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Abstract: One of the main challenges in traumatic brain injury (TBI) patients is to achieve an early
and definite prognosis. Despite the recent development of algorithms based on artificial intelligence
for the identification of these prognostic factors relevant for clinical practice, the literature lacks a
rigorous comparison among classical regression and machine learning (ML) models. This study aims
at providing this comparison on a sample of TBI patients evaluated at baseline (T0), after 3 months
from the event (T1), and at discharge (T2). A Classical Linear Regression Model (LM) was compared
with independent performances of Support Vector Machine (SVM), k-Nearest Neighbors (k-NN),
Naïve Bayes (NB) and Decision Tree (DT) algorithms, together with an ensemble ML approach. The
accuracy was similar among LM and ML algorithms on the analyzed sample when two classes of
outcome (Positive vs. Negative) approach was used, whereas the NB algorithm showed the worst
performance. This study highlights the utility of comparing traditional regression modeling to ML,
particularly when using a small number of reliable predictor variables after TBI. The dataset of clinical
data used to train ML algorithms will be publicly available to other researchers for future comparisons.

Keywords: traumatic brain injury; outcome predictors; linear regression; machine learning; ensemble
of classifiers

1. Introduction

Traumatic brain injury (TBI) has a tremendous impact on patients and family members.
They must learn to live with a diminished potential for physical, emotional, cognitive, and
social functioning. A recent meta-analysis [1] found an overall incidence rate of 262 per
100,000 per year, and in the USA 43.3% of hospitalized TBI survivors will have a long-term
disability [2]. One of the main challenges in TBI-related research is to achieve an early
and definite prognosis considering the best predictors of outcome, to administer effective
treatments able to improve the clinical progression. Some factors have been proposed
and predictive models have been constructed. Most studies used traditional regression
techniques to identify these factors [3] defining age, diagnosis, and severity level (measured
with Coma Recovery Scale-Revised (CRS-r)) as the most important clinical indicators to
predict TBI outcome, although with a poor implementation in clinical practice [4]. In such
a scenario, in the last few years, considerable efforts have been put into implementing
and developing artificial intelligence tools. Machine learning (ML) methods landed in
this neurological domain only a few years ago with promising and enthusiastic perspec-
tives [5]. The first studies tested the performance of support vector machine (SVM) [6],
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Naïve Bayes (NB) [7], and random forest [8] algorithms in predicting the mortality of TBI
patients. Despite good performance having been reported (ranging from 67% to 97%), these
preliminary ML studies are characterized by high variability in predictive models and
clinical predictors used for the training phase, thus reducing a rigorous comparison among
methods. For this reason, in this study, we compare the performance of a Classical Linear
Regression Model (LM) with the most common ML algorithms for the prediction of clinical
outcomes of TI patients (measured with the Glasgow Outcome Scale-Extension) after 6–9
months from the hospitalization. Finally, we also tested the ensemble ML algorithm and
applied different feature selection methods to optimize the model.

2. Materials and Methods
2.1. Population

The population enrolled for this study was composed of 102 subjects (Table 1). This
study was a secondary analysis conducted on a large database used in different previous
studies [9,10] and further augmented with new data. For each patient, collected data
consisted of demographic information and clinical assessment on admission (T0) after three
months (T1) and after 6–9 months at discharge (T2). At the end of the study, 11.8% of
TBI patients died, whereas 37.2% had positive outcomes (Glasgow Outcome Scale higher
than 4).

Table 1. Clinical characteristics of TBI patients.

Predictors TBI (n◦102)

Age (years) 48 ± 20.6
Sex 29F/73M

Length of stay ICU (days) 27.0 (20–35)
Length of stay IRU (days) 72.0 (43.8–128.2)

Marshall Score ICU (%)

I 0%
II 38%
III 19.6%
IV 2.2%
V 39.1%
VI 1.1%

Diagnosis at Admission (%)

Emersion 55.9%
MCS 20.6%
VS 23.5%

Diagnosis at Discharge T2 (%)

Emersion 86.3%
MCS 8.8%
VS 4.9%

CRS-R T1 23.0 (3–23)
CRS-R T2 23.0 (5–23)
RLAS T1 4 (1–8)
RLAS T2 6 (2–8)
DRS T1 18 (6–29)
DRS T2 9 (0–27)
ERBI T1 −175 (0–275)
ERBI T2 0 (0–175)

Outcome at discharge
GOS-E values 3.0 (1.0–8.0)

GOS-E range (%)

negative outcome (<5) 62.8%
positive outcome (>5) 37.2%

ICU: Intensive Care Unit; IRU: Intensive Rehabilitation Unit; MCS, minimally conscious state; VS, vegetative state;
GOSE: Extended Glasgow Outcome Scale; CRS-r: Coma Recovery Scale-revised; RLAS: Rancho Los Amigos Scale;
ERBI: early rehabilitation Barthel Index; DRS: Disability Rating Scale. Data are presented as median (range).
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2.2. Proposed Approach

In this section, we briefly describe the outcome measure, the predictors and the
classification methods.

2.2.1. Outcome Measure

As a main measure, we used the extended version of the Glasgow Outcome Scale
(GOS-E) [11], which is the most used scale in clinics for outcome assessment after a head
injury or non-traumatic acute brain insults. Details about the scales are reported in Table 1.
For binary classification, we split the scale into two halves corresponding to Positive and
Negative Outcome, respectively. For multi-class classifications, we divided the dataset into
four classes, joining together the Lower and Upper sub-categories for the first three classes
and PST and Death for the fourth classes as reported in Table 2.

Table 2. Glasgow Outcome Scale classes.

Category
Number Name Definition 4 Classes 2 Classes

8 Good Recovery
Upper

No current problems
related to brain injury
that affects daily life

Good Recovery
(26 Subjects)

Positive Outcome

7 Good Recovery
Lower

Minor problems that
affect daily

life;Recovery of the
pre-injury level of
social and leisure
activities > 50%

6 Moderate Disability
Upper

Reduced work capacity;
Recovery of the

pre-injury level of
social and leisure
activities < 50%

Moderate Disability
(9 Subjects)

5 Moderate Disability
Lower Inability to work

4 Severe Disability
Upper

Autonomy during the
day > 8 h; Inability to

travel and/or go
shopping without

assistance

Severe Disability
(38 Subjects) Negative Outcome

3 Severe Disability
Lower

Necessity of frequent
home assistance for

most of the time every
day

2
Persistent
Vegetative

State

Unresponsiveness and
Speechlessness

Vegetative/Death
(25 Subjects)

1 Death

2.2.2. Predictors’ Selection

In the experimental section we have tested the following predictors of outcome:

• Age, Sex.
• Marshall classification (T0): one of the most used systems for grading traumatic

brain injury at admission [12]. It is based on the observation of the brain non-contrast
CT scan and of the degree of swelling and the presence and size of hemorrhages.
Patients are divided into six increasing severity categories: diffuse injury I (no visible
pathology), diffuse injury II, diffuse injury III (swelling), diffuse injury IV (shift), evac-
uated mass lesion V, non-evacuated mass lesion VI. Therefore, the highest categories
correspond to the worst prognosis.
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• Entry Diagnosis (T0): this categorical variable reports the diagnosis at admission
consisting of three possible classes: Vegetative state (VS), Minimally Conscious State
(MCS) and Emersion from MCS.

• Coma Recovery Scale-Revised (CRS-R) [13]: the gold standard diagnostic tool for
the assessment of DOC patients over the course of recovery. It is composed of six items
ranging from 0 to 23, where a higher score corresponds to better functionality.

• Rancho Los Amigos Levels of Cognitive Functioning Scale (RLAS) [14]: scale for
the assessment of patients’ cognitive performance. It is composed of eight categories:
No Response (Cognitive Level I), Generalized Response (CL II), Localized Response
(CL III), Confused—Agitated (CL IV), Confused—Inappropriate—Nonagitated (CL
V), Confused—Appropriate (CL VI), Automatic—Appropriate (CL VII), Purposeful—
Appropriate (CL VIII).

• Disability Rating Scale (DRS) [15]: scale for the measurement of general functional
changes over the course of recovery. It is composed of eight items belonging to four
categories: Arousability, Awareness and Responsivity (Eye Opening, Communication
Ability, Motor Response), Cognitive Ability for Self-Care Activities (Feeding, Toileting,
Grooming), Dependence on Others (Level of Functioning), Psychosocial Adaptabil-
ity (Employability). The total score ranged from 0 (No Disability) to 29 (Extreme
Vegetative State).

• Early Rehabilitation Barthel Index (ERBI) A and B [16]: extended version of the
Barthel index for the assessment of early neurological rehabilitation patients over the
course of recovery. It contains highly relevant items, such as mechanical ventilation,
tracheostomy, or dysphagia and it ranges from −325 to +100.

2.3. Feature Selection

In this work, we also applied statistical-based feature selection methods to reduce the
computational cost of modeling, improve an easier understanding of data and explore a
possible improvement of the performance of the model [17]. According to predictor impor-
tance, univariate features ranking was performed using the two most common methods:

• Minimum Redundancy Maximum Relevance (MRMR) algorithm [18]: this method
explores the optimal subset of features with the maximum relevance for the response
and the minimum redundancy using the pairwise mutual information among features
and between each feature and the outcome.

• Chi-square Test [19]: an approach based on individual chi-square tests to examine the
relationship between each dependent variable and the outcome.

Next, the optimal subset of features was defined, selecting the highest difference
between consecutive scores as a breakpoint and taking the most important predictors.
Indeed, a drop among the importance scores represents the confidence of feature selection.
Therefore, a large drop indicates that the algorithm is confident in selecting the most
important variables, while a small drop suggests that the differences among predictor
importance are not significant.

2.4. Classification Methods

In the classification phase, we used the LR and the four most conventional classifiers
which are described below:

• Support Vector Machine (SVM) [20]: a widely used method based on mapping data
into a higher dimensional feature space using kernel functions to make them separable
and then finding the best hyperplane for classification. In this study, we used a Radial
Basis Function (RBF) kernel:

K
(

xj, xk
)
= e−

‖xj−xk‖
2

2σ2

where xj and xk are vectors representing observations j-th and k-th.
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• k-Nearest Neighbors (k-NN) [21]: a simple approach where each object is assigned
to the most common class among its k nearest neighbors applying the majority voting
technique. In this study, we set a number of nearest neighbors equal to 5 following a
general rule k =

√
n to identify the optimal value, where n is the number of samples

in training data [22] and employing the standardized Euclidean distance as a metric:

d(q, xi) =

√√√√ n

∑
i=1

(
q− xi

σi

)2

where q is the query instance, xi is the i-th observation of the sample and σi is the stan-
dard deviation.

• Naïve Bayes (NB) [23]: based on Bayes’ Theorem, this technique applies density
estimation to the data and assigns an observation to the most probable class assuming
that the predictors are conditionally independent, given the class. In this study,
probabilities were computed modeling data with Gaussian distribution:

f (x) =
1√
2π

e−0.5x2

• Decision Tree (DT) [17]: based on a tree-like model in which each internal node speci-
fies a test involving an attribute, each branch descending from the node corresponds
to one of the possible outcomes of the test and each leaf node represents a class label.
Classifying an object with a decision tree means performing a sequence of cascading
tests, starting with the root node and finishing with a leaf node. In this study, for the
decision tree model, we set a maximal number of decision splits equal to 10. As an
algorithm for selecting the best split predictor at each node, we chose standard CART,
which selects the split predictor maximizing Gain. Gain is a split criterion given by the
difference between the information needed to classify an object (I) and the amount of
residual information needed after the value of attribute A have been learned (Ires):

Gain(A) = I − Ires(A)

where I is given by the entropy measure

I = −∑
c

p(c)log2 p

with p(c) equal to the proportion of examples of class c and

Ires = −∑
v

p(v)∑
c

p(c|v)log2 p(c|v)

All these four classifiers were tested with the majority voting ensemble technique.
Majority voting is a simple ensemble method that usually is adopted to improve machine
learning performances better than any single model used in the ensemble. It works by
combining the final classification of all the four ML models (SVM, k-NN, NB and DT).
The predictions for each label are summed and the label with the major number of occur-
rences is the final outcome [24]. ML models were trained and tested using Matlab R2020b
(Mathworks, Natick, MA, USA).

2.5. Performance Metrics

For the evaluation of the models, we employed two types of stratified Cross-Validation:
Leave-One-Out Cross-Validation (LOOCV) and 10-fold Cross-Validation (10-fold CV) [25].
K-fold Cross-Validation is a procedure that consists in splitting the dataset into k subsets
and iteratively leaving one subset out as a test set while keeping the remaining subsets to-
gether as a training test. Leave-one out is the extreme version of cross-validation where the
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number of subsets coincides with the number of samples in the dataset. LOOCV requires
fitting and evaluating a model for each sample, which maximizes computational cost. The
main advantage of this technique is its robustness since, at each iteration, the training set is
as similar as possible to real data. This allows unbiased and reliable estimation of perfor-
mances avoiding overfitting. Ten-fold CV is a commonly used and less computationally
expensive version of cross-validation. For applications with real-world datasets, Kohavi
recommends stratified 10-fold cross-validation [26]. Classification performances were mea-
sured using Accuracy, Precision, Recall and F1-Score [27], defined for multi-classes tasks,
as reported in Table 3.

Table 3. Performance Metrics.

Performance Measure Binary Classification Multi-Class Classification

Accuracy tp+tn
tp+tn+ f p+ f n

∑l
i=1

tpi+tni
tpi+tni+ f pi+ f ni

l

Precision
tp

tp+ f p
Pµ = ∑l

i=1 tpi

∑l
i=1(tpi+ f pi)

PM =
∑l

i=1
tpi

tpi+ f pi
l

Recall
tp

tp+ f n
Rµ = ∑l

i=1 tpi

∑l
i=1(tpi+ f ni)

RM =
∑l

i=1
tpi

tpi+ f ni
l

F1-Score 2× Precision·Recall
Precision+Recall

F1Sµ = 2× Pµ ·Rµ

Pµ+Rµ

F1SM = 2× PM ·RM
PM+RM

In the second column, performance measures defined for binary classification: tp represent the true positive, tn the
true negative, fp the false positive and fn the false negative. In the third column, the same measures are generalized
for a multi-class problem considering l classes Ci. Macro (M) index is the arithmetic mean of all the performance
metrics of each class Ci and micro (µ) index is the global average of each performance metric obtained by first
summing the respective tp, fn, fp values across all classes and then implementing the corresponding performance
metric equation.

Statistical analysis of performance metrics was carried out using RStudio Version
4.0.3 (10 October 2020) (RStudio, Boston, MA, USA). Since variables were not normally
distributed, the Kruskal–Wallis (KW) test was employed to compare performance metrics
of ML algorithms to discriminate 2 and 4 classes of the outcome, respectively [28]. The KW
test was also used to investigate the performances achieved with different feature selection
methods. A p-level of <0.05 was used for defining significance, followed by post-hoc
Dwass–Steel–Critchlow–Fligner pairwise comparisons.

3. Results

No significant differences of performance metrics, respectively, for 2 and 4 classes were
found between the MRMR and Chi-square feature selection methods as reported in Table 4
using KW test. Moreover, we observed that MRMR achieved the same performances,
respectively for 2 and 4 classes of output as shown in Figures 1 and 2 with a larger drop
among the predictor importance scores and selecting a minor number of features useful to
reducing computational costs.

Table 4. Kruskal–Wallis analysis between MRMR and Chi-square feature selection methods, respec-
tively, using 2 and 4 classes of outcome.

χ2 p ε2

2 classes

Accuracy 0.461 0.794 0.0271
Precision 0.467 0.792 0.0275

Precision M 1.207 0.547 0.071
Recall 0.467 0.792 0.0275

Recall M 0.457 0.796 0.0269
F1-Score 0.467 0.792 0.0275

F1-Score M 0.668 0.716 0.0393
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Table 4. Cont.

χ2 p ε2

4 classes

Accuracy 3.27 0.195 0.1921
Precision 3.28 0.194 0.1929

Precision M 1.3 0.523 0.0764
Recall 3.28 0.194 0.1929

Recall M 2.54 0.281 0.1493
F1-Score 3.28 0.194 0.1929

F1-Score M 2.14 0.343 0.1259

Figure 1. Most significant features selected using 2 classes of outcome, respectively, using MRMR
and Chi-Square selection methods.

Figure 2. Most significant features selected using 4 classes of outcome, respectively, using MRMR
and Chi-Square selection methods.

Furthermore, we extracted correlations between each pair of clinical predictors as
shown in Figure 3 and observed that the variables Marshall, Entry Diagnosis, CRS-R, RLAS
and DRS scores were the most correlated features.
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Figure 3. Correlation matrix with paired correlations between each pair of clinical predictors. On the
diagonal: distribution of each variable, on the bottom of the diagonal: bivariate scatterplots with a
fitted line, on the top of the diagonal: correlation value with significance level. Symbols “***”, “**”,
“*”, “.”, indicates respectively p-values <0.001, <0.01, <0.05, <0.1.

For these reasons, we performed further analyses using MRMR with CRS-R, Age
and ERBI B for binary classification and Entry Diagnosis, Age and Sex for four-class
classification. After feature selection, we applied the KW test between each ML model and
LM with a 10-fold CV. Significant differences were found in both cases (Table 5). Post-hoc
Dwass–Steel–Critchlow–Fligner pairwise comparisons among accuracies were included
to compare each pair of ML models and identify the best performer. Using two classes of
outcome we observed a significant difference between LM and NB (see Table 6), although
the accuracy of NB is lower than LM (Figure 4). In the case of the four classes of outcome, no
significant differences were detected revealing comparable performances among all models,
although a significant loss of accuracy was detected (Table 6 and Figure 5). The same trend
was observed for other ML metrics. Tables 7 and 8 reported metric performances using
LOOCV and 10-fold CV, respectively, for 2 and 4 classes of the outcome.

Table 5. Kruskal–Wallis analysis between Linear model and Machine Learning models, respectively,
using 2 and 4 classes of outcome with MRMR algorithm.

χ2 p ε2

2 classes

Accuracy 21.6 <0.001 0.367
Precision 21.6 <0.001 0.367

Precision M 20.9 <0.001 0.355
Recall 21.6 <0.001 0.367

Recall M 26 <0 .001 0.441
F1-Score 21.6 <0.001 0.367

F1-Score M 25.3 <0.001 0.429

4 classes

Accuracy 32.8 0.001 0.342
Precision 26.3 0.001 0.342

Precision M 20 0.016 0.236
Recall 26.3 0.001 0.342

Recall M 20 0.002 0.329
F1-Score 26.3 0.001 0.342

F1-Score M 21.2 0.001 0.322
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Table 6. Dwass–Steel–Critchlow–Fligner pairwise comparisons between Linear model and each
Machine Learning model using MRMR algorithm.

Accuracy Precision µ Precision M Recall µ Recall M F1-Score µ F1-Score M

W p W p W p W p W p W p W p

2
classes

Linear k-NN −0.329 1.000 −0.329 1.000 −0.702 0.996 −0.329 1.000 −0.484 0.999 −0.329 1.000 −0.5367 0.999
Linear NB −5.116 0.004 −5.116 0.004 −5.400 0.002 −5.116 0.004 −5.714 <0.001 −5.116 0.004 −5.3983 0.002
Linear SVM −1.315 0.939 −1.315 0.939 −1.184 0.961 −1.315 0.939 −1.665 0.848 −1.315 0.939 −1.6627 0.849
Linear DT −0.544 0.999 −0.544 0.999 −0.810 0.993 −0.544 0.999 −0.752 0.995 −0.544 0.999 −0.8591 0.991
Linear Ensemble −0.164 1.000 −0.164 1.000 −0.378 1.000 −0.164 1.000 −0.322 1.000 −0.164 1.000 −0.4299 1.000

4
classes

Linear k-NN 1.080 0.974 1.080 0.974 0.860 0.991 1.080 0.974 1.180 0.961 1.080 0.974 1.072 0.974
Linear NB 1.414 0.918 1.414 0.918 0.967 0.984 1.414 0.918 1.344 0.933 1.414 0.918 1.341 0.934
Linear SVM −3.671 0.098 −3.671 0.098 −3.371 0.162 −3.671 0.098 −3.801 0.078 −3.671 0.098 −3.636 0.105
Linear DT −0.815 0.993 −0.815 0.993 −1.020 0.979 −0.815 0.993 −1.072 0.974 −0.815 0.993 −1.071 0.975
Linear Ensemble 1.680 0.843 1.680 0.843 1.397 0.922 1.680 0.843 1.715 0.831 1.680 0.843 1.768 0.812

Table 7. Classification Results with MRMR feature selection using, respectively, LOOCV and 10-fold
Cross Validation (2 classes).

Classification Model

Cross
Validation

Performance
Metric Linear Model Support Vector

Machine (SVM)

k-Nearest
Neighbors

(k-NN)

Naïve Bayes
(NB)

Decision
Tree (DT) Ensemble

LOOCV

Accuracy 84.69% 80.61% 82.65% 64.29% 79.59% 83.67%
Precision µ 84.69% 80.61% 82.65% 64.29% 79.59% 83.67%
Precision M 83.46% 79.51% 81.20% 64.29% 78.14% 82.47%

Recall µ 64.84% 58.09% 61.36% 37.50% 56.52% 63.08%
Recall M 41.51% 38.65% 40.40% 25.00% 38.25% 40.79%

F1 Score µ 73.45% 67.52% 70.43% 47.37% 66.10% 71.93%
F1 Score M 55.44% 52.02% 53.95% 36.00% 51.36% 54.59%

10-fold CV

Accuracy 85.89% 81.78% 82.78% 64.33% 76.78% 81.78%
Precision µ 85.71% 81.63% 82.65% 64.29% 76.53% 81.63%
Precision M 84.44% 80.50% 81.20% 64.29% 74.53% 80.00%

Recall µ 66.67% 59.70% 61.36% 37.50% 52.08% 59.70%
Recall M 42.22% 39.37% 40.40% 25.00% 36.75% 40.00%

F1 Score µ 75.00% 68.97% 70.43% 47.37% 61.98% 68.97%
F1 Score M 56.30% 52.87% 53.95% 36.00% 49.22% 53.33%

Table 8. Classification Results with MRMR feature selection using, respectively, LOOCV and 10-fold
Cross Validation (4 classes).

Classification Model

Cross
Validation

Performance
Metric Linear Model Support Vector

Machine (SVM)

k-Nearest
Neighbors

(k-NN)

Naïve Bayes
(NB)

Decision
Tree (DT) Ensemble

LOOCV

Accuracy 65.31% 43.88% 66.33% 68.37% 59.18% 71.43%
Precision µ 65.31% 43.88% 66.33% 68.37% 59.18% 71.43%
Precision M 66.49% 36.49% 66.50% 52.94% 46.16% 71.73%

Recall µ 38.55% 20.67% 39.63% 41.88% 32.58% 45.45%
Recall M 36.51% 23.14% 37.28% 38.74% 30.86% 41.58%

F1 Score µ 48.48% 28.10% 49.62% 51.94% 42.03% 55.56%
F1 Score M 47.13% 28.32% 47.77% 44.74% 36.99% 52.64%

10-fold CV

Accuracy 64.22% 45.00% 65.33% 67.44% 57.44% 70.44%
Precision µ 64.28% 44.89% 65.31% 67.34% 57.14% 70.41%
Precision M 65.72% 36.83% 65.44% 52.16% 45.83% 70.78%

Recall µ 37.50% 21.36% 38.55% 40.74% 30.77% 44.23%
Recall M 35.73% 23.42% 36.38% 37.78% 28.68% 40.66%

F1 Score µ 47.37% 28.95% 48.48% 50.77% 40.00% 54.33%
F1 Score M 46.29% 28.63% 46.77% 43.82% 35.28% 51.65%
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Figure 4. Comparison of accuracies between LM and ML models (2 classes of outcome). Legend:
Linear Regression Model (LM), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naïve
Bayes (NB), Decision Tree (DT) and Ensemble of Machine Learning models (Ensemble ML). Symbols
***, p-values <0.001.

Figure 5. Comparison of accuracies between LM and ML models (4 classes of outcome). Legend:
Linear Regression Model (LM), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Naïve
Bayes (NB), Decision Tree (DT) and Ensemble of Machine Learning models (Ensemble ML).

4. Discussion

In this study, we compare ML approaches to more traditional LM in contemporary
TBI patients’ data to predict their clinical evolution, respectively, using 2 and 4 classes of
outcome approaches. We demonstrated that classic LM could perform as well as more
advanced ML and ensemble ML classifiers in terms of accuracy (sensitivity and specificity)
trained by the same predictors.
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The LM had the advantage of identifying some prognostic factors, associating each of
them with an odds ratio, while the use of ML is limited by the difficulty of interpreting the
model, often referred to as ‘black box’. This finding is perfectly in agreement with results
recently obtained by Iosa et al. [29], who compared the performance of classical regression,
neural network, and cluster analysis in predicting the outcome of patients with stroke.
Similarly, Gravesteijn et al. [30] reached the same conclusions on TBI patients evaluating the
different performance of logistic regression with respect to SVM, random forests, gradient
boosting machines, and artificial neural networks. In terms of model performance, our
SVM and DT values are similar to those reported by Abujaber et al. [6], whereas k-NN has
never been employed in this clinical domain and this outperformed other ML approaches
in all the evaluation metrics. The only algorithm that relatively underperformed was the
NB. The accuracy (and sensitivity) was somewhat lower, passing from the analyzed to the
test sample. Our data conflict with those reported by Amorim et al. [7] who described the
excellent performance of this algorithm as a screening tool in predicting the functional
outcome of TBI patients. This discrepancy could be mainly due to the use of different
clinical predictors. Indeed, there is large heterogeneity in factors (i.e., age, gender, clinical
severity, clinical comorbidities, systolic blood pressure, respiratory rate, lab values, and
presence of mass lesion) identified as having a prognostic value in TBI patients, thus making
a direct comparison between ML approaches difficult to perform [6]. Another limit is due
to the fact the dataset is unbalanced (62.8% negative vs. 37.2% positive outcome) and could
negatively affect performances of machine learning. To overcome this issue and increase
classification robustness, we also applied the technique of LOOCV that is less affected by
this problem and allows us to compare four machine learning techniques since each type of
algorithm performs predictions differently. For instance, the DT algorithm performs well
with unbalanced datasets thanks to the splitting rules that look at class variables.

Moreover, the type of predictors, such as continuous and categorized (operator-
dependent) variables and the lack of objective biological high-dimensional data (i.e., neu-
roimaging, genetics), might also limit the performance of ML techniques applied in this
domain [31]. Our data would seem to confirm this hypothesis because of the change in
identified predictors for classification. Indeed, as shown in Figures 4 and 5, moving from
2 to 4 classes of outcome approaches impacts the most significant features extracted by
predictive models. Apart from age, for reaching the excellent performance with the 2 classes
approach, LM and ML algorithms need CRS-r values and ERBI values at T1, whereas, for
the 4 classes approach, diagnosis at admission and sex are the most important features.

Finally, this is the first study employing an ensemble ML approach to improve the
outcome prediction in TBI patients. This approach has been demonstrated to be useful
for integrating multiple ML models in a single predictive model characterized by higher
robustness, reducing the dispersion of predictions [32]. However, this method would not
seem to boost performance except when the four classes approach was employed (Figure 5).
Indeed, in our KW analysis, we observe that the ensemble ML for two classes reach a high
accuracy similar to other ML techniques of about 84% for LOOCV and 82% for 10-fold CV
as shown in Table 7 while using four classes approach (Table 8) a (not significant) trend of
performance metrics was observed (71.5% for LOOCV and 70.5% for 10-fold CV), which is
five to ten percentage points higher than the other models.

5. Conclusions

In summary, we found that ML algorithms do not perform better than more traditional
regression models in predicting the outcome after TBI. As future work, we plan to perform
further external validations of all these models on other datasets that could capture dynamic
changes in prognosis during intensive care courses extending the current models with new
objective predictors, such as neuroimaging data (EEG, PET, fMRI) [33].
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