1, . . . , MY .
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We we place a conjugate inverse Wishart prior distribution on covariance matrices: U |�, �, μX , μY ∼
IW(A, df), and W |�, �, μX , μY ∼ IW(B, df). In general, there is no simple conjugate reduction for
predictive densities owing to the less-than-full dimension of free parameters in μX and μY . On these
free parameters, we further specify independent Gaussian priors: ϕk ∼ N (

μ0, τ 2
)

and, for �k �= 0,
δk ∼ N (

δ0, σ 2
)
. Hyperparameters inGraphMM include scalars δ0, μ0, τ 2, σ 2, df, and matrices A, B, which

we estimate from data across the whole graph following the empirical-Bayes approach (see Supplementary
material available at Biostatistics online, Section 2.2).

The above specification induces a joint density f (X , Y , μX , μY , U , W |�, �). For the purpose of hypoth-
esis testing, we need to marginalize most variables, since H0,v is equivalent to �k = 0 and v ∈ bk for
block bk in partition �, and local FDRs require marginal posterior probabilities. Integrating out inverse
Wishart distributions over the covariance matrices is possible analytically. We find:

f (X , Y | μX , μY , �, �) = C
|A| df

2 |B| df
2

|̃A| df+MX
2 |̃B| df+MY

2

(2.3)

where

S1 = 1

MX − 1

MX∑
m=1

(Xm − X )(Xm − X )T , S2 = (X − μX )(X − μX )T

T1 = 1

MY − 1

MY∑
r=1

(Yr − Y )(Yr − Y )T , T2 = (Y − μY )(Y − μY )T

Ã = A + (MX − 1)S1 + MX S2, B̃ = B + (MY − 1)T1 + MY T2,

and where C is a normalizing constant. In the above, |.| denotes matrix determinant, X = 1
MX

∑MX
m=1 Xm,

Y = 1
MY

∑MY
r=1 Yr , and S1 and T1 are sample covariance matrices of X and Y . In (2.3), there is condi-

tional independence of data from the two conditions given the means but marginal to the unspecified
covariance matrices. When a specific adjustment of each sample covariance is of full rank, we can use the
Laplace approximation to numerically integrate the freely varying means in order to obtain the marginal
predictive density f (X , Y |�, �) (Supplementary material available at Biostatistics online, Equation 2.3).
Computations would simplify under a product-partition assumption, but we found in preliminary numer-
ical experiments that various data sets are not consistent with this simplified dependence pattern, and we
deploy the general form above. The marginal predictive density depends on the two-sample data through
fixed-dimensional sufficient statistics; we expect some robustness of the methodology to non-normality
of the data owing to central-limit effects on these sufficient statistics in case of moderate to large sample
sizes (Figures S11 and S12 of the Supplementary material available at Biostatistics online).

3. RESULTS

3.1. Brain MRI study: ADNI-2

Our primary evaluation of GraphMM is through a set of calculations designed around a motivating data
set from the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI-2). Briefly, we consider 3D structural
brain-imaging data from a group of MX = 123 cognitively normal control subjects (CN) and a second
group of MY = 148 subjects suffering from late-stage mild cognitive impairment (MCI), a precursor to
Alzheimer’s disease (AD). Gray matter tissue probability maps derived from the co-registered T1-weighted
magnetic resonance imaging (MRI) data were pre-processed using the voxel-based morphometry (VBM)
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toolbox in Statistical Parametric Mapping software (SPM, http://www.fil.ion.ucl.ac.uk/spm). Prior to regis-
tration to a common template, standard artifact removal and other corrections were performed, as described
in Ithapu and others (2015). We filtered voxels having very low marginal standard deviation (Bourgon and
others, 2010), leaving MX + MY = 271 measurements at each of 464 441 voxels, which reside within a
121 × 121 × 119 3D lattice. We also converted the data to rank-based normal scores prior to comparisons
between CN and MCI groups.

3.2. Data-driven simulations

To check basic operating characteristics of GraphMM, we construct synthetic data mimicking the size and
variation characteristics of a single coronal slice containing N = 5236 voxels from ADNI-2. In a series
of empirically guided generative scenarios, we consider various levels of clustering within the latent
expected values and various shifts between synthetic CN and MCI groups. Briefly, we derive blocked
latent mean states through spatial clustering, and we use empirical covariances and empirical group shifts
to guide these simulations. Supplementary material available at Biostatistics online, Section 4, reports
further details. We deploy GraphMM using the local 3×3 lattice subgraph centered on each voxel on test;
three data sets are generated in each scenario, and error/detection rates are averaged.

When applying GraphMM to each synthetic data set, we estimate hyperparameters from the entire slice
and consider discoveries as L(c) = {v : lv ≤ c} for various thresholds c. We call the controlled FDR the
mean

∑
v lv1[v ∈ L(c)]/ ∑

v 1[v ∈ L(c)], as this is the conditional expected rate of type-1 errors on the
list, given data (and computable from data). We know the null status in each synthetic case, and so we
also call the empirical FDR to be that rate counting latent null indicators; likewise the true positive rate
counts the non-null indicators. We compareGraphMM to several contemporary testing methods, including
Benjamini–Hochberg correction (BH adj), locfdr, and qvalue (Storey, 2003), which process voxel-
specific t-tests. We also compare results to adaptive shrinkage, both the local FDR statistic (ash_lfdr)
and the q-value (ash_qval). None of these comparators aim to leverage the graphical nature
of the data.

The first three scenarios vary the underlying size-distribution of blocks, but follow the GraphMM
model in the sense that the underlying signal has graph-respecting partitions, and other conditions such
as block-level shifts between conditions and multivariate Gaussian errors are satisfied. The top panels
of Figure 3 show for the first simulation scenario that all methods on test control the FDR and have
sensitivity for relevant signals, though GraphMM has increased power. Figure S3 of the Supplementary
material available at Biostatistics online shows qualitatively similar results for all three scenarios. The high
sensitivity in Scenario 2 may reflect that the prior distribution of block sizes used in the local GraphMM
more closely matches the generative situation. Notably, even when this block-size distribution is not
aligned with the GraphMM prior, we do not see an inflation of the FDR. Scenarios 4 and 5 are similar
to the first cases, however they explore different forms of signals between the two groups; both have an
average block size of 4 voxels, but in one case the changed block effects are fewer, relatively strong and
in the other case they are more frequent, and relatively weaker (Table S3 of the Supplementary material
available at Biostatistics online). In both regimes, GraphMM retains its control of FDR and exhibits good
sensitivity compared to other methods (Figure S4 of the Supplementary material available at Biostatistics
online).

GraphMM is designed for the case where partition blocks are graph respecting and the changes between
conditions affect entire blocks. Our next numerical experiment checks the robustness of GraphMM when
this partition/change structure is violated. Briefly, we had a generative situation similar to the five scenarios
above, except that the latent means were not graph respecting on the 2D lattice (details in Supplementary
material available at Biostatistics online, Section 3.2). Figure S5 of the Supplementary material available
at Biostatistics online shows that GraphMM continues to control FDR. The modest sensitivity advantage
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Fig. 3. Operating characteristics (top panels) of GraphMM and comparator methods in the first data-driven simulation
(12–14 voxels per underlying block), and behavior of GraphMM in two permutation experiments (bottom panels).
Dominance by the diagonal line (top left panel) shows that all methods control the FDR in this scenario; the top right
panel reveals high sensitivity of GraphMM in this case with relatively large blocks. The sample-label-permutation
experiment (lower left) confirms that GraphMM controls FDR in this no-signal case. The voxel-permutation exper-
iment (lower right) confirms that the detection rate is reduced (fewer small local FDRs) when we disrupt the spatial
signal.

in this case may stem from the fact that the latent means are clustered and low-dimensional, even though
blocks may not be fully contiguous.

To further assess the properties of GraphMM, we performed two permutation experiments leveraging
the ADNI-2 data. In the first, we permuted the sample labels of the 148 control subjects and 123 late MCI
subjects, repeating for ten permuted sets. On each permuted set, we applied various methods to detect
differences. All discoveries are false discoveries in this null case. The lower left panel of Figure 3 shows
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that GraphMM and other methods are correctly recognizing the apparent signals as being consistent with
the null hypothesis. The second permutation experiment retains the sample-grouping information, but
permutes the voxels within the brain slice on test. This permutation disrupts both spatial measurement
dependencies and any spatial structure in the signal. Since GraphMM is leveraging spatially coherent
patterns in signal, we expect it to produce fewer statistically significant findings in this voxel-permutation
case. The lower right panel of Figure 3 shows this dampening of signal as we expect, when looking at the
empirical distribution of statistics lv = P(H0,v|X , Y ).

3.3. ADNI-2 data analysis

We seek to identify brain locations (i.e., voxels) that exhibit significant differences in MRI-based gray
matter intensity between two disease stages (cognitively normal controls and late MCI), and also assess
the extent to which our findings are corroborated by known results on aging and Alzheimer’s disease.
First, we applied GraphMMwith a 3×3 local lattice within each of the 119 2D image slices in the coronal
direction. For comparison, we applied Statistical non-parametric Mapping toolbox using Matlab, SnPM,
which is a popular image analysis method used in neuroscience, and q-value with adaptive shrinkage,
ashr, which represents an advanced voxel-specific empirical-Bayes method.

Figure 4 (top) shows a representative example output for a montage of four coronal slices extracted
from the 3D image volume. The color bar (red to yellow), for each method presented, is a surrogate
for the strength of some score describing the group-level difference: for instance, for SnPM, the color
is scaled based on adjusted p-values, for the q-value method, it is scaled based on q-values, whereas
for GraphMM, the color is scaled based on local FDRs lv. While the regions reported as significantly
different between controls and late MCI have some overlap between the different methods, GraphMM is
able to identify many more significantly different voxels compared to baseline methods, at various FDR
thresholds (Figure S6 of the Supplementary material available at Biostatistics online). A closer inspection
of one case is informative (Figure 4, bottom). Voxel v at coordinates (x = 31, y = 53, z = 23) is not
found to be different between control and late MCI according to SnPM (adjusted p-value = 0.578) or
the ASH q-value method (q-value = 0.138), but GraphMM reports local FDR 0.001. The consistent but
modest shift in means between control and late MCI in this small spatial region explains the GraphMM
finding.

A statistical measure often reported in the neuroimaging literature is the size of spatially connected sets
of significantly altered voxels in the 3D lattice (so-called significant clusters). The rationale is that stray
(salt and pepper) voxels reported as significantly different may be more likely to be an artifact compared to
a group of anatomically clustered voxels. GraphMM performs favorably relative to the baseline methods
in that it consistently reports larger significant clusters (Figure S7 of the Supplementary material available
at Biostatistics online).

To provide some neuroscientific interpretation of the statistical findings, we use the Matlab package
xjview to link anatomical information associated with significantly altered voxels (Tzourio-Mazoyer and
others, 2002). Results for the top 15 brain regions are summarized in Table S4 of the Supplementary
material available at Biostatistics online. GraphMM discovers all the brain regions found by SnPM, with
many more significant voxels in each region. The only exception is the hippocampus, where both methods
identify a large number of voxels butGraphMMfinds fewer significant voxels than SnPM. In addition, there
are regions revealed to be significant byGraphMM but not by SnPM, including the precentral gyrus, middle
frontal gyrus, inferior frontal gyrus opercular, insular, anterior cingulate, and supramarginal gyrus, which
are relevant in the aging and AD literature. GraphMM consolidates known alterations between cognitively
normal and late-stage MCI and reveals potentially important new findings.

Reported above are whole-brain results from slice-level runs of GraphMM. We also ran GraphMM
over the whole brain for two further choices of local graph: both are simple star graphs with center
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab001#supplementary-data
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Fig. 4. Top panel shows significantly different voxels at 5% FDR (reds to yellows, see text) for four coronal slices,
found by statistical non-parametric mapping (SnPM), adaptive shrinkage (ASH) and the proposed GraphMM. Bottom
panel shows boxplots for one voxel, v, at coordinates (x = 31, y = 53, z = 23) and its neighbors. Voxel v is altered
according to GraphMM (lfdr 0.001) but not according to other methods (e.g., ASH q-value is 0.138). Similar shifts
nearby v lead to the stronger evidence reported by GraphMM.

node equal to the target node on test, and with edges to all first-order neighbors. We entertain the 3D
neighborhood, where a typical node has six neighbors, and also a 2D neighborhood having four neighbors
(and thus a further subgraph of the 3 × 3 lattice subgraph used above. We used a single ASH-estimated
value for the overall null frequency p0. Looking at the collection of local FDRs, we see a modest shift in
the distribution of local FDR values when they access the 3D information compared to having only the
2D slice information (Figure S9 of the Supplementary material available at Biostatistics online); there is
also considerable agreement in voxel ranking by the methods (Figure S8 of the Supplementary material
available at Biostatistics online).
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4. DISCUSSION

Mass univariate testing is the dominant approach to detect statistically significant changes in comparative
brain-imaging studies (e.g., Groppe and others, 2011). In such, a classical testing procedure, like the test
of a contrast in a regression model, is applied in parallel over all testing units (voxels), leading to a large
number of univariate test statistics and p-values. Subsequently, significant voxels are identified through
some filter, such as the BH procedure, to control the FDR. The approach can be very effective and has
supported numerous important applied studies of brain function. In structural magnetic resonance image
studies of Alzheimer’s disease progression, such mass univariate testing has failed in some cases to reveal
subtle structural changes between phenotypically distinct patient populations. An underlying problem is
limited statistical power for relatively small effects, even with possibly hundreds of subjects per group.
Power may be recovered by empirical Bayes procedures that leverage various properties of the collection
of tests. The proposed GraphMM method recognizes simplified parameter states when they exist among
graphically related testing units. We deploy GraphMM locally in the system-defining graph by separately
processing a small subgraph for each testing unit, while allowing hyper-parameters to be estimated globally
from all testing units. Essentially, we provide an explicit and flexible joint probability model for all data
on each subgraph (Equation 2.3). The model entails a discrete parameter state on this subgraph, which
describes how the nodes on the subgraph are partitioned into blocks, and whether or not each block is
shifted between the two sampling conditions being compared. By deriving local FDR computations on a
relatively small subgraph for each testing unit, we simplify computations and we share perhaps the most
relevant information that is external to that testing unit. Numerical experiments confirm the control of FDR
and the beneficial power properties of GraphMM, whether the model specification is valid or violated in
various ways. The methodology also reveals potentially interesting brain regions that exhibit significantly
different structure between normal subjects and those suffering mild cognitive impairment.

The Dirichlet process mixture (DPM) model also entails a clustering of the inference units, with units
in the same cluster block if (and only if) they share the same parameter values. The DPM model has been
effective at representing heterogeneity in a system of parameters (e.g., Muller and Quintana, 2004), and in
improving sensitivity in large-scale testing (e.g., Dahl and Newton, 2007; Dahl and others, 2008). Benefits
typically come at a high computational cost, since in principle the posterior summaries require averaging
over all partitions of the units (e.g., Blei and Jordan, 2006). There are also modeling costs: DPM’s usually
have a product-partition form in which the likelihood function factors as a product over blocks of the
partition (Hartigan, 1990). We observe that independence between blocks is violated in brain-image data
in a way that may lead to inflation of the FDR.

In the present work, vertices of the graph correspond to variables in a data set and the undirected
edges convey relational information about the connected variables, due to associations with the context
of the data set, such as temporal, functional, spatial, or anatomical information. The graphs we consider
constitute an auxiliary part of observed data. For clarity, these graphs may or may not have anything to
do with undirected graphical representations of the dependence in a joint distribution (e.g., Lauritzen,
1996), as in the graphical models literature. For us, the graph serves to constrain patterns in the expected
values of measurements. By limiting changes in expected values over the graph, we aim to capture low
complexity of the system. An alternative way to model low-complexity is through smoothed, bandlimited
signals (e.g., Ortega and others, 2018; Chen and others, 2016). Comparisons between the approaches
are warranted. We have advanced the idea of latent graph-respecting partitions that constrain expected
values into low-dimensional space. Figure S10 of the Supplementary material available at Biostatistics
online investigates benefits of the graph-respecting assumption on posterior concentration and supports the
treatment of this constraint as having a regularizing effect. The partition is paired with a vector of block-
specific change indicators to convey the discrete part of the modeling specification. We used a uniform
distribution over graph-respecting partitions in our numerical experiments and have also considered more

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab001#supplementary-data
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Fig. 5. Reconsider the toy problem from Section 1, but suppose we mis-specify the blocking probability pblock (i.e., the
generative value is not the same as the value we use to compute local FDR). The plot shows the empirical FDR that is
realized by ranking test units via local FDR in the mis-specified model; we take one setting in which the blocking rate
is assumed to be 0.1 when it actually higher (0.8) (dark blue), and a second setting that is reversed. Other parameters
are as in Figure 1, except we simulate 106 draws from the model to reduce variation in FDR estimates. Mis-specifying
the blocking rate is not a problem here when the rate is underestimated, but we lose FDR control (light blue) if we
overestimate the blocking.

generally the distribution found by conditioning a product-partition model (PPM) to be graph-respecting.
In either case, two vertices that are nearby on the graph are more likely to share expected values, in
contrast to the exchangeability inherent in most partition models. Graph restriction greatly reduces the
space of partitions; we enumerated all such partitions in our proposed graph-local computations. When
the generative situation is similarly graph restricted, we expect improved statistical properties; but we also
showed that FDRs are controlled even if the generative situation is not graph respecting. Special cases
of graph-restricted partitions have been studied by others, including Page and Quintana (2016) for lattice
graphs, Caron and Doucet (2009) for decomposable graphs, and Blei and Frazier (2011) for graphs based
on distance metrics. When G is a complete graph, there is no restriction and all partitions have positive
mass. When G is a line graph, the graph-respecting partition model matches Barry and Hartigan (1992)
for change-point analysis.

It is important to study resistance of the GraphMM inferences to model violations, especially as the
reported empirical findings reveal a power advantage in some cases. Beyond the empirically guided
simulation study (Section 3.2), we performed additional simulations to examine the effects of non-normal
emissions when G is a line graph. We find good FDR control for highly skewed and very heavy-tailed
cases and improved properties with increasing sample size (Figures S11 and S12 of the Supplementary
material available at Biostatistics online).
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There are opportunities to increase the flexibility of GraphMM, especially with regard to the induced
prior distribution over graph-respecting partitions. The adopted uniform distribution on such partitions
of the 3 × 3 local lattice, for example, implies a median of four blocks. It also implies a distribution on
the number of voxels in the same block as the voxel on test; for instance, there is probability 0.71 that
this central block contains no more than three voxels. Equivalently, we are insulating the test node from
direct influences of data very far away. To examine the implications, we reconsider the toy example from
Figure 1. Suppose that the analyst computes local FDR using an assumed pblock that is different from
whatever value is generating the data. Figure 5 shows the effect on control of the FDR; in particular, if
the analyst overestimates the blocking rate (i.e., over-regularizes), there is a loss of FDR control. If the
blocking rate is underestimated, then this control is retained. In principle there is information in the data
about the blocking rate, and future efforts could aim to take advantage in brain imaging, genomics, or
other domains with graph-associated data.
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