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Efficient tuberculosis (TB) control depends on early TB prediction and prevention.

Solution to these tasks requires knowledge of TB protection correlates (TB CoPs),

i.e., laboratory markers that are mechanistically involved in the protection and which

allow to determine how well an individual is protected against TB or how efficient the

candidate TB vaccine is. The search for TB CoPs has been largely focused on different

T-helper populations, however, the data are controversial, and no reliable CoPs are

still known. Here we discuss the role of different T-helper populations in TB protection

focusing predominantly on Th17, “non-classical” Th1 (Th1∗) and “classical” Th1 (cTh1)

populations. We analyze how these populations differ besides their effector activity and

suggest the hypothesis that: (i) links the protective potential of Th17, Th1∗, and cTh1 to

their differentiation degree and plasticity; (ii) implies different roles of these populations

in response to vaccination, latent TB infection (LTBI), and active TB. One of the clinically

relevant outcomes of this hypothesis is that over-stimulating T cells during vaccination

and biasing T cell response toward the preferential generation of Th1 are not beneficial.

The review sheds new light on the problem of TB CoPs and will help develop better

strategies for TB control.
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INTRODUCTION

Tremendous efforts have been made to improve tuberculosis (TB) control. Nevertheless, TB
remains a global public health threat. Multi-drug resistance ofM. tuberculosis (Mtb), HIV infection,
malnutrition, aging and increased usage of immune suppressant drugs contribute to TB spread
(1–4). Most of these factors operate by altering host immune resistance to various infections,
including TB. In these settings, evaluating the individual level of TB protection and TB risk and
developing effective vaccines to increase population resistance are important tasks. Their solutions
require knowledge of TB protection correlates (TB CoPs) (5).

Multiple cellular populations and molecular pathways mediate antimycobacterial immunity
(6–14). Among them, IFN-γ-producing CD4 lymphocytes play the major role (6–9). Consequently,
Th1 lymphocytes have long been regarded as TB CoPs. However, recent data do not fully support
this concept. Other populations of Th lymphocytes have appeared as candidate TB CoPs. Yet,
the data are controversial, and no reliable TB CoPs are still known. Here we analyze recent data
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and discuss protective potential of “classical” Th1 (cTh1),
“non-classical” Th1 (Th1∗), and Th17 lymphocytes during latent
TB infection (LTBI), active TB and following vaccination.

THE MULTIFACETED FACE OF TB
PROTECTION AND ITS CORRELATES

Mechanistic CoPs are defined as immune parameters directly
responsible for host protection. In contrast, non-mechanistic
CoPs (or biomarkers) are determined as markers that correlate
with the protection but are not causally responsible for it
(15, 16). Protection can be determined in different ways, i.e.,
as host ability to (i) prevent the acquisition of the infection;
(ii) clear the pathogen after the initial onset of the infection;
(iii) limit pathogen replication and maintain the infection in
inactive (latent) form; or (iv) limit disease progression and
severity. CoPs against Mtb infection, TB disease and TB disease
progression/severity may differ.

Knowledge of TB CoPs is important for estimating the
individual level of protection and developing and testing new
vaccines. “Individual” and vaccine CoPs may differ.

The most common approaches to identify individual TB
CoPs rely on: (i) the assessment of Mtb infection severity in
immunologically-manipulated mice; (ii) the analysis of immune
response and TB pathology in other animal models, including
non-human primates (NHP) and bovine models [reviewed in
(17–20)]; (iii) the comparison of immune responses in poorly
and well-protected individuals, primarily in TB patients and
LTBI subjects, and in TB patients with diverse TB severity. At
the bottom, these approaches address CoPs against TB disease
and TB severity (or their experimental surrogates), but do not
measure CoPs against Mtb infection. The latter is difficult to
address due to the lack of adequate animal models and methods
to evaluateMtb persistence and clearance in humans (19).

In the vaccination field, experimental studies allow us to
directly compare vaccine immunogenicity and protectivity
(21–24), whereas clinical evaluation of vaccine protectivity
is difficult, limiting many studies to the analysis of vaccine
immunogenicity only.

In the review we mainly focus on mechanistic CoPs paying
attention to delineate individual and vaccine CoPs, and models
used for their detection. We focus predominantly on blood CoPs
due to their clinical relevance and limited number of studies
addressing tissue-associated CoPs in humans.

TH1 LYMPHOCYTES

Th1-response magnitude is often used as a measure of TB
protection and vaccine immunogenicity (7–9, 11, 13, 19, 25–
28). The concept relies on observations showing that failure to
develop Th1 response increases severity of experimental Mtb
infection in mice and TB risk in humans. Mice deficient in
CD4 lymphocytes, IFN-γ or other type 1 response genes develop
extremely severe TB (29–32). Patients with AIDS and patients
receiving anti-TNF therapy have increased TB risk (4, 33–35).
Children bearing mutations in the genes of IL-12/IFN-γ axis

FIGURE 1 | Model suggesting the relationships between Th17, Th1* and cTh1

populations and their potential roles in post-vaccination immunity, LTBI and

active TB. (A) Current concepts of cTh1, Th17, and Th1* differentiation. cTh1

differentiate from naïve lymphocytes in the presence of IL-12 (36, 37). Th17

differentiate from naïve lymphocytes in the presence of cytokine mixture. In

general, the differentiation of mouse Th17 cells depends on IL-6/TGF-β; the

generation of human Th17 is driven by IL-23/IL-1β/IL-6. The involvement of

TGF-β in the generation of human Th17 has been suggested by some authors,

especially at low cytokine doses (36, 38, 39). When exposed to IL-12, IL-1β,

or/and TNF-α, Th17 convert into IFN-γ producing Th17.1 and Th1*

lymphocytes (38, 40–43). Alternatively, Th1* may derive directly from naïve

lymphocytes under the action of cytokines that have not yet been identified

(40). The concept considers Th1* and cTh1 as independent lineages of CD4+

T-cell differentiation. (B) Suggested pathway of cTh1, Th17, and Th1*

differentiation. Naive cells progressively differentiate into Th17, Th1* and

cTh1/cTh1-like lymphocytes. The depth of the differentiation depends on the

strength of antigenic stimulation and cytokine milieu and is different in

response to vaccination, LTBI and active TB. (C) Suggested pathway of cTh1,

Th17, and Th1* differentiation and the predominance of different Th

populations following vaccination, during LTBI and active TB. In response to

vaccination, different populations of Th cells generate. Of them, Th17 have

higher survival capacity and persist longer. Following Mtb infection, Th17 are

exposed to antigen, IL-12 and pro-inflammatory cytokines and differentiate

into IFN-γ producing Th1* CXCR3+CCR6+ cells. The cells persist during LTBI

and maintain protection against TB disease. cTh1 are generated in response

to vaccination, LTBI and TB disease, but do not persist for a long time. During

active TB, their magnitude increases due to their permanent generation from

naïve lymphocytes and/or Th1*. The size of the circles indicates the relative

prevalence and protective roles of the corresponding subsets in the indicated

conditions. For each condition, prevalent pathways of T-cell differentiation are

indicated in solid arrows, otherwise dashed arrows are used.
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exhibit Mendelian susceptibility to mycobacterial diseases (44–
46). Nevertheless, the fact that Th1 are needed for Mtb control
does not signify that their magnitude reflects the degree of
protection (11, 16, 47–49). Reports on the lack of correlation
between Th1 and protection have been accumulated.

Experimental Studies
Mouse IFN-γ−/− CD4+ cells provided protection against Mtb
in vitro (50) and following adaptive transfer in vivo (51,
52); in vivo, hyper-production of IFN-γ was deleterious (53).
Vaccination of mice with BCG stimulated Th1, however the
response did not reflect the strength of protection (21, 54).
To enhance BCG-induced antimycobacterial immunity, prime-
boost strategies were suggested. In mice and NHP, boosting
strengthened Th1 response (55–59), but in most studies this did
not correlate with protection (55–57).

Clinical Studies
In humans, LTBI and active TB serve as surrogates of effective
and ineffective protection, respectively. Comparative analyses of
Th1/IFN-γ during LTBI and TB have given inconsistent results
on whether the responses are higher during LTBI or TB (60–
66). Interferon-gamma release assays (IGRA) do not discriminate
between LTBI and active TB, indicating that most TB patients
do not exhibit Th1 deficiency (67, 68). In TB patients, disease
severity does not correlate with diminished Th1/IFN-γ; patients
with active disease develop higher Mtb-specific IFN-γ responses
compared to patients with residual TB lesions (64, 65, 69).

While the magnitude of Th1 lymphocytes does not correlate
with protection and does not differentiate between LTBI and
TB, Th1 activation and differentiation allow distinguishing LTBI
and TB. Specifically,Mtb-specific Th1 persisting during LTBI are
significantly less activated, less differentiated and contain fewer
cycling lymphocytes compared to Th1 circulating during TB
(evaluation based on the expression of CD27, HLA-DR/CD38,
and Ki67) (70–74). It remains, however, unclear whether low-
activated/differentiated Th1 are mechanistically involved in LTBI
maintenance or whether their predominance during LTBI simply
reflects low infection activity.

In vaccine clinical studies, BCG and new candidate vaccines
appeared as potent inducers of Th1. However, in most studies,
Th1 response did not coincide with vaccine efficacy. In one
recent study, BCG-induced IFN-γ-secreting T cells associated
with reduced TB risk in South Africa infants (75). However,
a previous study in the same population found no association
of BCG-specific Th1 with TB risk (76). Similarly, BCG-boost
strategies and attenuated vaccines enhanced Th1 response (77–
80), but did not show satisfactory protection in clinical testing
[(77, 78, 81), reviewed in (19, 27, 82)].

Overall, the levels of Th1 immunity reflect the strength of
Mtb infection rather than the degree of protection and do not
correlate reliably with vaccine efficacy.

TH17 LYMPHOCYTES

Experimental Studies
Th17 are pleiotropic cells with neutrophil-stimulating and
pro-inflammatory activities (49, 83, 84). As neutrophils had

been implicated in TB pathology (47, 85, 86), Th17 were
initially thought to promote TB progression. However, in most
experimental studies they conferred protection (87–95).

In mice infected with Mtb, Th17 promoted granulomatous
response, participated in the formation of B-cell follicles and
activated macrophages for Mtb control (87–90). Vaccination of
mice and NHP with BCG or subunit vaccines induced both Th17
and Th1 (56, 96, 97). However, in a mousemodel, only Th17 were
essential for vaccine efficacy (56). Of note, protection provided
by Th17 was mediated through the enhanced generation of Th1
and their higher accumulation in the lung tissue (91–94). The
data point to Th17 as mediators of vaccine-induced protection
but raise a question on why Th1 themselves do not mark vaccine
efficacy if they are needed tomediate Th17-dependent protection.

Clinical Studies
The results of clinical Th17/IL-17 analyses are ambiguous.
Several, but not all studies reported associations between TB
susceptibility and polymorphisms in genes encoding IL-17 (98,
99). Transcriptional and clinical analyses of healthy adolescents
in South Africa revealed an association between inhibited Th17
responses and TB development (100). However, comparison
of Th17/IL-17 levels in LTBI subjects and TB patients yielded
inconsistent results: some studies reported heightened Th17/IL-
17 levels in LTBI subjects (101–103), others demonstrated
increased Th17/IL17 in TB patients (104–107), some did not
reveal differences between LTBI and TB groups (108) or found
extremely low frequencies of Mtb-specific Th17 in both groups
(109, 110). In our study, Mtb-specific Th17 were rare in the
blood, but readily identifiable in the lungs of TB patients
(110). However, it remained unclear whether lung-residing Th17
contributed to TB protection or pathology, since there was no
possibility to measure lung Th17 in well-protected individuals.

In vaccine clinical studies, BCG and new candidate vaccines
induced IL-17 producing cells. Yet, the cells either did not
correlate with the risk of TB [BCG (76)] or their role remained
uncertain [MVA85A (77)].

In summary, Th17 are involved in vaccine-induced protection
in mice. Their role in vaccine-induced immunity in humans as
well as in immune protection and pathology duringMtb infection
(in both humans and experimental animals) remains uncertain.

POLYFUNCTIONAL TH1 AND TH17
LYMPHOCYTES

Th1 and Th17 populations are heterogeneous and contain
subpopulations with diverse cytokine profiles.

Polyfunctional Th1 Lymphocytes
In experimental studies, polyfunctional IFN-γ+TNF-α+IL-2+

Th1 lymphocytes (PFL) were analyzed using murine, bovine
and NHP models. In all of them, BCG and novel TB vaccine
candidates elicited PFL, however, not in all studies correlative
relationships between vaccine-induced PFL and protection were
found [reviewed in details in (15)].

In clinical studies, many groups associated LTBI maintenance
with the persistence of PFL (15, 65, 111–114), which was
attributed to their low-differentiation degree and central memory
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characteristics (15). Yet, some groups found more PFL in TB
patients (115–117) or did not find differences between LTBI and
TB (106). Within the group of TB patients, PFL did not correlate
with TB severity (65). In humans, BCG, subunit, recombinant
protein and viral vector vaccines induced PFL; data on their
correlation with vaccine efficacy are limited to BCG and BCG-
prime/MVA85A-boost; both did not correlate with decreased TB
risk [68, 69].

Recently, Orlando and co-authors described a new population
of polyfunctional Mtb-responding CD4 human lymphocytes,
TCNP (118, 119). TCNP produced IFN-γ, TNF-α, and IL-
2 but expressed CD45RA+CCR7+ naïve-like phenotype. The
magnitude of TCNP reflected TB activity. It was suggested
that the cells present potential target for vaccination and
immunotherapeutic strategies. However, more studies are needed
to understand TCNP differentiation, function and link to Mtb
infection activity.

Th17.1 Lymphocytes
Th17.1 co-produce IFN-γ/TNF-α and IL-17, co-express T-bet
and RORγt and differentiate from Th17 in the presence of IL-12
and inflammatory cytokines, primarily IL-1β (120–122). During
autoimmune diseases, Th17.1 are hyperpathogenic (49). During
TB, Th17.1 are detected in the brochoalveolar fluid (123) and
lungs (110), but are rare in blood (110, 124), leaving their role
in TB uncertain.

Regulatory Th17
Regulatory Th17 co-produce IL-17 and IL-10. Recently, the
enrichment of IL10+Th17 lymphocytes during LTBI has
been reported (123). The data correspond to the beneficial,
inflammation-limiting role of Treg demonstrated in NHP model

of TB (125) and suggest IL10+Th17 as a new CoP (123). Yet,
more studies are needed to support this conclusion.

Overall, the induction of Th1 PFL is not sufficient or even
necessary for TB protection (15). The role of other polyfunctional
populations remains to be established.

NON-CLASSICAL TH1 LYMPHOCYTES

T-helper populations are categorized based on cytokine profiles,
transcriptional regulation and priming requirements (36, 37, 126,
127). Another categorization principle relies on the expression
of chemokine receptors. In humans, the expression of CXCR3,
CCR4, and CCR6 divides T cells into CXCR3+CCR4−CCR6−,
CXCR3−CCR4+CCR6−, and CXCR3−CCR4−CCR6+ subsets
that correspond to Th1, Th2, and Th17, respectively (128, 129).
CXCR3 is a marker of Th1, CCR6 is a marker of Th17 and their
progeny. Recently, a population of non-classical Th1 (Th1∗ or ex-
Th17) has been described. Th1∗ produce IFN-γ in the absence
of IL-17, but express CXCR3+CCR6+ phenotype (128). A few
studies have demonstrated Th1∗ enrichment during LTBI and
have suggested them as a new TB CoP (130–133). Nevertheless, it
remains unclear why protection should correlate specifically with
Th1∗ if functionally Th1∗ and cTh1 are similar.

DIFFERENCES AND RELATIONSHIPS
BETWEEN CTH1, TH1∗ AND TH17 DURING
TB

Memory and Effector Populations of CD4+

Lymphocytes
Besides being divided into different Th populations based
on cytokine profiles, CD4+ lymphocytes are divided into

TABLE 1 | Functional and phenotypic characteristics of naïve and memory populations of CD4+ human lymphocytes (40, 118, 134–139).

Main properties Homing CD45 isoforms Homing receptors Costimulatory receptors Cytokine receptors Other markers

TN Unprimed,

quiescent

Blood,

SLO

CD45RA+ CD45RO– CCR7+ CD62L+ CD27+ CD28+ CD127+ CD122– CD95– CXCR4–

TSCM Self-renewing

multipotent

Ag-specific, long-

lived

Blood,

SLO

CD45RA+ CD45RO- CCR7+ CD62L+ CD27+ CD28+ CD127+ CD122+ CD95+ CXCR4–

TCM Ag-experienced,

long-lived

able to proliferate

and differentiate

into TE

Blood,

SLO

CD45RA– CD45RO+ CCR7+ CD62L+ CD27+ CD28+ CD127+ CD122+ CD95+ CXCR4+

TEM Ready for rapid

effector response

Blood CD45RA– CD45RO+ CCR7– CD62L– CD27+/– CD28+/– CD127+/– CD122+ CD95+ CXCR4+

TTE/TEMRA End-stage

differentiated

Blood,

spleen,

inflamed

tissues

CD45RA+ CD45RO– CCR7– CD62L– CD27– CD28– CD127– CD122+ CD95+ CXCR4int

SLO, secondary lymphoid organs; TN , naïve T-cells; TSCM, stem cell memory T cells; TCM, central memory T cells; TEM, effector memory T cells; TEM/TEMRA, end-stage differentiated

T cells. Green, phenotype characteristic for (shared with) naïve lymphocytes. Pink, phenotypes that differ from those of naïve lymphocytes. Checked, heterogeneous expression of

markers by different subsets of the indicated population.
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several clusters based on cell phenotype, differentiation, and
homing properties. CD4+ lymphocytes circulating in human
blood in the quiescent state are classified into TN, TSCM,
TCM, TTM, TEM, and TTE/TEMRA clusters [(Table 1); (40, 119,
134–140)]. According to the lineage differentiation model,
CD4+ cells progressively differentiate along these clusters,
with less differentiated cells being longer-lived, having higher
multipotency and higher self-renewal and protective capacities
compared to more differentiated cells (138, 141–143).

Following the interaction with the cognate antigen, naïve
and memory cells differentiate into effector lymphocytes
(140). Depending on the strength and duration of antigenic
stimulation, effector cells reach different differentiation states,
which can be delineated by cell phenotype (137, 140, 144–
148). Particularly, early-differentiated CD4+ effectors are
CD27+CD28+, late-differentiated effectors are CD27−CD28+,
exhausted effectors are CD27−CD28−; terminally-differentiated
effectors are CD27−CD28− and express CD57, other NK-
cell and inhibitory receptors (140, 145). Along with their
differentiation, effector CD4+ cells progressively decrease
proliferative and survival potentials and increase cytokine
secreting activity, with the exception of the exhausted and
terminally-differentiated populations that decrease/lose cytokine
production (137, 140, 145). Following antigen/pathogen
clearance, most effectors die, whereas some give rise to memory
populations. The less differentiated an effector cell is, the higher
is its capacity to acquire memory state.

Overall, there is a link between T-cell stemness and memory
potential and there are reciprocal relationships between these
parameters and the strength of cell effector activity.

Th1∗ and cTh1 Display Phenotypic and
Differentiation Differences
Considering that T-cell protective potential depends on cell
differentiation, we have recently compared the differentiation
states of Th1∗ and cTh1 persistent during TB (110). Th1∗ were
less-differentiated: they contained more CD27+ cells, did not
contain CD27−CD28− cells and expressed T-bet at a lower
level than cTh1 [a sign of memory cell precursors (134)].
We also found out that CXCR3+CCR6+ Th1∗ cells stimulated
in vitro with anti-CD3/CD28 antibodies, differentiated into
CXCR3+CCR6− cTh1-like lymphocytes, but not vice versa (110).
Other authors reported a higher expression of anti-apoptotic
protein Bcl-2 by Th1∗ cells (41) and an overlap between the
gene signatures of Th1∗ and memory CD4+ cells persistent
during LTBI (132). There are also overlaps between Th1∗ and
Mtb-specific TSCM, as both are CD27+, express CXCR3 and
CCR6 and produce type 1 cytokines (149). Thus, compared to
cTh1, Th1∗ are more memory-biased, which, as we suppose,
determines their role in LTBI maintenance. Of note, most TB
studies identified Th1 based on intracellular IFN-γ, i.e., they did
not distinguish between cTh1 and Th1∗. This could account for a
poor correlation between Th1 and TB protection.

Additional mechanism providing Th1∗ with increased
protective potential may lie in their expression of CCR6,
as CCR6 participates in cell homing to the inflamed tissues

(150, 151). Peripheral localization is critical for TB protection
(152). Interestingly, tissue-resident memory cells (TRM) exhibit
superior protective potential (153) and co-express CXCR3 and
CCR6 (154).

Overall, although Th1∗ and cTh1 exhibit similar functional
activity in terms of the secretion of type 1 cytokines, Th1∗

are less-differentiated, have higher survival and mucosal tissue
homing capacities and higher protective potential.

Lineage Relationships Between Th17,
Th1∗, and cTh1 Populations: Data and
Hypotheses
Some authors suggest that Th1∗ may originate from naïve
precursors (40), yet multiple observations speak in favor of Th1∗

generation from Th17 (40, 41, 155, 156). The Th17 → Th1
differentiation provides a mechanism to maintain long-lasting
Th1 response in vivo. Indeed, cTh1 are highly differentiated
and have poor persistent capacity (38). In contrast, Th17 have
self-renewal properties similar to those of TSCM (157), they are
long-lived, plastic (38, 40) and acquire IFN-γ production in the
presence of IL-12 and pro-inflammatory cytokines, primarily IL-
1β (39, 42, 43, 158). Mtb have evolved multiple mechanisms
to avoid host protective immunity, including the inhibition
of IL-12 (159, 160). Yet, innate immune cells produce IL-
12 and IL-1β during Mtb infection (161, 162). This creates
conditions necessary for the differentiation of vaccine-induced
Th17 into Th1∗. Indeed, in mice vaccine-induced Th17 adapted
Th1 characteristics following Mtb challenge (158). In a mouse
model of autoimmune disease, Th17 comprised two subsets,
CD27+ stemness-associated and CD27−/T-bet+ able to trans-
differentiate into Th1-like cells (163). The data support Th17
→ Th1 differentiation and the dichotomy between stemness and
Th1-like properties.

Our data on a lower differentiation degree of Th1∗ and their
ability to transform into CXCR3+CCR6− cells suggest Th1∗ →

cTh1 transition and the existence of Th17 → Th1∗ → cTh1
differentiation pathway. Because T-cell differentiation is driven
by antigenic and cytokine stimulation, the hypothesis implies that
different populations dominate andmediate protection following
vaccination, during LTBI and active TB (Figure 1). We suppose
that Th17 persist in low-inflammatory conditions, maintain
vaccine-induced protection and early response to Mtb; Th1∗

are generated and support long-lasting protection during LTBI;
cTh1 originate from naïve and/or Th1∗ precursors during active
TB. Certainly, more studies are needed to prove the hypothesis.
However, it explains some existing data and controversies, such
as: (i) the preferential link of vaccine-induced protection to Th17;
(ii) a need for Th1 for the protection against TB along with the
lack of correlation between post-vaccination Th1 and vaccine-
induced protection; (iii) the predominance of Th1∗ during
LTBI and their contraction during active TB (discussed above).
Important outcomes of the hypothesis, if it is supported, are:
(i) in different conditions, protection is associated with different
Th populations, i.e., there is no single T-cell-associated TB CoP;
(ii) over-stimulating T cells during vaccination and biasing host
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response toward the preferential generation of Th1 (the aim of
many current vaccination-boost strategies) are not beneficial.

CLOSING SUMMARY

Multiple studies have searched for TB CoPs, but the data
are contradictory, many questions remain unanswered, and no
reliable CoPs have been identified. Particularly, it is not clear
why vaccine-induced pre-challenge Th1 do not correlate with
protection, why Th17 better correlate with protection compared
to Th1, and why LTBI maintenance is associated with Th1∗ but
not cTh1. The review addresses these questions by analyzing
Th17, Th1∗, and cTh1 properties and differentiation pathways.
We suggest a hypothesis that links Th protective potential to
cell differentiation degree, longevity and plasticity. We suppose
that following the exposure to Mtb-antigens, Th cells transit
along the Th17 → Th1∗ → cTh1 pathway. The differentiation
depth depends on the strength of antigenic stimulation, which
is different following vaccination, during LTBI and active
TB. Thus, under different conditions, immunotherapy and
vaccination strategies should target different populations, and
over-stimulating T cells during vaccination is not beneficial.

Although more studies are needed to confirm the suggested

assumptions, the hypothesis sheds new light on TB CoPs and
should help develop better TB control strategies.
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