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Abstract

Best investment in the road infrastructure or the network design is perceived as a fundamen-

tal and benchmark problem in transportation. Given a set of candidate road projects with

associated costs, finding the best subset with respect to a limited budget is known as a

bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity.

We engage with the complexity with a hybrid exact-heuristic methodology based on a two-

stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by tak-

ing the network performance function of the upper level into the user equilibrium traffic

assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer

nonlinear programming (MINLP) problem which is then solved using the Outer Approxima-

tion (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity

MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This meth-

odology has two main advantages: (i) the method is proven to be highly efficient to solve the

DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a lim-

ited number of iterations (as termination criterion), global optimum solutions are quickly

reached in most of the cases; otherwise, good solutions (close to global optimum solutions)

are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls

shows that for such a non-exact method the global optimum solutions are found in fewer iter-

ations than those found in some analytically exact algorithms in the literature. (ii) Integration

of the objective function among the constraints provides a commensurate capability to

tackle the multi-objective (or multi-criteria) DNDP as well.

Introduction

Traffic congestion is a major challenge in many cities. In addition to demand management, in

many cases investment into the expansion of the road network is inevitable. Such investments

should be efficient or optimum which is manifested in the well-known network design prob-

lem (NDP). The NDP by itself is regarded as a fundamental and benchmark problem in trans-

portation science as well as operational research which has wide implications on other state-

of-the-art technologies, planning, and practices.
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The NDP could be classified into strategic (road constructions), tactical (road orientations,

priority lanes), and operational (toll setting and signal setting). With respects to the nature of

decisions variables, the NDP is also classified into the following categories: (i) continuous net-

work design problem (CNDP), the decision variables are continuous such as signal timing set-

ting, toll setting, and capacity expansion [1] (ii) discrete network design problem (DNDP) the

decision variables are integer such as which roads must be constructed or widen and (iii)

mixed network design problem (MNDP) that is a combination of continuous and integer vari-

ables [2]. This article is dedicated to the DNDP which is articulated as follows: given a limited

budget and a set of projects, the best choice of affordable projects is sought. The decision vari-

ables are binary (1: build or 0: not to build the project), embedded in a bilevel programming

structure: in the upper level, the non-linear objective function is minimized while solving user

equilibrium traffic assignment problem (UE-TAP) in the lower level. Being bilevel -even with

all objective functions and constraints being linear—is enough to make a problem NP-hard

[3], that is, as the network becomes larger, the problem becomes computationally prohibitive.

The discreteness of the solution space adds to the complexity of the problem.

The DNDP’s solution approaches in the literature can be viewed as exact and heuristic. The

exact methods aim at the global optimum solution but due to the combinatorial trait of the

problem as well as being NP-hard, their applications to real networks are restricted. The heu-

ristic methods look for good solutions within acceptable computational time by relaxing some

difficult facets of the problem. Examples are: relaxing the UE traffic flow to a system optimal

[4, 5], replacing the objective function with some less expensive-to-evaluate (surrogate) func-

tion [6] employing metaheuristic algorithm such as genetic algorithm, ant system, simulated

annealing [7–9], biologically inspired model [10, 11]. A thorough discussion of this can be

found in [12–15]. Furthermore, in recent years, rapid expansions of developing and emerging

economies (largely in Asia and the Middle East) have made the DNDP relevant more than

ever [16]. Despite being time-effective, some heuristic methods are yet to appeal to the practi-

tioners due mainly to the fact that a clear majority of such methods are essentially evolutionary

based methods with random elements which result in randomly generated solutions. Consid-

ering such shortcomings in some heuristic methods, there has been a surge of interests in

exact methods owing to continuous enhancements in computational technology and optimi-

zation methods. In one estimate during the course of a decade, linear optimization (which is

the building-block of a variety of optimization problems) has become a million times faster

[17]. Furthermore, although the size of the networks being dealt with by practitioners is large,

the number of candidate projects (decision variables) is limited (say a dozen or so). Neverthe-

less, no matter how effective or efficient an exact method could be, facing with NP-hard prob-

lems (such as the DNDP) eventually invoke some heuristic component if the intention is to

address a real-life case-study.

Given the above-mentioned properties and available computational technology as well as

the state-of-the-art in optimization, in this study, we bridge the gap between exact and heuris-

tic methods and develop a hybrid exact-heuristic method subject to two relaxation methods

tailored to large-sized networks. In other words, the proposed method is basically a cross-

breed method consisting of an exact method and some heuristic relaxation techniques that is

to exploit the advantages of both methods to arrive at an efficient algorithm for practical uses.

However, there will not be any random element in the proposed methodology as is the case in

some meta-heuristic algorithms.

The discreteness and bilevel nature of the problem are the two main sources of the com-

plexity. To crunch the complexity of the problem, a two-stage relaxation method is developed

(i) the bilevel feature is relaxed to a single-level problem by taking the network performance

function of the upper level into the UE-TAP in the lower level as a constraint. It results in a
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mixed-integer nonlinear programming (MINLP) problem which is then solved using an Outer

Approximation (OA) algorithm (ii) To arrive at a tractable mixed integer linear programming

(MILP) problem, we further relax the multi-commodity UE-TAP to a single-commodity

MILP problem, during which, a new binary solution is sought to be evaluated (i.e. solving its

corresponding UE-TAP). In other words, the intractable multi-commodity MILP is decom-

posed to a tractable single-commodity MILP and a tractable nonlinear UE-TAP. This method-

ology has two main advantages: (i) the method is proven to be highly efficient to solve the

DNDP for large-size networks. The large-size network of Winnipeg, Canada consisting of 20

binary variables under various budget levels is tested. The results suggest that for such a

hybrid-heuristic method, within a pre-specified maximum-iterations (as a termination crite-

rion) global optimum solutions are quickly reached in the most of the budget levels; otherwise,

good solutions (close to global optimum solutions) are found in early iterations. Comparative

analysis on the networks of Gao’s network [18] and Sioux-Falls benchmark [19] shows that the

global optimum solutions are found in fewer iterations than those found in some exact algo-

rithms in the literature. (ii) Integration of the objective function among the constraints (as side

constraints) provides a commensurate capability to tackle the multi-objective (or multi-crite-

ria) DNDP as well (as the environmental concerns and notions such as sustainability and

safety are becoming paramount moving toward multi-objective models is inevitable [2, 20]).

Throughout this article, we assume (i) travel demand is fixed and quantified as a single

matrix; (ii) users have a perfect understanding of the travel time, and (iii) neither demand nor

travel time change over time. (iv) the decision variables are discrete (binary) not continuous;

hence the undertaken problem is a deterministic, static, single-class and discrete network

design problem. Appendix A provides a basic discussion on the Outer Approximation

method.

Literature review

A thorough discussion on NDP can be found in [12–14]. A plethora of heuristic methods tai-

loring to the DNDP has been proposed. Examples are genetic algorithms, ant colony, simu-

lated annealing and particle swarm optimization. Since the proposed methodology lends itself

primarily to the class of exact methods, in this section the exact methods developed for the

DNDP over the most recent studies are discussed.

As noted above, a general approach to the bilevel programming problems such as the

DNDP is to dissolve it to a single-level problem [21–23]. The convention is to replace the

lower-level decisions (the TAP) or by its Karush–Kuhn–Tucker (KKT) conditions or to refor-

mulate it as either a variational inequality or complementarity problem [24]. This would result

in a single-level MINLP to be solved by methods such as branch-and-bound, Outer Approxi-

mation, Lagrangian relaxation, Benders decomposition, descent methods, sequential quadratic

programming, penalty function methods, and trust-region methods [25].

Gao, Wu [18] propose the concept of a support function to transform the bilevel DNDP to

a single-level MINLP which is then to be solved using Benders decomposition. However [19]

have numerically shown that the Benders decomposition may fall into local optimal solutions.

Perhaps, one reason could be related to the dual values (or Lagrangian values) of the capacity

constraints of the Benders decomposition which are proven not to be unique [26]. Hence, the

validity of the Lagrangian based algorithm (The Benders decomposition as well as Lagrangian

relaxation methods) needs to be further scrutinized.

Zhang and Gao [27] formulate the TAP in the lower level as a set of complementarity con-

straints, hence the MNDP and DNDP can be written as a single-level problem. In this study,

the optimal size of additional capacity pertaining to the candidate roads is also sought. The
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solution algorithm is basically a locally convergent algorithm based on the idea of the penalty

function, that in turn invokes more investigation when a large-sized network is the case-study.

Similarly, Wang and Lo [28] employ the complementary formulation to arrive at MILP.

The solution algorithm is based on a piecewise linear approximation of link travel time func-

tions and it enumerates paths between origin-destination (OD). As the number of ODs

increases (which is the case in large-sized networks) number of paths grows exponentially

hence the solution algorithm becomes computationally prohibitive. In a similar fashion,

Luathep, Sumalee [29] replace the TAP with equivalent variational inequality constraints and

employ a linearization scheme as a solution algorithm.

Farvaresh and Sepehri [30] use the KKT conditions of the TAP to arrive at a single-level

MILP and then employ some linearization schemes as a solution algorithm. Moreover, they

also developed a Branch-and-Bound algorithm based on the seminal work of LeBlanc [31]. In

this study, based on the concept of system optimal (SO) a valid (but not necessarily tight)

lower bound is calculated aiming to fathom the branch and bound algorithm. Due to the usu-

ally significant gap between these bounds [32], the applications are limited to special cases in

which such a gap is negligible. Moreover, the branch and bound algorithms are notoriously

known to be highly RAM-intensive and computationally expensive methods [33, 34].

Wang, Meng [25] extend the DNDP to also identify the number of additional lanes as addi-

tional decision variables. To this end, they adopted a SO-relaxation approach that is assuming

drivers not following the shortest path (UE) rather cooperatively minimizing the system’s cost.

They develop two solution algorithms based on the organic relation between UE and SO prin-

ciples. The first method postulates that an SO traffic flow is a closed approximate solution to

the UE traffic flow. The second method aims to reduce the gap between the bilevel program-

ming model and the single-level model by adding valid inequalities based on the UE’s Beck-

mann (objective) function [35].

Fontaine and Minner [4] also adopt a piecewise linearization scheme to transform the

bilevel problem to a single-level problem when the TAP is represented with its corresponding

KKT conditions. The solution algorithm is developed based on the Benders decomposition

and a linearization scheme. In a subsequent work, [36] investigate phases structure of the

roads’ maintenance projects as a DNDP which is first linearized and then transformed into a

single-level mixed-integer program by using the KKT conditions to be solved with Benders

Decomposition. The numerical study shows that this method finds better solutions and faster

compared to solving the mixed-integer formulation using a genetic algorithm.

Liu and Wang [1] address the CNDP while accounting for a stochastic user equilibrium

traffic flow, that results in a nonlinear nonconvex programming problem which is relaxed via

a linearization technique. In contrary to previous methods, a finer piece-wise linearization

scheme is adopted, by which a more detailed approximation around global solution is imple-

mented. However, the impact of a number of break points in the proposed scheme on the per-

formance of the algorithm when solving for a large-sized network is a worthy line of research.

Liu and Chen [37] propose an optimization algorithm, the dimension-down iterative algo-

rithm (DDIA), for solving a mixed transportation network design problem (MNDP), The idea

of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A

group of variables (discrete/continuous) is fixed to optimize another group of variables (con-

tinuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs

(continuous network design problems) and DNDPs (discrete network design problems)

repeatedly until the problem converges to the optimal solution. For the MNDP with a budget

constraint, however, the result depends on the selection of initial values, which leads to differ-

ent optimal solutions (i.e., different local optimal solutions). The pedagogical dataset of the

Sioux falls is used for the numerical tests.

Optimal investment into the roads construction projects
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Lu, Atamturktur [38] address the problem of retrofitting at-risk bridges formulated as a

DNDP considering stochastic nature of the budget allocation. For numerical analysis, they use

the dataset of the Sioux Falls, in which critical factors (such as budget levels) on the retrofit

strategy are also analyzed.

González, Dueñas-Osorio [39] formulate restoration of a partially destroyed system of

infrastructure networks as a DNDP subject to budget, resources, and operational constraints

for which they develop a MIP model. The authors also propose heuristic methodologies based

on a simulation model to identify a reconstruction scenario as well as the order of

reconstruction.

Wang and Pardalos [40] develop an active set algorithm to solve the DNDP while assuming

that the capacity increase and construction cost of each road is based on the number of lanes.

The dataset of the Sioux falls is used for the numerical tests.

As can be seen from the review, the literature has yet to address the DNDP for real-size net-

works. This study is purposely developed to fill such a gap.

Mathematical formulations

In this section, the bilevel DNDP is first formulated and discussed. The Outer Approximation

algorithm for solving a general single-level MINLP problem is then presented.

Bilevel network design problem

Definition:

A,A0: Sets of existing roads and candidate road projects (or shortly called “projects”)

respectively.

N: set of nodes.

B: budget,

ya: binary decisions variable of project a 2 A0; 1: to build and 0: no build

ca: construction cost of project a 2 A0,

xa,: traffic flow on link a 2 A[A0,

ta(xa): travel cost or time or delay of the link a 2 A[A0, a non-decreasing differentiable func-

tion of link flow xa (called delay function). We adopt the widely used function developed by

U.S. Bureau of Public Roads (BPR): taðxaÞ ¼ �tað1þ :15ðxa=waÞ
4
Þ where tað0Þ ¼ �ta;wa are

free flow travel time and capacity of link a respectively.

A�n ;A
þ
n set of links starting and ending at node n respectively; A�n ;A

þ
n � A [ A0

O,D,O: set of origins, destinations, and origin-destination pairs respectively O = O × D.

qod: traffic demand for origin-destination (o,d) 2 O respectively.

Pod: set of paths between origin-destination (o,d) 2 O.

hk,: total flow and flow on path k 2 Pod

The bilevel DNDP may be written as follows (all variables and parameters are considered

non-negative unless otherwise stated):

Bilevel DNDP : Min TðxaÞ ¼
P

a2A[A0
xa:taðxaÞ ð1Þ

Optimal investment into the roads construction projects
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s.t.
P

a2A0
ca:ya � B ð2Þ

ya ¼ 0; 1 a 2 A0 ð3Þ

Min bðxaÞ ¼
P

a2A[A0

Rxa

0

taðxaÞdx ð4Þ

P

k2Pod

hk ¼ qod; 8ðo; dÞ 2 O ð5Þ

xa ¼
P

i2O

P

k2Pod

hkda;k; xa � 0 da;k ¼
1 a 2 k

0 a=2k
; 8a 2 A [ A0 ð6Þ

(

xa � U:ya a 2 A0 ð7Þ

In the upper level (objective function (1)) the total travel time is minimized. Budget con-

straint (2) ensures feasibility of the solutions with respect to project construction costs versus

available budget. Constraint (3) sets out the binary decision variables. In the lower level, (Eqs

(4) to (7)), the UE flow is computed. Eq (7) makes sure that the projects corresponding to no-

build decisions (ya = 0) are excluded from the traffic assignment (U is a sufficiently large value

and can be considered as ∑odqod).

Outer approximation based methodology for the DNDP

A general approach to solve a MINLP is a decomposition technique such as OA. The decom-

position-based algorithms run on the assumptions that the respective MINLP problem is

essentially a tractable problem (nonlinear programming part) but it has become intractable

with the presence of some intractable components (integer variables). Therefore, the problem

is decomposed into two parts (nonlinear and mixed-integer) and each is solved separately and

alternately while they exchange their results. Therefore, the nonlinear and mixed-integer parts

are formulated as primal and dual problems derived from the original MINLP minimization

problem: (i) the primal problem is constituted as solving the original problem with a feasible

solution for the binary variables; hence it renders an upper bound to the original problem. (ii)

given the solution results of the primal problem, the dual problem is designed as a mixed-inte-

ger linear programming (MILP) to render a new solution for the binary variables. Since it is a

dual problem it also gives a lower bound to the original problem. This process carries on until

the gap between these upper bound and lower bounds are sufficiently small (termination con-

dition). It has numerically been observed that a significant effort is made to reduce the gap

while the optimum solution is found earlier [18]. In other words, the optimum solution is

found in the intermediate iterations while the following iterations are carried out to prove that

no better solution is found.

Now we turn our attention to the fact that the undertaken DNDP is NP-hard. This means

that finding the optimum solution for the large-size networks is almost impossible. Hence,

why we are trying to prove whether an optimum solution is found or not? So, it is highly justi-

fied to spare the solution methods from additional exhaustive iterations to get the afore-men-

tioned gap to vanish. Therefore, we exploit the pre-known fact that the problem is NP-hard

and turn the complexity of the problem to our advantage. As the result, in this study,

Optimal investment into the roads construction projects
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exempting the solution algorithm from narrowing down the gap is the key leverage in address-

ing the DNDP for large-size networks. The afore-mentioned gap has two bounds, upper and

lower: the effort to solve the primal problem (upper bound) remains intake since it renders a

feasible solution; instead the relaxation is exerted in the dual problem (lower bound). Because

of ignoring the gap between the upper bound and lower bound as a termination criterion, the

proposed methodology can no longer be classified as an exact methodology (as mentioned

before, the best description for it is a hybrid exact-heuristic method).

Single-level programming for DNDP

To establish the methodology, we first proceed to develop a single-level problem. The UE for-

mulation in the lower level is considered as the base and the objective function along with the

remaining binary-related-constraints of the upper level (Eqs (1) to (3)) are integrated into as

additional constraints:

DNDP-UE-MINLP:

MinT ðxaÞ ¼
P

a2A[A0

Rxa

0

taðxaÞdx ð8Þ

S:t:
P

k2Pod

hk ¼ qod; 8ðo; dÞ 2 O ð9Þ

xa ¼
P

i2O

P

k2Pod

hkda;p da;p ¼
1 a 2 p

0 a=2p
; 8a 2 A [ A0 ð10Þ

(

xa � U:ya ð11Þ

ya ¼ 1 or 0; a 2 A0 ð12Þ

P

a2A0
ca:ya � B ð13Þ

P

a2A[A0
xa:taðxaÞ � ubi

�
ð14Þ

where Eqs (8) to (13) have already been introduced. In Eq (14), ubi
�

is the least total travel time

(value of the objective function (1)) found so far at iteration i (in other words, it is the best

upper bound value found so far, better known as “incumbent value”). It is worth noting that,

it is an iterative process, and we can easily keep track of the best solution found (best upper

bound value) throughout. The algorithm will start with an educated guess for a feasible binary

solution or at least with a do-nothing scenario (ya = 0,a 2 A0: no project is constructed) to

solve the corresponding UE-TAP. Hence the best total travel time is constantly computed

and saved as ubi
�
. Therefore, constraint (14) forces the algorithm to try to reach a better solu-

tion in each iteration (i.e. the better solution is the one with lower upper bound). The above

DNDP-UE-MINLP has an important property: both the Beckmann objective function and the

constraints are convex [41] and differentiable. Therefore, the OA is a good solution algorithm

to the MINLP problem [42, 43].

It is important to note that linearization component of the OA algorithm is devised to

transform an (almost) unsolvable mixed-integer “non-linear” problem to a solvable mixed-

integer “linear” problem. This is the main thrust of decomposition methods such as

Optimal investment into the roads construction projects
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Lagrangian relaxation, Benders decompositions and OA [43]. In the end, the only useful out-

come of the OA is a new binary feasible solution. These new binary feasible solutions are then

used to solve a fully-fledged traffic assignment with no linearization scheme. In other words

according to the seminal article [44] the linearization does not compromise arriving at a glob-

ally optimal solution. We now proceed to establish the OA solution algorithm for the

DNDP-MINLP.

Outer approximation for DNDP-UE-MINLP

In this section, we explain how to linearize each element of the DNDP-UE-MINLP. Consider

Yi 2 V is a feasible solution for the binary variables at iteration i. Given Yi 2 V solving the

UE-TAP is equivalent to solving the NLP(yi) of the DNDP which gives xi
a; a 2 A [ A0 links

flow solution at iteration i. Now, given xi
a, the master outer approximation problem can be

established. We first start the linearization with the objective function (8) denoted by z which

can be written as:

z �
P

a2A[A0

Rx
i
a

0

taðxaÞdx

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
bi

þ
P

a2A[A0
dð
Rx
i
a

0

taðxaÞdxÞ=dx

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
taðxiaÞ

:ðxa � xi
aÞ ð15Þ

where the first term in the right-hand side is the value of the Beckmann function denoted by bi

and the derivative of the integral in the second term is equal to the argument under the integral

which is the travel time of the respective link taðxi
aÞ. Hence, by splitting the sigma and bring all

the variables (xa,z) on one side, the cut related to the objective function are:

P

a2A[A0
taðx

i
aÞ:xa � z �

P

a2A[A0
taðx

i
aÞ:x

i
a

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ubi

� bi ð16Þ

where the first term on the right-hand side is ubi the total travel time/cost spent on the network

which is the value of the objective function of the original problem (Eq (1)). Hence it is an

upper bound found at iteration i. At each iteration (i) after solving the UE-TAP, the total travel

time of the current scenario is saved as ubi up to this iteration the least travel time is also

updated and represented by ubi
�
.

Constraints (9) and (10) ensure that the resultant flow meets the travel demand over paths

connecting all origins to all destinations. In network flow terminology, flow pertaining to each

origin-destination pair is called a commodity, hence, constraints (9) and (10) constitute a

multi-commodity traffic flow pattern. Enforcing multi-commodity flows by link-based linear

constraints requires a high number of constraints and variables. In fact, for each OD (or com-

modity) one has to establish the conservative flow constraints which result in |N| constraints

and |A[A0| variables (note that, for the multi-commodity formulation, number of constraints

and variables will be |O|.|N| + |A[A0| and (|O|+1).|A[A0| respectively, O is set of OD pairs). As

such, the size of the resulting MILP problem increases drastically which makes it intractable.

The outcome of the afore-mentioned MILP is a new solution for the binary variables yi and the

traffic flow xi
a. Based on the yi, its corresponding UE-TAP is solved and again a new solution

for the traffic flow is obtained. Therefore, the xi
a out of the MILP is redundant. Consequently,

in the formulation of the MILP, we spare less effort for the xi
a, that is, not all constraints of the

multi-commodity flow are included in the MILP. As such, we relax the multi-commodity for-

mulation to a single-commodity formulation by only holding conservative flow at nodes.
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Thus, we replace constraints (9) and (10) with equivalent link-based conservative flow con-

straint:

P

a2Aþn

xa �
P

a2A�n

xa ¼

�
P

o2Oqon n 2 D

þ
P

d2Dqnd n 2 O

0 o:w:

n 2 N ð17Þ

8
>><

>>:

According to constraint (17), all origins and destinations are aggregated to a single

(dummy) origin and a single (dummy) destination. Again, we relax the multi-commodity (or

path-base) formulation (9) and (10) to a single-commodity (or link-base) (17). It is important

to note that the traffic flows of the multi-commodity will be different than that of the single-

commodity, but, it does not compromise our methodology since a fresh and complete traffic

flow solution will be found later (see Step 1 of the proposed algorithm at the end of this

section).

Constraints (11), (12) and (13) as well as (17) are carried over intact to the master outer

approximation problem since they are already linearized. According to Taylor’s first order

series, a linear approximation of the last constraint (14) can be written as:

0 �
P

a2A[A0
xi
a:taðx

i
aÞ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ubi

� ubi
�
þ
P

a2A[A0
fdð

P

a2A[A0
xa:taðxaÞ � ubi

�
Þ=dx

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

xi
a:t
0

aðx
i
aÞ þ taðxi

aÞ

or if ta complies BPR :

5taðxi
aÞ � 4tað0Þ

:ðxa � xi
aÞg ð18Þ

As mentioned before, the first term is ubi the total travel time. It is easy to show that the deriva-

tive term results in system optimal travel time [41], that is: xi
a:t
0

aðx
i
aÞ þ taðxi

aÞ. Alternatively, for

the favorite BPR delay functions, the system optimal travel time can be easily calculated as

5taðxi
aÞ � 4tað0Þ which is used henceforward without loss of generality. By reordering the vari-

ables on the left side and the constant values on the right side of the inequality we get:

P

a2A[A0
ð5taðx

i
aÞ � 4tað0ÞÞxa � ubi

�
� ubi þ

P

a2A[A0
ð5taðx

i
aÞ � 4tað0ÞÞx

i
a ð19Þ

Now, the above-linearized constraints can be put together and the master outer approxima-

tion of the user equilibrium traffic assignment problem is configured:

DNDP � UE � MOAi : min z

s:t:
P

a2A[A0
taðx

k
aÞ:xa � z � ubk � bk k 2 Ti ð20Þ

P

a2A[A0
ð5taðx

k
aÞ � 4tað0ÞÞxa � ubk

�
� ubk þ

P

a2A[A0
ð5taðx

k
aÞ � 4tað0ÞÞx

k
a k 2 Ti ð21Þ

xa � U:ya ð22Þ

ya ¼ 1 or 0; a 2 A0 ð23Þ

P

a2A0
ca:ya � B ð24Þ
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P

a2Aþn

xa �
P

a2A�n

xa ¼

�
P

o2Oqon n 2 D

þ
P

d2Dqnd n 2 O

0 o:w:

n 2 N ð25Þ

8
>><

>>:

P

a2Y1k
ya �

P

a2Y0k
ya � jY1kj � 1; Y1k ¼ fajyk

a ¼ 1g; Y0k ¼ fajyk
a ¼ 0g; k 2 Ti ð26Þ

Given xi
a; a 2 A [ A0 the DNDP-UE-MOAi renders z, xa,a 2 A[A0 and set of binary solu-

tions ya,a 2 A[A0. The last constraint (26) proposed by [45] ensures that in each iteration a

new set of binary solutions is obtained. The above-relaxed problem renders a lower bound (z)

to the Beckmann value of the UE-TAP (bk) derived from solving the DNDP with a feasible

binary solution. The algorithm normally terminates once no new binary solution is found or

the lower bound reaches the upper bound. For large-sized networks, the former is unlikely to

occur, nor does the latter since it is reformulated to a linear approximation and single-com-

modity constraints. Therefore, the termination condition is set as a user-specified maximum

number of iterations. The algorithm is summarized as follows:

Step 0. Initialization: Set maximum iteration imax, current iteration i = 1 and choose a feasible

solution for decision variables yi 2 Y (for instance yi = (0,0..0) the do-nothing or no-build

scenario). Initialize upper bound as ub0
� ¼ � 1, (as mentioned before, no need to keep rec-

ords of the lower bound).

Step 1. Calculate Upper bound: Given yi, solve UE-TAP to obtain xi and the Beckmann value

bi followed by computing the total travel time ubi ¼
P

ataðx
i
aÞ:x

i
a. Update the incumbent

value of the best solution found so far by ubi
�
¼ minfubi� 1

�
; ubig. Save the binary solutions

yi as best solution denoted by y� if it was found the best solution so far.

Step 2. Calculate Lower bound and obtain a new binary solution: Given xi solve the master

problem DNDP-UE-MOAi to obtain: zi,xi+1,yi+1.

Step 3. Termination: if i> imax stop and y� is the optimal solution, otherwise set i≔ i + 1 and

go to Step 1.

Fig 1 provides an overview of the methodology. The detail of the proposed algorithm is fur-

ther discussed using the following example.

Example 1 (a single OD network). Consider a network as shown in Fig 2 consists of a

single road (#4) connecting an origin-destination pair with the travel demand of qod = 10. The

plan is to ease traffic by constructing the maximum of two additional roads from three candi-

date road projects number 1 to 3. The associated construction costs and available budget are

c1 = c2 = c3 = 1; B = 2. The roads delay functions are presented in Fig 2. The question is: which

subset of the candidate roads is the best choice. Set imax = +1 to capture all the possible solu-

tions. The algorithm starts with do-nothing scenarios Y0 = (0,0,0) based on which the UE-

TAP is solved and it results in traffic flow: X0 = (0,0,0,10), Beckman value:50 and total travel

time:100. The first DNDP-UE-MOA problem is tabulated from row number 1 to 8 in Table 1.

Constraints of rows 1 to 4 correspond to discrete constraints, and constraint of row 5 repre-

sents the only conservative constraint consistently shown by inequality sign: −x1−x2−x3−x4�

−10 (since it is a minimization problem the afore-mentioned inequality is always binding).

Constraints of rows 6,7 and 8 are the first cuts corresponding to the constraints (20), (21) and

(26) of the general formulation respectively.
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Fig 1. A snapshot of the methodology.

https://doi.org/10.1371/journal.pone.0192454.g001
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The result of solving the DNDP-UE-MOA is also shown in the table where the flow and

the binary solutions are found X1 = (0,10,0,0), Y1 = (0,1,0) respectively. The resultant binary

solution is used for solving the UE-TAP to obtain accurate traffic flow and supersedes the pre-

viously found traffic flow which was based on linear approximation: X1 = (0,8,0,2). Further-

more, the Beckmann value, the total travel time and the updated incumbent value are derived

as 10,20 and 20 respectively. The calculation carries on until no new binary solution is found.

As shown in Table 1, the optimum solution is found at iteration 4: Y� = Y4 = (1,1,0).

Refined OA algorithm

With regard to the natural course of the problem and the sequential process of the algorithm

shown for the above example there are two important observations:

I. In the first three iterations, the algorithm reached the solutions with only one project

selected while the budget is for two projects. Provided the candidate projects have been

selected wisely, a good solution is expected to consume the budget to its full. Hence the

more projects contribute to the solution the better the solution becomes.

II. The algorithm started with a null solution (do-nothing scenarios Y0 = (0,0,0)). Is there

any better-educated guess to start with? If so would it be better to start with that educated

guess?

The proposed algorithm is rectified to accommodate these two conceivable points as fol-

lows: (i) in order to improve the algorithm to assign value 1 to more binary variables (ya), the

objective function of the DNDP-UE-MOA is changed to: min z �
P

a2A0ya. (ii) for the starting

binary solution, one can obtain a good solution as follows: establish a network scenario includ-

ing all the projects and irrespective of their budget and costs. Solve the UE-TAP and obtain xa,
a 2 A0 the traffic volume for each of the projects. Projects with higher traffic volume have a

Fig 2. Example 1, a single OD network.

https://doi.org/10.1371/journal.pone.0192454.g002
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higher likelihood to be selected in the optimum solution. Normalize the traffic volume to the

capacity and associated cost to obtain a fair merit index. Hence the merit index is defined as

xa/ca/wa,a 2 A0. Therefore, first, based on the merit index, sort the candidate projects in

descending order. Second, select the projects from the top of the sorted list until the budget is

depleted; this renders an initial solution which is also called “intuitive solution”.

Convergence proof

Duran and Grossmann [44] set out three conditions to ensure convergence of the OA algorithm

as follows: C1: solution space on continuous variables (i.e. link flow xa) must constitute a non-

empty, compact and convex set. C2: A constraint qualification must hold on continuous variables

for any feasible solutions of integer variables. C3: Functions (objective function and constraints)

associated with continuous variables must be convex and once continuously differentiable.

Let us rewrite the DNDP-UE-MINLP problem, give a feasible binary solution as:

MinT ðxaÞ ¼
P

a2A[A0

Rxa

0

taðxaÞdx ð8; repeatedÞ

S:t:
P

k2Pod

hk ¼ qod; 8ðo; dÞ 2 O ð9; repeatedÞ

Table 1. Example 1; original Outer Approximation (OA) algorithm and the iterative results.

no iteration no DNDP-UE-Outer Approximation tableau DNDP-UEMOA

Results

Results of Solving UE-TAP (Traffic Assignment)

x1 x2 x3 x4 y1 y2 y3 z RHS� zi Xi Yi Xi Beckmann Value Total Travel Time Incumbent Value

1 0 1 -10

2 1 -10

3 1 -10

4 1 1 1 2

5 -1 -1 -1 -1 -10

6 1 10 -1 50 0 0,10,0,0,0 0,1,0 0,8,0,2 10 20 20

7 20 200

8 -1 -1 -1 -1

9 2 2 2 -1 10 0 10,0,0,0 1,0,0 8.9,0,0,1.1 5.6 11.1 11.1

10 4 4 40

11 -1 1 -1 0

12 3 1.1 1.1 -1 5.6 0 0,0,10,0 0,0,1 0,0,6.7,3.3 16.7 33.3 11.1

13 2.2 2.2 22.2

14 1 -1 -1 0

15 4 3.3 3.3 -1 16.7 0 5,5,0,0 1,1,0 6.1,3.1,.8 3.8 7.7 7.7

16 6.7 6.7 44.4

17 -1 -1 1 0

18 5 0.7 0.7 0.7 -1 3.8 0 5,0,5,0 1,0,1 7.3,0,1.8,.9 4.5 9.1 7.7

19 1.5 1.5 1.5 15.4

20 1 1 -1 1

21 6 0.9 0.9 0.9 -1 4.5 0 0,5,5,0 0,1,1 0,5.7,2.8,1.4 7.1 14.3 7.7

22 1.8 1.8 1.8 16.8

23 1 -1 1 1

� RHS means right-hand side of the inequality constraints with inequality sign of "�"

https://doi.org/10.1371/journal.pone.0192454.t001
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xa ¼
P

i2O

P

k2Pod

hkda;p da;p ¼
1 a 2 p

0 a=2p
; 8a 2 A [ A0 ð10; repeatedÞ

(

P

a2A[A0
xa:taðxaÞ � ubi

�
ð14; repeatedÞ

Since we solve basically a UE-TAP (i.e. Eqs 8, 9 and 10) after finding a feasible binary solution,

condition C1 is subsequently upheld [35, 41, 46]. As for C2, it is sufficient to prove that the

solution domain of the above problem ((i.e. Eqs 8, 9, 10 and 14)) is convex. In other words, the

constraint qualification is always satisfied for a convex feasible region where at least a feasible

solution exists [47]. Note: the do-nothing scenario is always a feasible solution. To do so, we

just need to prove that constraint (14) represents a convex set, since constraints (9, 10) shape

up solution space of the UE-TAP and it is already proven to be convex [35] (note that, intersec-

tion of two convex sets itself is a convex set [48]). As for C3, all functions (pertaining to

UE-TAP) are proven to be convex, and what is left is the constraint (14). Consequently, the

whole proof effort boils down to proving that constraint (14) constitutes a convex set which is

discussed as follows. There are theorems on convexity that are used in our proof [48–51]:

a. a constraint of the form "convex function of x should be less than or equal to a constant

w" defines a convex set

b. a sum of convex functions is a convex function.

c. a function of one variable is convex if its derivative is an increasing function.

d. a function is increasing if its derivative is non-negative.

e. for a non-decreasing function, the second-order derivative is non-negative if and only if

the function is convex.

In our case, we have additive terms on the left-hand side of the form xa.ta(xa), where

ta(xa) is the travel time function, and xa is the flow on the link a 2 A[A0. If we prove each

additive term is convex, then, according to theorem (a, b) the bounded sum function (i.e.
P

a2A[A0xa:taðxaÞ) delineates a convex set and hence end of the proof. To do so the derivative of

an additive term with respect to xa is taðxaÞ þ xa:t0aðxaÞ where t0a is the derivative of ta. Accord-

ing to theorem (c) If we show that this is an increasing (in fact, non-decreasing) function of xa
then, it means that xa.ta(xa) is a convex function. Hence we just need to show that the second

term (i.e. xa:t0aðxaÞ) is increasing in xa since the first term is already assumed to be so. Accord-

ing to theorem (d), we show that its derivative (i.e. t0aðxaÞ þ xa:t@
aðxaÞ) is non-negative. It is evi-

dent that the first term is non-negative since travel time function is assumed convex and hence

its derivative is already non-negative. For the second term, we just need to show that t@
aðxaÞ �

0 since xa� 0 which is proved based on theorem (e).

To summarize: if ta is a non-decreasing, differentiable, and convex function then a con-

straint of the form of
P

a2A[A0xa:taðxaÞ � ubi
�

will define a convex set—moreover a closed one

(the boundary is included) because the function is continuous.

Numerical evaluations

In this section, we first apply both the original and refined OA algorithms to Gao’s 12-nodes

network [18] and Sioux Falls network to compare them with their peers in the literature. We

finally apply the algorithm to the large-size network of the city of Winnipeg, Canada.
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Example 2: Gao’s network

Fig 3 illustrates the example network developed by Gao, Wu [18] with one OD pair (1,12) and

the travel demand of q1,12 = 20. The delay function is ta ¼ �ta þ :008xa
4. This can be rearranged

as per BPR format: ta ¼ �tað1þ :15ðxa=waÞ
4
Þ where the capacity of the link is. There are 6 can-

didate projects with the total cost of 70. Gao, Wu [18] developed and applied General Benders

Decomposition (GBD) to various budget levels and the results are summarized in Table 2. As

discussed in the literature review section, at each iteration of the GBD, two problems: the UE

problem and a MILP are solved. Hence, it is analogous to the OA proposed in this study. As

such, a number of iterations to reach the optimum solution is considered for evaluation.

Fig 3. Gao’s test network.

https://doi.org/10.1371/journal.pone.0192454.g003

Table 2. Example 2; Gao’s network: Results of GBD [18] and original/refined OA.

Budget� Optimal��

solution

Number of

feasible

solutions

Incumbent

Value

GBD method: Optimum

solution was found at

iteration���

GBD-BB method:

Optimum solution was

found at iteration

Proposed; OA method:

Original OA: Optimum

solution was found at

iteration

Refined OA: Optimum

solution was found at

iteration

10 100000 3 4076 2 3-2-0���� 1 0�����

20 101000 12 3952 4 3-5-0 3 0

30 100001 26 2668 6 4-3-2 1 2

40 100101 41 2524 4 4-5-2 4 3

50 101101 52 2404 4 4-6-5 3 2

60 101111 61 2281 5 4-5-2 4 3

70 111111 64 2256 5 3-1-0 1 0

� Total construction costs is 70

�� the digits of the binary strings represents the following two-ways candidates respectively: (1,6), (5,10), (2,7), (6,11), (3,8),(7,12)

��� Gao and Wu [18]

���� x-y-z: x: no. of UE solved, y: no. of Benders (lower bound) solved, z: Benders iteration at which optimum solution was found

����� iteration zero refers to the intuitive (or initial) solution, the sorted projects as per the merit index is: (1,6),(2,7),(7,12),(5,10),(3,8),(6,11)

https://doi.org/10.1371/journal.pone.0192454.t002
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Table 2 also presents the iteration at which the optimum solutions were found over various

budget level2 for the GDB as well the two types of the OA developed in this study: original and

refined OA. As is evident, the OA reaches the optimum solution sooner than the GBD. More-

over, the refined OA (OA with the intuitive solution and refined objective function) has signif-

icant superiority over the original OA algorithm.

Example 3, Sioux-Falls network. The proposed algorithm is applied to the Sioux-Falls

first introduced by [31] and recently used by Farvaresh and Sepehri [19] employing a Branch-

and-Bound (BB) method. There are 5 two-ways candidate roads with a total cost of 4325. At

each iteration of the BB, two problems are solved: (i) a UE-TAP and (ii) an Outer Approxima-

tion problem to solve a MILP for SO network design problem. Hence, it is similar to the OA

proposed in this study. As such, a number of iteration to reach the optimum solution is consid-

ered for evaluation. Similarly, Table 3 presents the iteration at which the optimum solutions

were found over various budget levels for both methods. As it is evident from Table 3, the

refined OA by far surpasses the original OA. This time, the refined OA lags the BB in one out

of three accounts (B = 3000). Nonetheless, there is an important observation worth noting as

discussed in the following exposition.

Such an efficient result from a BB algorithm reported by Farvaresh and Sepehri [19] (BB-FS

in short) contradicts the literature [14, 25, 31]. It is important to note that the key success in

BB algorithms is the cuts made to the solution space because of the times at which the lower

bounds are found above the incumbent values. The lower bound in the BB-FS is the total travel

time of a System Optimal traffic flow sought by solving a SO network design problem, while

the incumbent value is the total travel time of UE traffic flow. Usually, the gap between these

two bounds is very large [32, 52], hence it is highly unlikely to achieve any cut to the solution

space. Therefore, we computed the total travel time of both SO and UE traffic flow for the

undertaken Sioux-Falls network which were found almost equal. These are 785.284 and

786.178 for SO and UE respectively with the relative gap was 0.0001. This shows that the

Sioux-Falls undertaken by Farvaresh and Sepehri [19] is biased to a very rare situation in

which both SO and UE traffic flows are identical. In other words, the BB-FS for the Sioux-falls

is relaxed to solving the SO network design problem; hence its efficiency has yet to be

investigated.

Example 4: Winnipeg large-scale network. Real-size transportation data of the city of

Winnipeg, Canada widely used in the literature [54] is utilized for the numerical tests in this

work (it is also provided in EMME 3 [55] transport planning software). The case study com-

prises of 154 zones, 903 nodes, and 2528 directional links. Total hourly passenger car

Table 3. Example 3; Sioux-Falls: Results of BB [19] as well as original and refined OA.

Budget� Optimal

solution��
Number of

feasible

solutions

Incumbent

Value

GBD-BB method:

Optimum solution found

at iteration���

B-B method: Optimum

solution found at

iteration����

Method proposed in this study; OA method:

original OA:

Optimum solution

found at iteration

Refined OA: Optimum

solution found at

iteration�����

2000 00101 14 158.4158 4-7-1 27 5 1

3000 00111 23 113.2047 4-9-1 39 20 8

4000 10111 32 94.1993 4-7-2 65 22 1

� Total construction costs is 4325

�� The digits of the binary strings represents the following two-ways candidates respectively: (6,8), (7,8), (9,10), (10,16), (13,24)

��� Bagloee, Sarvi and Patriksson [53]

����Farvaresh and Sepehri [19]

���� the sorted list of the candidate projects as per the merit index for the intuitive solution is (9,10),(6,8),(13,24),(7,8),(10,16)

https://doi.org/10.1371/journal.pone.0192454.t003
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equivalent demands are 56,219. This dataset is made available to the research community to be

used as a benchmark (see this link [56]). As for the computational technology, we employ a

desktop computer with Intel(R) Xeon(R) 3.70 GHz and 64.0 GB RAM. The algorithm is coded

with Visual Basic linked to MS-Excel as an interface (MS-Access to save/retrieve computation

data) and EMME 3 to solve the traffic assignment. the code is linked and synchronized to

MATLAB 14a [57] to solve the MILP problems using newly released module “intlinprog”. The

delay functions associated with the links conform to the BPR type. We consider 20 road proj-

ects with free flow travel time and capacity of 0.456 min and 1700 vph respectively. Table 4

presents the candidate projects sorted based on their merit index in descending order. Fig 4

shows the locations of the candidate projects and the extent of the undertaken case study on

which UE traffic volumes are also depicted. These projects are wisely set forth to complement

the ring roads around the central business district and over the river.

The lengths of roads are considered as corresponding construction costs which mount to

total costs of a C = 23.29 unit of money. With respect to the total cost (C), we take 10 levels of

the budget (B) into the analysis as follows: B/C = 10%, 20%..100%. We first carried out an

exhaustive enumeration to find the global optimum solution for each budget level. The enu-

meration consists of 2^20 = 1,048,576 solving traffic assignment problems with a relative gap

of 1% which lasted 36 days. The refined OA algorithm is run only for 100 iterations and the

results for various budget levels are shown in Table 5.

As seen in Table 5, the proposed algorithm was able to find the optimal solutions for half of

the budget levels within the 100 iterations. The gap distances of the solutions found to the

respective optimal solutions (in percentage) are also shown in Fig 5. As discussed earlier the

algorithm starts with the intuitive solution. Hence, the first points slated on the y-axis of the

graphs represent the intuitive solutions for the respective budget levels. Table 5 also reports on

the CPU times which are found in 14 minutes. The following remarks can be inferred from the

results: (i) the significant distances between the first points (intuitive solutions) and the follow-

ing points for almost all the budget levels show the efficacy of the proposed algorithm, (ii) in

the earlier iterations a significant lump of the gap is filled, (iii) in case the optimal solution is

not found within 100 iterations, the algorithm renders a very close solution to the optimal

solution which is also shown in the last column of Table 5.

A comparison to an exact method

To shed more lights on the computational efficacy of the proposed algorithm, Table 6 presents

numerical results pertaining to Benders decomposition algorithm hybridized with a RAM-effi-

cient Branch and bound algorithm (BD-BB) [53] a globally optimal algorithm, which is applied

to the same case study used in this research over various budget levels, that is to provide a fair

basis for a comparative analysis. Given the special structure of the BD-BB, it has recently

Table 4. Winnipeg case study, candidate road projects sorted based on the merit index.

Id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I-node 595 513 325 424 420 551 301 288 297 330 304 177 441 327 168 299 173 335 739 889

J-node 602 595 330 437 592 610 1035 294 1057 428 423 853 494 424 784 1058 829 449 774 898

Cost� 0.59 0.79 1.3 0.86 0.58 1.51 0.75 2.5 0.88 1.73 1.29 1.52 2.04 1.61 1.09 1.35 1.24 0.64 0.6 0.42

Traffic volume 1648 1648 2010 1256 661 1610 685 2011 668 1303 949 1023 1367 983 645 654 553 285 240 0

Merit Index�� 2793 2086 1546 1461 1139 1066 913 804 759 753 736 673 670 611 591 484 446 446 400 0

� Total Cost: 23.29

�� Provided that the capacity of the projects are same (1700 vph) the merit index is simply calculated as traffic volume/Cost

https://doi.org/10.1371/journal.pone.0192454.t004
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shown a significant computational superiority over other exact methods which makes it a valid

and challenging yardstick to evaluate the proposed OA algorithm. The BD-BB comprises of

solving some TAPs as well as a Benders decomposition problem which is a nonlinear optimi-

zation problem. The latter also includes solving a mixed integer programming problem as well

as a capacitated traffic assignment problem which is computationally more expensive than a

normal (uncapacitated) TAP, say more than four times [26]. To this end, Table 6 also reports

on the number of times that a TAP and a Benders decomposition problem have been solved.

As can be seen, a significant share of the CPU time has been occupied by the Benders decom-

position. This has resulted in a higher CPU time needed to reach the global optimal solutions

compared to what is needed by the OA (see column 4th and 9th of the Table). Note that, the

OA fails to find the global optimal solution within 100 iterations for 2 out of 5 budgets,

whereas, over the rest, the OA is remarkably faster. Moreover, as shown in Table 6, for the

BD-BB, a significant share of the computation is attributed to the effort made to close the gap

Fig 4. Winnipeg transport network with 20 candidate road projects and hourly traffic volume.

https://doi.org/10.1371/journal.pone.0192454.g004
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between a lower bound and an upper bound of the optimal value as a termination criterion

(see column 9th versus column 8th of the Table). Consequently, the proposed OA can find a

set of very good solution (and perhaps the global optimal solutions) in the very early iteration.

This is what makes the OA appealing when a large-sized network is undertaken.

The closer a solution is to the optimal solution, the “better” it is. In the literature “good”

solutions are defined in contrast with “exact” or “(global) optimal” solutions [14]. In general, it

is not possible to measure the goodness of the solution since exact solutions are not known. In

fact, the goodness of solution must be viewed as a qualitative and subjective rather than quanti-

tative and decisive measure. We tried to show this concept in Fig 5 where solutions are com-

pared against intuitive solutions. Nonetheless, the y-axis in Fig 5 indicates gap distance to

corresponding exact solutions (found in exhaustive enumeration).

According to Fig 5, the algorithm does not yield a better solution than the intuitive solution

for the budget level of B/C = 80% during the first 100 iterations. We left the algorithm to pro-

ceed until the optimal solution is found at iteration 657 and further until iteration 1000 as

shown in Fig 6 to observe the computational burden. The y-axis on the left-hand side shows

the incumbent value (or objective function or total travel time). On the y-axis, the starting

value (1214734) is the value of the objective function corresponding to the optimal solution.

After 5 hr computational time, the optimal solution was found at iteration 657. The y-axis on

the right-hand side shows the progressive computational time. As discussed earlier each itera-

tion consists of solving a UE-TAP (which lasts almost 3 sec) and a MILP problem (DNDP-

UE-MOA). As the number of iteration increases the number of cuts to the DNDP-UE-MOA

increase (three cuts per iterations, see Table 1), hence the computational time increases too.

Fortunately, the pace of such increase in the computational time is not exponential; rather it is

of multinominal nature with the order of 2 (the trend line set on the computational curve is

y = 1e-5x2-2e-4). Note that the authors don’t ascertain that this trend is always the case, hence

more investigation on the growth of the CPU time is a worthy line of research. However, the

main message is that as a hybrid methodology (exact and heuristic approximation), very good

solutions are found in very early iterations as a promising sign when a large-sized network is

undertaken.

Our methodology is similar to the method proposed by Wang, Meng (25) in the sense the

objective function of the Beckmann transformation of UE traffic assignment is added to the

constraints and an Outer Approximation algorithm is employed. Nevertheless, the main

Table 5. Winnipeg case study: Results of refined OA pertaining to up to only 100 iterations.

B/C

%

Budget Number of

feasible

solutions

Optimal Solution Application results of the Refined OA

Optimal solution string Cost Budget

used (%)

Incumbent

Value

Iteration (< 100) at

which optimal solution

was found

CPU time

(min)

Gap distance of the best

solution found to the optimal

solution (%)

10 2.329 225 00001000000100000000 2.1 90 1238414 5 13.92 0

20 4.658 6381 00001001000100000000 4.6 99 1232135 53 14.93 0

30 6.987 54879 11000001100100000100 6.9 99 1226368 91 14.90 0

40 9.316 222664 11001011000100110000 9.2 98 1223845 Not found 14.55 0.01593

50 11.65 524288 11001111000110010000 11.6 100 1220833 Not found 13.23 0.11844

60 13.97 825912 11001111101110001000 13.7 98 1218753 Not found. 13.82 0.17887

70 16.3 993697 11111101110110100100 16.0 98 1216904 Not found. 13.28 0.17988

80 18.63 1042195 11111111110110011100 18.3 98 1214734 Not found. 15.00 0.16152

90 20.96 1048351 11111111110111011110 20.5 98 1214006 47 15.05 0

100 23.29 1048576 11111111110111111101 21.4 92 1213749 13 12.37 0

https://doi.org/10.1371/journal.pone.0192454.t005
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difference dwells on the fact that their method is basically a SO-relaxation formulation which

postulates that SO-relaxation is a valid approximation to the original (UE) problem. Consider-

ing the theoretical gap between SO traffic flow and UE traffic flow (known as the price of anar-

chy) the more investigations using real-life examples is a worthy line of research.

Fig 5. Winnipeg Case Study, Variation of the results for different budget levels over 100 iterations: (a) an overall view, (b) a closer view.

https://doi.org/10.1371/journal.pone.0192454.g005
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Conclusions

We developed a hybrid exact-heuristic method to address the Discrete Network Design Prob-

lem (DNDP) tailored to large-size networks in which, given a limited budget, the best subset of

candidate road projects is sought. Conventionally, the DNDP is formulated as a bilevel pro-

gramming problem: in the upper level, the network’s total cost is minimized while the lower

level accounts for the commuters’ routing behavior. The decision variables are considered

Table 6. Comparison to an exact method (Benders decomposition and branch and bound).

Global optimal solution Outer Approximation of 100 iterations Benders and Branch and bound [53]

B/C% Value of objective

function

no of UE to reach a

global optimal solution

CPU (min) to reach

optimal solution

Total CPU

(min)

no of UE

solved�
no of Benders (lower

bound) solved��
Total CPU

(min)

CPU (min) to reach

optimal solution

20 815035 53 8.05 14.93 4 160 60.6 36.97

40 808132 91 13.69 14.55 4 544 219 48.18

60 803900 Not found NA 13.82 4 273 100.8 53.42

80 801692 Not found NA 15 38 162 66 1.32

100 800928 13 1.72 12.37 41 55 24.6 12.55

�no of UE solved: number of times at which the traffic assignment is solved

��no of Benders (lower bound) solved that includes the number of times at which a pair of nonlinear programming problem (capacitated TAP, [58]) and mixed integer

relaxed problem is solved

https://doi.org/10.1371/journal.pone.0192454.t006

Fig 6. Winnipeg Case Study, variation of the results and computational burden for budget level B/C = 80%.

https://doi.org/10.1371/journal.pone.0192454.g006
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integer (binary): 1 to build and 0 not to build. Due to combinatorial nature and being NP-

hard, the DNDP is known to be extremely difficult to deal with, for which we developed a two-

tier relaxation scheme. First, the bilevel is relaxed to a single-level problem which is much eas-

ier and more efficient to handle. To this end, the User Equilibrium Traffic Assignment Prob-

lem (UE-TAP) in the lower level was considered as the main single-level problem. Then, the

objective function in the upper level along with the binary constraints were included in the

constraints of the single-level problem. As the result, a mixed-integer nonlinear programming

problem is obtained (we referred to it as DNDP-UE-MINLP) for which an Outer Approxima-

tion (OA) solution algorithm was developed. Therefore, the DNDP was split to solving two

problems alternately: (i) given a feasible binary solution, the corresponding UE-TAP is solved,

(ii) given the outcome of the UE-TAP, the corresponding DNDP-UE-MINLP is linearized to a

mixed-integer linear programming (MILP) and then solved using the OA. At this point, the

outcome is a new binary solution. The second relaxation measure lays here: a fully-fledged lin-

earization of the DNDP-UE-MINLP leads to a multi-commodity traffic flow, while the only

takeaway is the binary solution, not the traffic flow. Hence we relaxed the multi-commodity

formulation to a single-commodity. For the single-commodity, we merely retained the conser-

vative flow constraints at the nodes which resulted in a MILP significantly trimmed off myriad

variables and constraints. Nevertheless, to offset this simplification, the binary solution is used

to fully solve the corresponding UE-TAP and the traffic flow. This process continues until a

pre-specified number of iterations are exhausted. Furthermore, a good solution (optimal or

near-optimal solutions) is always guaranteed in early iterations.

Note that, relaxing the multi-commodity to a single-commodity formulation to gain CPU

efficiency comes at the expense of losing a tight lower bound. Therefore, a natural termination

criterion is a maximum number of iteration (to be specified as a prior) is assumed to be a ter-

mination criterion which itself can be determined based on the computational technology of

the time as well as the importance level of the problem. For example, if the total road invest-

ment projects is of the order of millions or billions dollars, it is conceivable to run the problem

for weeks or even months to arrive at a better solution. Moreover, one intuitive way to set up a

commensurate i_max (maximum number of iterations) is to observe the variations of the

objective functions over successive results (see Fig 4). For instance, it is not recommended to

terminate the computation when the graph fluctuates. Instead, one needs to leave the algo-

rithm to carry on until the results remain unchanged for a considerable number of iterations.

The main challenge in the bilevel programming problems is the way to transform them into

a single level problem. In the quest to arrive at a single-level problem, the consensus in the lit-

erature is to maintain the upper level since it is the leader in the original bilevel problem and

then carry over the lower level (the follower) to the constraint. But, what we proposed was the

other way around. In principle, by bringing the objective function down in the constraints and

leaving Z (its upper bound) in the objective function, the structure of the formulation remains

intact. However, the main difference is the relaxation method, that is, the multi-commodity

formulation is replaced with a single-commodity formulation to cope with CPU burdens. Our

primary motive was to tailor a working methodology for large-size networks (which is a rare

currency in the literature). In the end; the numerical results showed a significant superiority

over previous (conventional) methods. Furthermore, the way that we treated the leader objec-

tive function (by bringing it down to the constraints) has a significant advantage: it enables us

to consider multiple objective functions for the DNDP. In addition to network performance

index (e.x. minimizing total travel time), consideration of other concerns such as environmen-

tal factors, equity, traffic safety etc are sometimes strongly imperative [59, 60]. Such a situation

gives rise to multi-objective optimization which itself is a challenging subject. Notably, the
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uniqueness of final solution in the multi-objective optimization might be compromised [61],

not to mention the fact that the DNDP is per se an NP-hard problem.

The hybrid exact-heuristic algorithm was applied to four examples including Gao’s network

and Sioux-Falls as well as the real network of the Winnipeg, Canada. Compared to the previ-

ous studies, the proposed algorithm showed significant superiority. Numerical testing on the

real network of Winnipeg over various budget levels demonstrated promising results, such

that the optimum solutions were quickly reached in most cases.

It is important to note that the DNDP is a NP-hard problem, that is, exact methods fail to

solve it for the large-sized networks. Therefore, we developed a hybrid exact-heuristic consist-

ing of an exact method and some heuristic relaxation techniques aiming to solve real-life net-

works. In terms of computational efficiency, we have depicted the CPU time that turned out to

be a quadratic curve (not an exponential curve). However, in comparison to an all-out exact

method (i.e. Benders decomposition and Branch and Bound, BB) our proposed method can

find good (and sometimes the best) solution in very early iterations which is a promising sign

to be used in real-life examples.

It is also important to highlight the fact the CPU time is a subjective factor considering the

strategic level of the problems. Note that, theoretically, one cannot find the global optimal

solutions for a large-sized example (NP-hard problem). That is why we let the number of itera-

tions to be decided case-by-case depending on the computational technology at the time as

well as the strategic level of the road investment. When millions or billions of dollars are at

stake, it is conceivable to run the methodology for days and even months to find a better solu-

tion. However, one intuitive way to set up a commensurate i_max (maximum number of itera-

tions) is to observe the variations of the objective functions over successive results (see Fig 5),

to terminate the computation when no significant fluctuation is observed for some successive

iterations. In other words, one needs to leave the algorithm to carry on until the results remain

unchanged for a considerable number of iterations.

In a comparative context, the primary contribution of this research can be attributed to

high computational efficiency and its potential application in real-life and large-size networks.

Furthermore, the proposed formulation has the capacity to address multi-objective (or multi-

criteria) network design problem. Second, by virtue of combinatorial nature of the problem,

the discreteness of solutions may be compromised especially in large-size networks. Nonethe-

less, algorithms are required to be able to tightly minimize the objective function to ensure

arriving at good solutions (i.e. solutions very close to the optimal solution). As shown in the

numerical evaluation, the proposed algorithm can reach good solutions in early iterations.

The methodology proposed in this work could be further improved by expanding the traffic

assignment to multi-class and multi-modal traffic flow. To enhance realism and fidelity of the

traffic assignment models, the idea of subjecting the DNDP to a parking search model [62, 63]

as well as dynamic network design assignment is of highest practical relevance that paves the

way to use some off-the-shelf simulation software (the computational expense is, however, a

serious concern [6, 64, 65]). In light of the scarcity of resources and cash flow issues, prioritiza-

tion of selected projects out of solving the DNDP is also a demanding problem in the industry

which deserves to be addressed [66]. Sometimes stakeholders seek a variety of good solutions

other than a global optimum solution for reasons such as practicality issues, construction diffi-

culties, and other concerns based on their own discretion or consensus. As such, similar to K-

shortest-path problem finding the first k best solutions for the DNDP is worthy of further

research. The DNDP has recently been expanded to more disaggregated levels in decision vari-

ables, such as finding additional lanes that need to be integrated into the proposed methodol-

ogy. Mutual interactions of land use and road infrastructure are largely overlooked in the

literature [67] which itself is a worthy line of research. Given the emerging technologies related
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to the autonomous and connected vehicles [68], it is important to investigate retrofitting exist-

ing transport and road infrastructure to accommodate these new modes.

Appendix A: Outer approximation algorithm for MINLP

The general formulation of MINLP problems is [42] p.382:

MINLP : min f ðx; yÞ ðA � 1Þ

s:t: gðx; yÞ � 0; ðA � 2Þ

x 2 X � Rn; y 2 Y � Zm ðA � 3Þ

where X is a nonempty convex set in Rn (continuous variables) and Y is a finite integer set in

Zm (in case of binary variable we have Y = {1,0}m; f,g are convex in the space of (x,y). Consider

MINLP, and let S be the solution space and V feasible (integer) decision solutions as:

S ¼ fðx; yÞ 2 X � Yjgðx; yÞ � 0g ðA � 4Þ

V ¼ fy 2 Yj9x 2 X; gðx; yÞ � 0g ðA � 5Þ

The OA alternates between solving a nonlinear programming subproblem and a mixed-

integer linear programming master problem: The algorithm starts with yi a feasible solution

for decision variables at iteration i = 1. With this value of y fixed we consider solving the

MINLP becomes a Non-Linear Programming (NLP) problem as follows:

NLPðyiÞ : v ¼ min f ðx; yiÞ ðA � 6Þ

s:t: gðx; yiÞ � 0; ðA � 7Þ

x 2 X � Rn ðA � 8Þ

The NLP(yi) is solved and renders the continuous variables xi. Given the newly found xi, we

proceed to find a new set of decision variable for the next iteration. Let us relax the NLP(y)

problem from the constraints using Lagrangian multipliers λ� 0: dy(λ) = minx2X L(x,y,λ) = f
(x,y) + λ.g(x,y). Then the Lagrangian dual problem of NLP(y) becomes: maxλ dy(λ). Further-

more, since a solution of NLP(y) is also a feasible solution to MINLP, its optimal value v(NLP
(y)) yields an upper bound to MINLP, therefore:

min
ðx;yÞ2S

f ðx; yÞ ¼ miny2V vðNLP ðyÞÞ ¼ miny2Vðmaxl minx Lðx; y; lÞÞ ðA � 9Þ

¼ min z s:t: z � minx Lðx; y; lÞ; y 2 V ðA � 10Þ

where z is a lower bound to the optimal value of the original MINLP problem. The only con-

straint is a set of cuts to the solution space which is gradually accumulated during the progres-

sive iterations. In doing so, the OA exploits the gradient property of the problem, both the

objective function and the constraints. In fact, the objective functions and the constraints are

represented by their linear approximation to form a Master Outer Approximation (MOA) as

follows (note that the following equations can be derived directly due to the fact that the KKT
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conditions of NLP(yk) and its linearization at xk are identical see (p. 383, c.13, [42]):

MOAi min z

s:t: z � f ðxk; ykÞ þ rf ðxk; ykÞ:ðx � xk; y � ykÞ k 2 Ti
ðA � 11Þ

0 � gðxk; ykÞ þ rgðxk; ykÞ:ðx � xk; y � ykÞ k 2 Ti ðA � 12Þ

x 2 X; y 2 Y ðA � 13Þ

The MOAi is a mixed-integer linear programming (MILP) problem and Ti represent set of

the solution xk, yk found up to the current iteration i, in other words: Ti = {k|yk 2 V and xk

solves NLP(yk), k = 1..i}
It is worth noting that, constraint (A-12) represents all requirements to ensure that the out-

come yi+1 is a feasible binary solution for the next iteration. Now the OA solution algorithm

can be set forth as follow:

Step 0. Initialization: Set iteration i = 1 and choose a feasible solution for decision variables yi

2 Y. Initialize lower bound and upper bound as lb0 = −1, ub0
�
¼ þ1.

Step 1. Calculate Upper bound: Solve NLP(yi) to obtain xi. Update the value of best solution

found by setting ubi
�
¼ minfubi� 1

�
; ubi ¼ f ðxi; yiÞg. Save it as best solution (x�,y�) if it was

found the best solution so far (known as incumbent value).

Step 2. Calculate Lower bound: Given xi solve the master problem MOAi to obtain optimal

solutions of zi,xi+1,yi+1.

Step 3. Termination: Set lbi = zi, if lbi� ubi stop and (x�,y�) is the optimal solution, otherwise

set i≔ i + 1 and go to Step 1.
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